NC STATE UNIVERSITY

MA 410 Theory of Numbers, final examination, May 7, 2012
919.515 .8785 (phone)

Prof. Erich Kaltofen kaltofen@math.ncsu.edu
www.math.ncsu.edu/~kaltofen/courses/NumberTheory/Spring12/ (URL)
(C) Erich Kaltofen 2012

Your Name: \qquad
For purpose of anonymous grading, please do not write your name on the subsequent pages.

This examination consists of 6 problems, which are subdivided into 11 questions, where each question counts for the explicitly given number of points, adding to a total of $\mathbf{5 0}$ points. Please write your answers in the spaces indicated, or below the questions, using the back of the sheets for completing the answers and for all scratch work, if necessary. You are allowed to consult three 8.5 in $\times 11$ in sheets with notes, but not your book or your class notes. If you get stuck on a problem, it may be advisable to go to another problem and come back to that one later.

You will have $\mathbf{1 2 0}$ minutes to do this test.
\qquad

2 \qquad

3 \qquad

4 \qquad

5 \qquad

6 \qquad

Total \qquad
(a, 4pts) Please compute $2^{100} \bmod 100$. Please show your work.
(b, 4pts) True or false: If p is a prime number then $\sigma\left(p^{2}-p\right)=(p+1) \sigma(p-1)$. Please explain.
(c, 4pts) Please construct a primitive Pythagorean triple $(x, 7, z) \in \mathbb{Z}_{>0}^{3}$ such that $x^{2}+7^{2}=z^{2}$.
(d, 4pts) Please state a conjecture in number theory, which is yet to be proven.

Problem 2 (5 points): Using the quadratic reciprocity law, please compute the value of the Jacobi symbol $\left(\frac{610}{987}\right)$. Please show all your work.

Problem 3 (8 points):
(a, 4pts) Show that $a=13$ is a quadratic residue and $c=14$ is a quadratic non-residue, both modulo 29 .
(b, 4pts) Using the algorithm from class, compute $b \in \mathbb{Z}_{29}$ such that $b^{2} \equiv 13(\bmod 29)$. If you need a quadratic non-residue, please use 14 .

Problem 4 (10 points): Consider the following table of indices (discrete logarithms) for the prime number 23 with respect to the primitive root $g=5$:

a	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22
$\operatorname{ind}_{5}(a)$	0	2	16	4	1	18	19	6	10	3	9	20	14	21	17	8	7	12	15	5	13	11

(a, 4pts) By inspecting the above table, for the multiplicative orders $k=1,2,11,22$ please list one residue $a_{k} \in \mathbb{Z}_{23} \backslash\{0\}$ each that has order k (belongs to the exponent k modulo 23).
(b, 6pts) Using the above table, please solve for $x \in \mathbb{Z}_{23}, y \in \mathbb{Z}_{23}$, and $z \in \mathbb{Z}_{2 \underline{3}}$ the three congruences

$$
18 x^{6} \equiv 9 \quad(\bmod 23), \quad y^{21} \equiv 22 \quad(\bmod 23), \quad 5^{3 z} \equiv z \quad(\bmod 23)
$$

Please give all solutions and show your work.

Problem 5 (6 points): Taher El Gamal's 1984 public key cryptosystem in its original form is still malleable. Alice sends Bob a ciphertext

$$
E\left(M_{A}\right)=(\underbrace{g^{r_{A}} \bmod p}_{x_{A}}, \quad \underbrace{M_{A} h_{B}^{r_{A}} \bmod p}_{y_{A}}), \quad r_{A} \text { random and hidden },
$$

of her message M_{A} with his public key $h_{B}=\left(g^{s_{B}} \bmod p\right), s_{B}$ secret. Charlie, knowing the cipher x_{A}, y_{A}, can encrypt $\lambda_{C} M_{A}$ with his λ_{C} without knowing M_{A}. A problem is that Charlie needs to send his own x_{C}, and does so by using $x_{C}=\left(x_{A} g^{r_{C}} \bmod p\right)$ for his own random r_{C}. Please give Charlie's y_{C} for $E\left(\lambda_{C} M_{A}\right)$, and justify that Bob's decryption produces $\lambda_{C} M_{A}$.

Problem 6 (5 points): Please find three positive integers $x, y, z \in \mathbb{Z}_{>0}$ such that $\operatorname{GCD}(x, y)=1$ and $x^{2}+y^{2}=z^{4}$.

