NC STATE UNIVERSITY

MA 410 Theory of Numbers, final examination, May 5, 2010
919.515 .8785 (phone)

Prof. Erich Kaltofen kaltofen@math.ncsu.edu
www.math.ncsu.edu/~kaltofen/courses/NumberTheory/Spring10/ (URL)
(C) Erich Kaltofen 2010

Your Name: \qquad
For purpose of anonymous grading, please do not write your name on the subsequent pages.
This examination consists of 5 problems, which are subdivided into 10 questions, where each question counts for the explicitly given number of points, adding to a total of 46 points. Please write your answers in the spaces indicated, or below the questions, using the back of the sheets for completing the answers and for all scratch work, if necessary. You are allowed to consult three 8.5 in $\times 11$ in sheets with notes, but not your book or your class notes. If you get stuck on a problem, it may be advisable to go to another problem and come back to that one later.

You will have $\mathbf{1 2 0}$ minutes to do this test.
\qquad

2 \qquad

3 \qquad

4 \qquad

5 \qquad

Total \qquad

Problem 1 (16 points)

(a, 4pts) Please compute $2^{1000000}$ mod 55. Hint: use Chinese remaindering and Euler's generalization of the little Fermat theorem.
(b, 4pts) True of false: For all integers x, y, z with $x y z \neq 0$ we have $x^{4}+4 y^{4} \neq z^{4}$. Please explain your answer.
(c, 4pts) True or false: if p is a prime number with $p \equiv 3(\bmod 4)$ then for all $a \in \mathbb{Z}_{p}, a \neq 0$ exactly one of a and $p-a$ are quadratic residues.
(d, 4pts) The Riemann zeta function

$$
\zeta(z)=\frac{1}{1^{z}}+\frac{1}{2^{z}}+\cdots+\frac{1}{i z}+\cdots
$$

is defined for complex values $z \in \mathbb{C}$ (but not everywhere, e.g., not for $z=1$). The Riemann hypothesis conjectures a property for all complex zeros $w \in \mathbb{C}$ of ζ, i.e., $\zeta(w)=0$. Which property?

Problem 2 (5 points): Using the quadratic reciprocity law, please compute the value of the Jacobi symbol $\left(\frac{70}{151}\right)$. Please show all your work.

Problem 3 (5 points): Using Newton iteration discussed in class compute consecutively residues $b_{0} \in \mathbb{Z}_{3}$, then $b_{1} \in \mathbb{Z}_{3}$ and finally $b_{2} \in \mathbb{Z}_{3}$ such that $b_{0}+3 b_{1}+9 b_{2}=b \in \mathbb{Z}_{27}$ satisfies $b^{2} \equiv 7$ $(\bmod 27)$.

Problem 4 (15 points): Consider the following table of indices (discrete logarithms) for the prime number 23 with respect to the primitive root $g=5$:

a	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22
$\operatorname{ind}_{5}(a)$	0	2	16	4	1	18	19	6	10	3	9	20	14	21	17	8	7	12	15	5	13	11

(a, 4pts) By inspecting the above table, please list all primitive roots modulo 23.
(b, 6pts) Using the above table, please solve for $x \in \mathbb{Z}_{23}, y \in \mathbb{Z}_{23}$, and $z \in \mathbb{Z}_{22}$ the three congruences

$$
10 x^{9} \equiv 22 \quad(\bmod 23), \quad y^{4} \equiv 2 \quad(\bmod 23), \quad 7^{z} \equiv 10 \quad(\bmod 23)
$$

Please give all solutions and show your work.
(c, 5pts) Suppose Bob has set up a public key $p=23, g=5$, and $h=19=g^{s}(\bmod 23)$ for Taher ElGamal's cryptosystem. Alice has chose her random $r=15$ and encrypts a message $M=$ 15. What cipertext is Alice sending to Bob? You can use the table above part (a) for modular exponentiation (instead of repeated squaring) but not for computing Bob's secret s.

Problem 5 (5 points): Please find three integers $x, y, z \in \mathbb{Z}_{>0}$ such that $\operatorname{GCD}(x, y)=1$ and $x^{2}+y^{5}=z^{2}$. Please show your work.

