Key Exchanges,
 Digital Signatures and Public Key Cryptography

MA 410
April 11, 2011

Where It All Began

- "New Directions in Cryptography", by Whitfield Diffie and Martin Hellman (November 1976)
- Defined public key cryptosystem: a pair of families of algorithms, $\left\{E_{K}\right\}$ and $\left\{D_{K}\right\}$ (representing invertible transformations on a "message space"), such that
(1) For each K, E_{K} is the inverse of D_{K}
(2) For each K and each M (message), E_{K} and D_{K} are easy to compute
(3) For almost all K, any equivalent to D_{K} is computationally infeasible to derive from E_{K}
(9) For each K, it is feasible to compute inverse pairs E_{K} and D_{K} from K.
- Note: Item (3) implies that E_{K} may be made public without compromising the security of D_{K}
- Had the setup, but no instantiation

Where It All Began

A "suggestive, although unfortunately useless, example" (using linear algebra)

- Represent the "plaintext" message as a binary n-vector m
- Multiply by an invertible binary $n \times n$ matrix E, so $E_{K}(m)=E m=c$ ("ciphertext")
- Letting $D=E^{-1}$, decrypt via $D_{K}(c)=D c=E^{-1} E m=m$
- Easy to generate E and D (from identity matrix)
- Downside: matrix-vector multiplication takes about $\sim n^{2}$ operations, and matrix inversion takes about n^{3} operations (not a good ratio)

Public Key Distribution System

"Diffie-Hellman Key Exchange"

Alice wants to send Bob a message, using a secret key that only she and Bob know.

- Alice and Bob agree on a prime p and a primitive root α in \mathbb{Z}_{p}
- Alice picks a secret $x \in\{1,2, \ldots, p-1\}$ and computes $\alpha^{x} \bmod p$
- Bob picks a secret $y \in\{1,2, \ldots, p-1\}$ and computes $\alpha^{y} \bmod p$
- Exchange: Alice $\underset{\alpha^{x}}{\stackrel{\alpha^{y}}{\leftrightarrows}}$ Bob
- Alice computes $\left(\alpha^{y}\right)^{x} \bmod p$, Bob computes $\left(\alpha^{x}\right)^{y} \bmod p$

Fermat's Little Theorem: $\alpha^{p-1} \equiv 1 \bmod p$

- Only α^{x}, α^{y} are transmitted
- Security relies on discrete log problem

Digital Signatures

Easy to recognize, difficult to forge

Can use a public key cryptosystem:

- Alice has $E_{A}: M \mapsto C$ (public), $D_{A}: C \mapsto M$ (private). Bob has E_{B}, D_{B}.
- Alice sends Bob $D_{A}(M)$, as opposed to $E_{B}(M)$
- Bob computes $E_{A}\left(D_{A}(M)\right)=M\left(E_{A}\right.$ is public)
- Only Alice knows D_{A} (forgery is difficult)
- Everyone knows E_{A} (recognition is easy)
- Note: D_{A} is private, but examples of $D_{A}(M)$ are public "known plaintext attack"

RSA Cryptosystem

An instantiation of a public key cryptosystem

- Rivest, Shamir, Adelman (1978)
[Also: Cocks, Ellis, Williamson (1973) with GCHQ, UK's equivalent of NSA]
- Uses Euler's (Generalization of Fermat's Little) Theorem:

If $\operatorname{gcd}(a, n)=1$, then $a^{\phi(n)} \equiv 1 \bmod n$, where
$\phi(n)=\left\{m \in \mathbb{Z}_{n}: \operatorname{gcd}(m, n)=1\right\} . \quad$ (Theorem 7.5 in ENT, 7th ed.)

- $\phi(n)=n \cdot \prod_{p \mid n}\left(1-\frac{1}{p}\right) \quad$ (Theorem 7.3 in ENT, 7th ed.)

For distinct primes p and q,

$$
\phi(p q)=p q\left(1-\frac{1}{p}\right)\left(1-\frac{1}{q}\right)=(p-1)(q-1)
$$

RSA Cryptosystem

How it works
Alice wants to send a secret message (encoded as a number M) to Bob.

- Bob picks two (large) primes, p and q, and sets $n=p q$
- Bob picks e ("encoding exponent") such that $\operatorname{gcd}(e, \phi(n))=1$
- Bob computes d ("decoding exponent") such that $d e \equiv 1 \bmod \phi(n)$
- Bob publishes (e, n), keeps (p, q) secret
- Alice computes $c \equiv M^{e} \bmod n$, sends c to Bob (If $M \geq n$, then break into blocks smaller than n)
- Bob computes (use " \equiv_{n} " for "congruent modulo n ")

$$
\begin{aligned}
& c^{d} \equiv_{n}\left(M^{e}\right)^{d} \equiv{ }_{n} M^{t \cdot \phi(n)+1} \equiv_{n}\left(M^{\phi(n)}\right)^{t} \cdot M \\
& \stackrel{\text { Euler }}{\equiv}{ }_{n} 1^{t} \cdot M \equiv{ }_{n} M \quad M<n \Rightarrow c^{d}=M
\end{aligned}
$$

- One catch: Euler's Theorem assumes $\operatorname{gcd}(M, n)=1$

RSA Cryptosystem

What if $\operatorname{gcd}(M, n)>1$?

- Suppose $\operatorname{gcd}(M, n)=\operatorname{gcd}(M, p q)>1$. Then either

$$
p \mid M \text { and } q \mid M, \quad \text { or (WLOG) } p \mid M \text { but } q \nmid M \text {. }
$$

- Suppose $p \mid M$ but $q \nmid M$, so $M^{\text {ed }} \equiv_{p} 0$ and $\operatorname{gcd}(M, q)=1$.

$$
\begin{aligned}
M^{e d} & =M^{\phi(n) \cdot t+1}=\left(M^{(p-1)(q-1)}\right)^{t} \cdot M \\
& =\left(M^{q-1}\right)^{t(p-1)} \cdot M \stackrel{\text { Euler }}{\equiv} M
\end{aligned}
$$

- Set $x=M^{e d}$. Then $x \equiv_{p} 0, x \equiv_{q} M$, and $\operatorname{gcd}(p, q)=1$.

Recall: Chinese Remainder Theorem

Theorem 4.8 in ENT, 7th ed.

Chinese Remainder Theorem

Let $n_{1}, n_{2}, \ldots, n_{r}$ be positive integers such that $\operatorname{gcd}\left(n_{i}, n_{j}\right)=1$ for $i \neq j$. Then the system of linear congruences

$$
\begin{aligned}
x & \equiv a_{1}\left(\bmod n_{1}\right) \\
x & \equiv a_{2}\left(\bmod n_{2}\right) \\
& \vdots \\
x & \equiv a_{r}\left(\bmod n_{r}\right)
\end{aligned}
$$

has a simultaneous solution, which is unique modulo the integer $n_{1} n_{2} \cdots n_{r}$.

RSA Cryptosystem

What if $\operatorname{gcd}(M, n)>1$?

- Suppose $\operatorname{gcd}(M, n)=\operatorname{gcd}(M, p q)>1$. Then either

$$
p \mid M \text { and } q \mid M, \quad \text { or (WLOG) } p \mid M \text { but } q \nmid M \text {. }
$$

- Suppose $p \mid M$ but $q \nmid M$, so $M^{\text {ed }} \equiv_{p} 0$ and $\operatorname{gcd}(M, q)=1$.

$$
\begin{aligned}
M^{e d} & =M^{\phi(n) \cdot t+1}=\left(M^{(p-1)(q-1)}\right)^{t} \cdot M \\
& =\left(M^{q-1}\right)^{t(p-1)} \cdot M \stackrel{\text { Euler }}{=}_{q} M
\end{aligned}
$$

- Set $x=M^{e d}$. Then $x \equiv_{p} 0, x \equiv_{q} M$, and $\operatorname{gcd}(p, q)=1$.
- By CRT, there is unique $\bar{x} \bmod p q$ such that $\bar{x} \equiv_{p} 0, \bar{x} \equiv_{q} M$.
- $\bar{x} \equiv M \bmod n$ is a solution, hence the solution.

$$
(M<n \Rightarrow \bar{x}=M)
$$

- If $p \mid M$ and $q \mid M$, then $M \equiv{ }_{n} 0$ (contradicting $0 \leq M<n$)

RSA Cryptosystem

- Security/efficiency depends on ease of exponentiation and difficulty of factoring $n=p q$

With p and q, can find $d\left(d e \equiv_{\phi(n)} 1\right)$ via Euclidean Algorithm

- (ENT, 7th ed.) A 200-digit number can be tested for primality in 20 seconds, but the quickest factoring algorithm takes about 1.2×10^{23} operations for the same size number.
- At 10^{-9} operations per second (1 GHz), it would take about 3.8×10^{6} years. "...appears to be quite safe."
- RSA-129: $\$ 100$ prize offered by R, S, and A; 129-digit encoding modulus; factored in 1994 by 600 volunteers running over 1600 computers for 8 months; "The magic words are squeamish ossifrage."
- RSA Challenge List (42 numbers, posted in 1991); most recent, 193-digit factorization (two primes, 95 digits each); inactive as of 2007

RSA Cryptosystem

Malleability

- Say M itself starts as a number (e.g., a bid on a product)
- Eve hears $C \equiv{ }_{n} M^{e}$
- Suppose $\operatorname{gcd}(100, n)=1$
[$n=p q$, so if $\operatorname{gcd}(100, p q)>1$, then $p \in\{2,5\}$]
Then there exists $100^{-1} \bmod n$
- Eve sends

$$
C \cdot\left(101 \cdot\left[100^{-1} \bmod n\right]\right)^{e} \equiv_{n} M^{e} \cdot 101^{e} \cdot 100^{-e} \equiv_{n}\left(M \cdot \frac{101}{100}\right)^{e}
$$

- Outbids by 1% !

Attacking the RSA

- Suppose $p, q, p^{-1} \bmod q, q^{-1} \bmod p$ are stored on a microchip, and suppose $M^{e} \bmod n$ is computed in a particular way:
- After the computation of $q\left(q^{-1} C \bmod p\right)$, toss the microchip in the microwave at the " $p^{-1} C \bmod q$ " step:

$$
\widetilde{C} \equiv{ }_{n} q\left(q^{-1} C \bmod p\right)+p(G \bmod q)
$$

- $C-\widetilde{C}=p\left[\left(p^{-1} C-G\right) \bmod q\right] \quad$ (divisible by p, but not q)
- $\operatorname{gcd}(C-\widetilde{C}, p q)=p$
- "Differential Fault Analysis"; Boneh, DeMillo, Lipton (Sep 1996)

Recall: Chinese Remainder Theorem (Proof)

Theorem 4.8 in ENT, 7th ed.
Setup: $\operatorname{gcd}\left(n_{i}, n_{j}\right)=1$ for $i \neq j$. Then $x \equiv_{n_{1}} a_{1}, x \equiv_{n_{2}} a_{2}, \ldots, x \equiv_{n_{r}} a_{r}$ has unique solution $\bar{x} \bmod n_{1} n_{2} \cdots n_{r}$.

- Let $n=n_{1} n_{2} \cdots n_{r}$, and let $N_{k}=\frac{n}{n_{k}}$, so that $\operatorname{gcd}\left(N_{k}, n_{k}\right)=1$.
- Then there exists x_{k} such that $N_{k} x_{k} \equiv_{n_{k}} 1$. $\quad\left[x_{k}=N_{k}^{-1} \bmod n_{k}\right]$
- Let $\bar{x}=a_{1} N_{1} x_{1}+a_{2} N_{2} x_{2}+\cdots+a_{r} N_{r} x_{r}$.

Note that $N_{i} \equiv_{n_{k}} 0$ for $i \neq k$, but $N_{k} x_{k} \equiv_{n_{k}} 1$.

- $\bar{x} \equiv{ }_{n_{k}} a_{k} N_{k} x_{k} \equiv_{n_{k}} a_{k} \cdot 1 \equiv_{n_{k}} a_{k}$ for each k
- For RSA, $n=p q, N_{p}=\frac{n}{p}=q, N_{q}=\frac{n}{q}=p$.
- Then $x \equiv_{p} C, x \equiv_{q} C$ has unique solution $\bar{x} \bmod p q$:

$$
C \cdot q \cdot\left(q^{-1} \bmod p\right)+C \cdot p \cdot\left(p^{-1} \bmod q\right)
$$

Attacking the RSA

- Suppose $p, q, p^{-1} \bmod q, q^{-1} \bmod p$ are stored on a microchip, and suppose $C \equiv M^{e} \bmod n$ is computed in a particular way:

$$
C \equiv_{n} q\left(q^{-1} C \bmod p\right)+p\left(p^{-1} C \bmod q\right) .
$$

- After the computation of $q\left(q^{-1} C \bmod p\right)$, toss the microchip in the microwave at the " $p^{-1} C \bmod q$ " step:

$$
\widetilde{C} \equiv_{n} q\left(q^{-1} C \bmod p\right)+p(G \bmod q)
$$

- $C-\widetilde{C}=p\left[\left(p^{-1} C-G\right) \bmod q\right] \quad$ (divisible by p, but not q)
- $\operatorname{gcd}(C-\widetilde{C}, p q)=p$
- "Differential Fault Analysis"; Boneh, DeMillo, Lipton (Sep 1996)

The EIGamal Cryptosystem

Taher EIGamal (1985)

- RSA security: difficult to factor large numbers
- ElGamal security: difficult to solve discrete log problem:

Find $x, 0<x<\phi(n)$, such that $r^{x} \equiv_{n} y$
(" $\log ()$ " button won't work)

- RSA: public exponent, private (factored) modulus
- EIGamal: public (prime) modulus, private exponent(s)

The EIGamal Cryptosystem

How it works
Alice wants to send a secret message (encoded as a number M) to Bob.

- Bob picks a prime p and a primitive root r (so that $r^{x} \equiv_{p} y$ has a solution for all $y \in \mathbb{Z}_{p}$)
- Bob picks (random) $k \in\{2,3, \ldots, p-2\}$ and computes $a \equiv_{p} r^{k}$, where $a \in\{0,1, \ldots, p-1\}$
- Bob publishes (a, r, p), keeps k secret
- Alice picks (random) $j \in\{2,3, \ldots, p-2\}$ and computes

$$
C_{1} \equiv_{p} r^{j}, \quad C_{2} \equiv_{p} M a^{j} \equiv_{p} M\left(r^{k}\right)^{j},
$$

and sends C_{1}, C_{2} to Bob

- Bob computes

$$
\begin{aligned}
C_{2} C_{1}^{p-1-k} & \equiv{ }_{p} M\left(r^{k}\right)^{j}\left(r^{j}\right)^{p-1-k} \equiv_{p} M r^{k j} r^{j(p-1)-k j} \\
& \equiv_{p} M r^{k j} r^{-k j}\left(r^{p-1}\right)^{j} \equiv_{p} M\left(r^{p-1}\right)^{j} \stackrel{\text { Fermat }}{\equiv}{ }_{p} M
\end{aligned}
$$

The EIGamal Cryptosystem

Features

- Can use same k, j (hence, C_{1}) for each block, or change for each block (no need to tell other party)
- Bob never announces k, Alice never announces j

Two private exponents, one public modulus

- Capitalizes on difficulty of discrete log problem
- Can be used for digital signatures as well (ENT $\S 10.3,7$ th ed.)

The EIGamal Cryptosystem
 Malleability

- Alice (rightfully) sends $C_{1} \equiv_{p} r^{j}, C_{2} \equiv{ }_{p} M a^{j}$
- Eve hears C_{1} and C_{2}, then sends

$$
\begin{aligned}
& C_{1}^{\prime} \equiv_{p} r^{j^{\prime}} C_{1} \equiv_{p} r^{j^{\prime}} r^{j} \equiv_{p} r^{j^{\prime}+j} \\
& C_{2}^{\prime} \equiv_{p} \lambda a^{j^{\prime}} C_{2} \equiv_{p} \lambda a^{j^{\prime}} M a^{j} \equiv_{p} \lambda M a^{j^{\prime}+j}
\end{aligned}
$$

- Properly decrypts as λM

Happy Encrypting/Decrypting!

