NC STATE UNIVERSITY

MA 410 Theory of Numbers, final examination, May 1, 2009
919.515 .8785 (phone)

Prof. Erich Kaltofen kaltofen@math.ncsu.edu
www.math.ncsu.edu/~kaltofen/courses/NumberTheory/Spring09/ (URL)
(C) Erich Kaltofen 2009

Your Name: SOLUTION
For purpose of anonymous grading, please do not write your name on the subsequent pages.

This examination consists of 6 problems, which are subdivided into 11 questions, where each question counts for the explicitly given number of points, adding to a total of 46 points. Please write your answers in the spaces indicated, or below the questions, using the back of the sheets for completing the answers and for all scratch work, if necessary. You are allowed to consult three 8.5 in $\times 11$ in sheets with notes, but not your book or your class notes. If you get stuck on a problem, it may be advisable to go to another problem and come back to that one later.

You will have $\mathbf{1 2 0}$ minutes to do this test.

Problem 1
\qquad

3 \qquad

4 -

5 \qquad

Total \qquad

Problem 1 (16 points)

(a, 4pts) What makes a public key cryptosystem public? Please explain by example of the RSA.

Everyone knows how messages are encrypted. For the RSA, the encryption algorithm computes for a message M the cipher $M^{E} \bmod K$ where E and K are publicly known integers.
(b, 4pts) True of false: For all integers x, y, z, k with $x y z \neq 0$ and $k \geq 2$ we have $x^{2^{k}}+y^{2^{k}} \neq z^{2}$. Please explain your answer.

True: this is a special case of Fermat's theorem: $\left(x^{2^{k-2}}\right)^{4}+\left(y^{2^{k-2}}\right)^{4} \neq z^{2}$.
(c, 4pts) Please prove: let $p>2$ be a prime number such that $p \equiv 3(\bmod 4)$, i.e., $p-1$ is a quadratic non-residue. Then for all $x, y \in \mathbb{Z}_{p}$ with $x>0, y>0$ one has $x^{2}+y^{2} \not \equiv 0(\bmod p)$.

Suppose there are such residues x, y : then $-1 \equiv\left(x y^{-1}\right)^{2}(\bmod p)$, hence a quadratic residue. But $(-1)^{(p-1) / 2} \equiv-1$, so -1 is a QNR modulo p.
(d, 4pts) True of false: there does not exist an algorithm that for a system of polynomial equations with integer coefficients determines if the system has a solution where the values of the variables are integers.

True: this is a famous theorem proven in the 1960s.

Problem 2 (5 points): Using the quadratic reciprocity law, please compute the value of the Jacobi symbol $\left(\frac{110}{199}\right)$. Please show all your work.

```
\(\left(\frac{110}{199}\right)=\left(\frac{2}{199}\right)\left(\frac{55}{199}\right)=(-1)^{\frac{199^{2}-1}{8}}\left(\frac{55}{199}\right)=+\left(\frac{55}{199}\right)\)
\(\left(\frac{55}{199}\right) \cdot\left(\frac{199}{55}\right)=(-1)^{\frac{55-1}{2} \cdot \frac{199-1}{2}}=-1\),
\(\left(\frac{199}{55}\right)=\left(\frac{34}{55}\right)=\left(\frac{2}{55}\right)\left(\frac{17}{55}\right)=+\left(\frac{17}{55}\right),\left(\frac{17}{55}\right) \cdot\left(\frac{55}{17}\right)=(-1)^{\frac{55-1}{2} \cdot \frac{17-1}{2}}=+1\)
\(\left(\frac{55}{17}\right)=\left(\frac{4}{7}\right)=+1 \Longrightarrow\left(\frac{110}{199}\right)=-1\).
```

Problem 3 (5 points): Let $p>2$ be a prime integer with $p \equiv 5(\bmod 8)$, and let $a \in \mathbb{Z}_{p}$ be a quadratic residue modulo p with $a^{(p-1) / 4} \equiv-1(\bmod p)$. Please explain how you can compute a residue b with $b^{2} \equiv a(\bmod p)$.

Select a quadratic non-residue $c \in \mathbb{Z}_{p}$ by randomly testing $c^{\frac{p-1}{2}} \equiv-1(\bmod p)$. Then set $b=$ $\left(a^{\frac{p+3}{8}} c^{\frac{p-1}{4}} \bmod p\right)$. then $b^{2} \equiv a^{\frac{p-1}{4}} c^{\frac{p-1}{2}} a \equiv a(\bmod p)$.

Problem 4 (15 points): Consider the following table of indices (discrete logarithms) for the prime number 19 with respect to the primitive root $g=2$:

a	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
$\operatorname{ind}_{2}(a)$	18	1	13	2	16	14	6	3	8	17	12	15	5	7	11	4	10	9

(a, 5pts) By inspecting the above table, for the multiplicative orders $k=1,2,3,6,9,18$ please list one residue $a_{k} \in \mathbb{Z}_{19}$ each that has order k (belongs to the exponent k modulo 19).
a has order $k \Longleftrightarrow a=g^{i}$ with $\operatorname{gcd}(i, 18)=18 / k$.
So $a_{1}=2^{18}=1, a_{2}=2^{9}=18, a_{3}=2^{6}=7, a_{6}=2^{3}=8, a_{9}=2^{2}=4, a_{18}=2$.
(b, 5pts) Using the above table, please solve $x \in \mathbb{Z}_{19}$ and all $y \in \mathbb{Z}_{19}$ the two congruences

$$
x^{4} \equiv 5 \quad(\bmod 19), \quad 7 y^{7} \equiv 8 \quad(\bmod 19)
$$

Please give all solutions and show your work.
$5 \equiv 2^{16}(\bmod 19)$
$4 \cdot \operatorname{ind}(x) \equiv 16(\bmod 18), 2 \cdot \operatorname{ind}(x) \equiv 8(\bmod 9), \operatorname{ind}(x) \equiv 4(\bmod 9), \quad \operatorname{ind}(x)=4$ and $\operatorname{ind}(x)=13$,
$x_{1}=16, x_{3}=3$.
$7 \cdot \operatorname{ind}_{2}(y)+\operatorname{ind}_{2}(7) \equiv \operatorname{ind}_{2}(8)(\bmod 18)$,
ind $_{2}(y) \equiv 7^{-1}(3-6) \equiv 15(\bmod 18)$ (by extended Euclidean algorithm not shown), so $y=12$.
(c, 5pts) Suppose Alice has digitally signed her signature $F_{A} \in \mathbb{Z}_{19}$ by the el-Gamal public key system. The shared modulus is $p=19$ and the shared primitive root is $g=2$. Her public key is $h_{A}=$ $15 \equiv 2^{s_{A}} \bmod 19$. Her digital signature using Bob's $x_{B}=9 \equiv 2^{r_{B}} \bmod 19$ is $G_{A}=10 \in \mathbb{Z}_{19}$. Please show how Bob computes F_{A}. You can use the table in part (a) to determine Bob's secret random exponent r_{B}, but not Alice's private key, namely exponent s_{A}.
$r_{B}=8$
Bob encrypts G_{A} as the pair x_{B} and $F_{A}=y_{B}=\left(G_{A} h_{A}^{r_{B}} \bmod 19\right)=10 \cdot 15^{8} \bmod 19=12$.

Problem 5 (5 points): Please find three relatively prime integers $x, y, z \in \mathbb{Z}_{>0}$ such that $x^{2}+y^{6}=z^{2}$. Please show your work.
$y=2 s t$, so we can choose $s=4$ and $t=1$. Thus $x=s^{2}-t^{2}=15, y=2$, and $z=s^{2}+t^{2}=17$.

