Problem 1 (16 points)

(a, 4pts) Fermat’s last theorem is a famous impossibility theorem of mathematics. Please state another
impossibility theorem of mathematics.
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(b, 4pts) True of false: For all integers x, y,z with xyz # 0 we have x* +)* # z2. Please explain your
answer.
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(c, 4pts) True or false: If p is a positive prime integer and a, b, c are quadratic non-residue modulo p,
then (abc mod p) must be a quadratic non-residue modulo p. Please explain.

True:

]f(%) = (%) = (%) = —1, then (“lec) = (g—) : (%) . (%) =—1, soabcisa Q.N.R.

(d, 4pts) Let p > 1 be a prime integer. How many residues in Z, are primitive roots?
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Problem 2 (5 points): Using the quadratic reciprocity law, please compute the value of the
Jacobi symbol (£5:). Please show all your work.
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Problem 3 (5 points): The El Gamal public key cryptosystem is a probabilistic cryptosystem
because clear text is encrypted using a different random residue for each cyphertext. Show that if
instead a single fixed residue is used for all encryptions, the resulting non-probabilistic system can
be broken by the chosen ciphertext attack.
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Problem 4 (10 points): Consider the following table of 1ndlces (discrete logarithms) for the prime

number 19 with respect to the primitive root g = 2:
a[23456789101112131415161718

indz(a)118113216 14 6 3 8 17 12 15 5 7 11 4 10 9

(a, 5pts) There are ¢(9) residues in Zg \ {0} that have (multiplicative) order 9 modulo 19 (belong to
the exponent 9 modulo 19). By inspecting the above table, please list all those residues.

a has order 9 <> a = g’ with gcd(i,18) = 2.
Soa=22=42=16,22=9210= 17,2'% = 6,216 = 5 are those residues.
In numeric order: 4,5,6,9,16,17.

(b, Spts) Using the above table, please solve x € Zj9 and all y € Z9 the two congruences
¥*=7 (mod19), 5°=12 (mod 19)

Please give all solutions and show your work.

7 =26 =26+18 = 264218 (1104 19)
=Xl n=C=n=M=¢ (mod 19).

5-indy(y) +indy(5) = ind>(12) (mod 18),
indy(y) = 11(15 — 16) = 7 (mod 18) (by extended Euclidean algorithm not shown), so
y=14.




Problem 5 (6 points): Let p > 2 be a prime integer with p = 5 (mod 8), i.e., 8 divides p+3and
4 divides p—1, and let a € Zp be a quadratic residue modulo p.

Since a7 (mod p) = (%) = 1 we must have a7 = 41 (mod p).
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(a,3pts) Casea @ =1 (mod p): Show that for x — o mod p) one has x> =a (mod »).
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(b, 3pts) Case a"T = —1 (mod p): Let ¢ be an arbitrary quadratic non-residue.
Show that for x = (a%c}%l mod p) one has x*> = g (mod p). o, o]
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Problem 6 (4 points): Please find three integers x,y,z € Z-g such that x2 +

3* =z*. Please show
your work.

22 =52+ 12, s0 we can choose s =4 and t = 3. Thusx =25t =24,y =52 —12=7 7 —35.
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