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Where It All Began

“New Directions in Cryptography”, by Whitfield Diffie and Martin
Hellman (November 1976)

Defined public key cryptosystem: a pair of families of algorithms,
{EK} and {DK} (representing invertible transformations on a
“message space”), such that

1 For each K , EK is the inverse of DK

2 For each K and each M (message), EK and DK are easy to compute
3 For almost all K , any equivalent to DK is computationally infeasible to

derive from EK

4 For each K , it is feasible to compute inverse pairs EK and DK from K .

Note: Item (3) implies that EK may be made public without
compromising the security of DK

Had the setup, but no instantiation
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Where It All Began
A “suggestive, although unfortunately useless, example” (using linear algebra)

Represent the “plaintext” message as a binary n-vector m

Multiply by an invertible binary n × n matrix E , so EK (m) = Em = c
(“ciphertext”)

Letting D = E−1, decrypt via DK (c) = Dc = E−1Em = m

Easy to generate E and D (from identity matrix)

Downside: matrix-vector multiplication takes about ∼ n2 operations,
and matrix inversion takes about n3 operations (not a good ratio)
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Public Key Distribution System
“Diffie-Hellman Key Exchange”

Alice wants to send Bob a message, using a secret key that only she and
Bob know.

Alice and Bob agree on a prime p and a primitive root α in Zp

Alice picks a secret x ∈ {1, 2, . . . , p − 1} and computes αx mod p

Bob picks a secret y ∈ {1, 2, . . . , p − 1} and computes αy mod p

Exchange: Alice
αy

←−−−→
αx

Bob

Alice computes (αy )x mod p, Bob computes (αx)y mod p

Fermat’s Little Theorem: αp−1 ≡ 1 mod p

Only αx , αy are transmitted

Security relies on discrete log problem
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Digital Signatures
Easy to recognize, difficult to forge

Can use a public key cryptosystem:

Alice has EA : M 7→ C (public), DA : C 7→ M (private).
Bob has EB , DB .

Alice sends Bob DA(M), as opposed to EB(M)

Bob computes EA(DA(M)) = M (EA is public)

Only Alice knows DA (forgery is difficult)

Everyone knows EA (recognition is easy)

Note: DA is private, but examples of DA(M) are public

“known plaintext attack”
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RSA Cryptosystem
An instantiation of a public key cryptosystem

Rivest, Shamir, Adelman (1978)

[Also: Cocks, Ellis, Williamson (1973) with GCHQ, UK’s equivalent
of NSA]

Uses Euler’s (Generalization of Fermat’s Little) Theorem:
If gcd(a, n) = 1, then aφ(n) ≡ 1 mod n, where
φ(n) = {m ∈ Zn : gcd(m, n) = 1}. (Theorem 7.5 in ENT, 7th ed.)

φ(n) = n ·
∏
p|n

(
1− 1

p

)
(Theorem 7.3 in ENT, 7th ed.)

For distinct primes p and q,

φ(pq) = pq

(
1− 1

p

)(
1− 1

q

)
= (p − 1)(q − 1)
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RSA Cryptosystem
How it works

Alice wants to send a secret message (encoded as a number M) to Bob.

Bob picks two (large) primes, p and q, and sets n = pq

Bob picks e (“encoding exponent”) such that gcd(e, φ(n)) = 1

Bob computes d (“decoding exponent”) such that de ≡ 1 mod φ(n)

Bob publishes (e, n), keeps (p, q) secret

Alice computes c ≡ Me mod n, sends c to Bob

(If M ≥ n, then break into blocks smaller than n)

Bob computes (use “≡n” for “congruent modulo n”)

cd ≡n (Me)d ≡n Mt·φ(n)+1 ≡n (Mφ(n))t ·M
Euler≡n 1t ·M ≡n M M < n⇒ cd = M

One catch: Euler’s Theorem assumes gcd(M, n) = 1
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RSA Cryptosystem
What if gcd(M, n) > 1?

Suppose gcd(M, n) = gcd(M, pq) > 1. Then either

p | M and q | M, or (WLOG) p | M but q - M.

Suppose p | M but q - M, so Med ≡p 0 and gcd(M, q) = 1.

Med = Mφ(n)·t+1 = (M(p−1)(q−1))t ·M

= (Mq−1)t(p−1) ·M Euler≡q M

Set x = Med . Then x ≡p 0, x ≡q M, and gcd(p, q) = 1.
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Recall: Chinese Remainder Theorem
Theorem 4.8 in ENT, 7th ed.

Chinese Remainder Theorem

Let n1, n2, . . . , nr be positive integers such that gcd(ni , nj) = 1 for i 6= j .
Then the system of linear congruences

x ≡ a1 (mod n1)

x ≡ a2 (mod n2)

...

x ≡ ar (mod nr )

has a simultaneous solution, which is unique modulo the integer
n1n2 · · · nr .
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RSA Cryptosystem
What if gcd(M, n) > 1?

Suppose gcd(M, n) = gcd(M, pq) > 1. Then either

p | M and q | M, or (WLOG) p | M but q - M.

Suppose p | M but q - M, so Med ≡p 0 and gcd(M, q) = 1.

Med = Mφ(n)·t+1 = (M(p−1)(q−1))t ·M

= (Mq−1)t(p−1) ·M Euler≡q M

Set x = Med . Then x ≡p 0, x ≡q M, and gcd(p, q) = 1.

By CRT, there is unique x̄ mod pq such that x̄ ≡p 0, x̄ ≡q M.

x̄ ≡ M mod n is a solution, hence the solution.
(M < n⇒ x̄ = M)

If p | M and q | M, then M ≡n 0 (contradicting 0 ≤ M < n)
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RSA Cryptosystem
How secure is it?

Security/efficiency depends on ease of exponentiation and difficulty of
factoring n = pq

With p and q, can find d (de ≡φ(n) 1) via Euclidean Algorithm

(ENT, 7th ed.) A 200-digit number can be tested for primality in 20
seconds, but the quickest factoring algorithm takes about 1.2× 1023

operations for the same size number.
I At 10−9 operations per second (1 GHz), it would take about 3.8× 106

years. “...appears to be quite safe.”
I RSA-129: $100 prize offered by R, S, and A; 129-digit encoding

modulus; factored in 1994 by 600 volunteers running over 1600
computers for 8 months; “The magic words are squeamish ossifrage.”

I RSA Challenge List (42 numbers, posted in 1991); most recent,
193-digit factorization (two primes, 95 digits each); inactive as of 2007
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RSA Cryptosystem
Malleability

Say M itself starts as a number (e.g., a bid on a product)

Eve hears C ≡n Me

Suppose gcd(100, n) = 1

[n = pq, so if gcd(100, pq) > 1, then p ∈ {2, 5}]
Then there exists 100−1 mod n

Eve sends

C · (101 · [100−1 mod n])e ≡n Me · 101e · 100−e ≡n

(
M · 101

100

)e

Outbids by 1%!
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Attacking the RSA

Suppose p, q, p−1 mod q, q−1 mod p are stored on a microchip, and
suppose Me mod n is computed in a particular way:

C ≡n q(q−1C mod p) + p(p−1C mod q).

After the computation of q(q−1C mod p), toss the microchip in the
microwave at the “p−1C mod q” step:

C̃ ≡n q(q−1C mod p) + p(G mod q)

C − C̃ = p[(p−1C − G ) mod q] (divisible by p, but not q)

gcd(C − C̃ , pq) = p

“Differential Fault Analysis”; Boneh, DeMillo, Lipton (Sep 1996)
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Recall: Chinese Remainder Theorem (Proof)
Theorem 4.8 in ENT, 7th ed.

Setup: gcd(ni , nj) = 1 for i 6= j . Then x ≡n1 a1, x ≡n2 a2, . . ., x ≡nr ar
has unique solution x̄ mod n1n2 · · · nr .

Let n = n1n2 · · · nr , and let Nk =
n

nk
, so that gcd(Nk , nk) = 1.

Then there exists xk such that Nkxk ≡nk 1. [xk = N−1k mod nk ]

Let x̄ = a1N1x1 + a2N2x2 + · · ·+ arNrxr .

Note that Ni ≡nk 0 for i 6= k, but Nkxk ≡nk 1.

x̄ ≡nk akNkxk ≡nk ak · 1 ≡nk ak for each k

For RSA, n = pq, Np =
n

p
= q, Nq =

n

q
= p.

Then x ≡p C , x ≡q C has unique solution x̄ mod pq:

C · q · (q−1 mod p) + C · p · (p−1 mod q)
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Attacking the RSA

Suppose p, q, p−1 mod q, q−1 mod p are stored on a microchip, and
suppose C ≡ Me mod n is computed in a particular way:

C ≡n q(q−1C mod p) + p(p−1C mod q).

After the computation of q(q−1C mod p), toss the microchip in the
microwave at the “p−1C mod q” step:

C̃ ≡n q(q−1C mod p) + p(G mod q)

C − C̃ = p[(p−1C − G ) mod q] (divisible by p, but not q)

gcd(C − C̃ , pq) = p

“Differential Fault Analysis”; Boneh, DeMillo, Lipton (Sep 1996)
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The ElGamal Cryptosystem
Taher ElGamal (1985)

RSA security: difficult to factor large numbers

ElGamal security: difficult to solve discrete log problem:

Find x , 0 < x < φ(n), such that r x ≡n y

(“log()” button won’t work)

RSA: public exponent, private (factored) modulus

ElGamal: public (prime) modulus, private exponent(s)
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The ElGamal Cryptosystem
How it works

Alice wants to send a secret message (encoded as a number M) to Bob.

Bob picks a prime p and a primitive root r (so that r x ≡p y has a
solution for all y ∈ Zp)

Bob picks (random) k ∈ {2, 3, . . . , p − 2} and computes a ≡p rk ,
where a ∈ {0, 1, . . . , p − 1}
Bob publishes (a, r , p), keeps k secret

Alice picks (random) j ∈ {2, 3, . . . , p − 2} and computes

C1 ≡p r j , C2 ≡p Maj ≡p M(rk)j ,

and sends C1, C2 to Bob

Bob computes

C2C
p−1−k
1 ≡p M(rk)j(r j)p−1−k ≡p Mrkj r j(p−1)−kj

≡p Mrkj r−kj(rp−1)j ≡p M(rp−1)j
Fermat≡p M
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The ElGamal Cryptosystem
Features

Can use same k , j (hence, C1) for each block, or change for each
block (no need to tell other party)

Bob never announces k , Alice never announces j

Two private exponents, one public modulus

Capitalizes on difficulty of discrete log problem

Can be used for digital signatures as well (ENT §10.3, 7th ed.)

(MA 410) Public Key Cryptography April 11, 2011 18 / 20



The ElGamal Cryptosystem
Malleability

Alice (rightfully) sends C1 ≡p r j , C2 ≡p Maj

Eve hears C1 and C2, then sends

C ′1 ≡p r j
′
C1 ≡p r j

′
r j ≡p r j

′+j

C ′2 ≡p λa
j ′C2 ≡p λa

j ′Maj ≡p λMaj
′+j

Properly decrypts as λM
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Happy Encrypting/Decrypting!
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