NC STATE UNIVERSITY

MA 410 Theory of Numbers, final examination, May 5, 2016
919.515 .8785 (phone)

Prof. Erich Kaltofen kaltofen@math.ncsu.edu
www.math.ncsu.edu/~kaltofen/courses/NumberTheory/Spring16/ (URL)
(C) Erich Kaltofen 2016

Your Name: \qquad
For purpose of anonymous grading, please do not write your name on the subsequent pages.

This examination consists of 6 problems, which are subdivided into 11 questions, where each question counts for the explicitly given number of points, adding to a total of 49 points. Please write your answers in the spaces indicated, or below the questions, using the back of the sheets for completing the answers and for all scratch work, if necessary. You are allowed to consult three 8.5 in $\times 11$ in sheets with notes, but not your book or your class notes. If you get stuck on a problem, it may be advisable to go to another problem and come back to that one later.

You will have $\mathbf{1 2 0}$ minutes to do this test.
\qquad

2 \qquad

3 \qquad

4 \qquad

5 \qquad

6 \qquad

Total \qquad

Problem 1 (16 points)

(a, 4pts) In public key cryptography, Alice encodes her clear text using no secret. Please explain why such a cipher text can be secure, in particular what assumption guarantees the security of an RSA cipher.
(b, 4pts) True or false: if n is a composite integer ≥ 4 then $\phi(n) \leq \frac{n}{2}$, where ϕ is Euler's function. Please explain.
(c, 4pts) True or false: for all non-negative integers $n \in \mathbb{Z}_{\geq 0}$ there exist four non-negative integers $x, y, z, w \in \mathbb{Z}_{\geq 0}$ such that $n=x^{2}+y^{2}+z^{2}+w^{2}$. Please explain.
(d, 4pts) True or false: there exist positive integers $x, y, z, w \in \mathbb{Z}_{>0}$ such that $x^{4}+y^{4}+z^{4}=w^{4}$. Please explain.

Problem 2 (5 points): The following is a trace of the computation of the Legendre symbol $\left(\frac{-142}{239}\right)$ using Jacobi's reciprocity law. Please fill in the blanks.

$$
\begin{aligned}
& \left(\frac{-142}{239}\right)=\left(\frac{-1}{239}\right)\left(\frac{142}{239}\right) ; \quad\left(\frac{-1}{239}\right)= \\
& \left(\frac{142}{239}\right)=\left(\frac{2}{239}\right)\left(\frac{71}{239}\right) ; \quad\left(\frac{2}{239}\right)= \\
& \left.\left(\frac{71}{239}\right)\left(\frac{239}{71}\right)=\overline{26}\right) ; 239 \bmod 71=26 ; \\
& \left(\frac{26}{71}\right)=\left(\frac{2}{71}\right)\left(\frac{13}{71}\right) ; \quad\left(\frac{2}{71}\right)=\square ; 71 \bmod 13=6 \\
& \left(\frac{13}{71}\right)\left(\frac{71}{13}\right)= \\
& \left(\frac{6}{13}\right)=\left(\frac{2}{13}\right)\left(\frac{3}{13}\right) ; \quad\left(\frac{2}{13}\right)=\square \quad\left(\frac{13}{3}\right)=\square \\
& \left(\frac{3}{13}\right)\left(\frac{13}{3}\right)=
\end{aligned}
$$

Problem 3 (8 points):
(a, 4pts) Please show that $a=p-2 \equiv-2(\bmod p)$ is a quadratic residue modulo a prime $p \geq 3$ if and only if $p \equiv 1(\bmod 8)$ or $p \equiv 3(\bmod 8)$. [Hint: Legendre symbol.]
(b, 4pts) Suppose that $p \equiv 1(\bmod 8)$. Let c be a quadratic non-residue modulo p, and let $b=c^{(p-1) / 8}-c^{7(p-1) / 8}$; note that $(p-1) / 8 \in \mathbb{Z}$. Please show that $b^{2} \equiv-2(\bmod p)$.

Problem 4 (10 points): Consider the following table of indices (discrete logarithms) for the prime number 23 with respect to the primitive root $g=10$:

a	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22
$\operatorname{ind}_{10}(a)$	0	8	20	16	15	6	21	2	18	1	3	14	12	7	13	10	17	4	5	9	19	11

(a, 4pts) For the primitive root $g^{\prime}=5$ there is a constant residue $k \in \mathbb{Z}_{22}$ such that for all residues $a \in \mathbb{Z}_{23} \backslash\{0\}$ one has $\operatorname{ind}_{5}(a) \equiv k \cdot \operatorname{ind}_{10}(a)(\bmod 22)$. Please compute k (using the above table) and show your work.
(b, 6pts) Using the above table, please solve for $x \in \mathbb{Z}_{23}, y \in \mathbb{Z}_{23}$, and $z \in \mathbb{Z}_{23}$ the three congruences

$$
15 x^{15} \equiv 16 \quad(\bmod 23), \quad 18 y^{16} \equiv 13 \quad(\bmod 23), \quad 10^{-2 z} \equiv 2 z^{2} \quad(\bmod 23)
$$

Please give all solutions and show your work.

Problem 5 (5 points): Suppose Alice requests a digital signature from Bob using Taher El-Gamal's public key system with $p=23$ and $g=10$ by sending $h_{A}=\left(10^{r_{A}} \bmod 23\right)=15$. Here r_{A} is a onetime random choice. Bob replies with his digital signature $\tau=\left(\sigma \cdot\left(h_{A}^{s_{B}}\right)^{-1} \bmod 23\right)=19$, where $h_{B}=\left(10^{s_{B}} \bmod 23\right)=20$ is Bob's public key and s_{B} is Bob's secret private key. Please show how Alice can retrieve σ from her r_{A} and h_{B}. You may use the previous page for deriving Alice's r_{A}, and for powering, multiplication, and reciprocal modulo 23.

Problem 6 (5 points): Please find two positive integers $x, y \in \mathbb{Z}_{>0}, \operatorname{GCD}(x, y)=2$, such that $x^{2}+y^{2}=(y+2)^{2}$.

