NC STATE UNIVERSITY

MA 410 Theory of Numbers, final examination, May 5, 2015
919.515 .8785 (phone)

Prof. Erich Kaltofen kaltofen@math.ncsu.edu
www.math.ncsu.edu/~kaltofen/courses/NumberTheory/Spring15/ (URL)
(C) Erich Kaltofen 2015

Your Name: \qquad
For purpose of anonymous grading, please do not write your name on the subsequent pages.

This examination consists of 6 problems, which are subdivided into 11 questions, where each question counts for the explicitly given number of points, adding to a total of $\mathbf{5 0}$ points. Please write your answers in the spaces indicated, or below the questions, using the back of the sheets for completing the answers and for all scratch work, if necessary. You are allowed to consult three 8.5 in $\times 11$ in sheets with notes, but not your book or your class notes. If you get stuck on a problem, it may be advisable to go to another problem and come back to that one later.

You will have $\mathbf{1 2 0}$ minutes to do this test.
\qquad

2 \qquad

3 \qquad

4 \qquad

5 \qquad

6 \qquad

Total \qquad

Problem 1 (16 points)

(a, 4pts) Please describe how Bob, using his private keys of a public key crypto system, can provide a digital signature that Alice can verify using Bob's public keys.
(b, 4pts) True or false: $6^{\phi(1000)}=6^{400} \equiv 1(\bmod 1000)$. Please explain.
(c, 4pts) Please construct a primitive Pythagorean triple $(8, y, z) \in \mathbb{Z}_{>0}^{3}$ such that $8^{2}+y^{2}=z^{2}$.
(d, 4pts) Please state the recent progress (by Yitang Zhang and followed-up by others) towards proving that there are infinitely prime twins.

Problem 2 (5 points): The following is a trace of the computation of the Legendre symbol $\left(\frac{-146}{233}\right)$ using Jacobi's reciprocity law. Please fill in the blanks.

$$
\begin{aligned}
& \left(\frac{-146}{233}\right)=\left(\frac{-1}{233}\right)\left(\frac{146}{233}\right) ; \quad\left(\frac{-1}{233}\right)= \\
& \left(\frac{146}{233}\right)=\left(\frac{2}{233}\right)\left(\frac{73}{233}\right) ; \quad\left(\frac{2}{233}\right)= \\
& \left(\frac{73}{233}\right)\left(\frac{233}{73}\right)=\square ; 233 \bmod 73=14 ; \\
& \left(\frac{14}{73}\right)=\left(\frac{2}{73}\right)\left(\frac{7}{73}\right) ; \quad\left(\frac{2}{73}\right)=\square \\
& \left(\frac{7}{73}\right)\left(\frac{73}{7}\right)=\square \\
& \left(\frac{3}{7}\right)\left(\frac{7}{3}\right)= \\
& ; 7 \bmod 3=1 ; \quad\left(\frac{-146}{233}\right)=
\end{aligned}
$$

\qquad
Problem $3(8$ points): Let p be a prime integer with $p \equiv 5(\bmod 8)$, that is, $p-1 \equiv 0(\bmod 4)$, $p+3 \equiv 0 \equiv 3 p+1(\bmod 8)$. Let a be a quadratic residue and c a quadratic non-residue modulo p. Please prove that $b^{2} \equiv a(\bmod p)$ for

$$
b \equiv 2^{-1}\left(\left(1+c^{\frac{p-1}{4}}\right) a^{\frac{3 p+1}{8}}+\left(1-c^{\frac{p-1}{4}}\right) a^{\frac{p+3}{8}}\right) \quad(\bmod p)
$$

Problem 4 (10 points): Consider the following table of indices (discrete logarithms) for the prime number 23 with respect to the primitive root $g=7$:

| a | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 |
| ---: |
| $\operatorname{ind}_{7}(a)$ | 0 | 14 | 2 | 6 | 7 | 16 | 1 | 20 | 4 | 21 | 19 | 8 | 10 | 15 | 9 | 12 | 5 | 18 | 17 | 13 | 3 | 11 |

(a, 4pts) From the above index table, please compute the multiplicative order modulo 23 of the following residues (the exponent that belongs to the following residues module 23), showing your work:

$$
2, \quad 3, \quad 4, \quad 5 \in \mathbb{Z}_{23} .
$$

(b, 6pts) Using the above table, please solve for $x \in \mathbb{Z}_{23}, y \in \mathbb{Z}_{23}$, and $z \in \mathbb{Z}_{2 \boldsymbol{3}}$ the three congruences

$$
x^{19} \equiv 19 \quad(\bmod 23), \quad 19 y^{12} \equiv 14 \quad(\bmod 23), \quad 7^{2 z} \equiv z^{2} \quad(\bmod 23)
$$

Please give all solutions and show your work.

Problem 5 (6 points): Suppose Alice has encrypted a residue $M \in \mathbb{Z}_{23}$ by the Taher El-Gamal's public key system with public keys $p=23, g=7$ and $h \equiv 7^{s} \equiv 16 \bmod 23$. Alice's ciphertext is

$$
E=\left(g^{r} \bmod 23, M \cdot h^{r} \bmod 23\right)=(13,11) .
$$

Please show how Bob computes M. [Hint: you can use the table on the previous page for deriving Bob's private key s, and for powering, multiplication, and reciprocal modulo 23.]

Problem 6 (5 points): Please find three positive integers $x, y, z \in \mathbb{Z}_{>0}, x \neq y$, but not necessarily relatively prime, such that $x^{2}+y^{2}=z^{3}$.

