This examination consists of 6 problems, which are subdivided into 9 questions, where each question counts for the explicitly given number of points, adding to a total of 46 points. Please write your answers in the spaces indicated, or below the questions, using the back of the sheets for completing the answers and for all scratch work, if necessary. You are allowed to consult two 8.5in × 11in sheets with notes, but not your book or your class notes. If you get stuck on a problem, it may be advisable to go to another problem and come back to that one later.

You will have 75 minutes to do this test.

Good luck!
Problem 1 (16 points)

(a, 4pts) True or false: $\forall a \in \mathbb{Z}_{11}, a \neq 0: (a^5 \mod 11) \in \{1, 10\}$. Please explain.

(b, 4pts) True or false: $41041 = 7 \cdot 11 \cdot 13 \cdot 41$ is a Carmichael number. Please explain.

(c, 4pts) Please compute $2^{50} \mod 25$, showing your work.

(d, 4pts) Please compute the values of the number theoretic functions $\tau(70)$, $\mu(70)$ and $\sigma(70)$.
Problem 2 (6 points): A Mersenne number is an integer of the form $2^p - 1$, where p is a prime number. Note that the Mersenne number $2^{11} - 1 = 23 \cdot 89$ is not a prime number. Please prove that the only Mersenne number that is divisible by 7 is $2^3 - 1$.

Problem 3 (6 points): Please determine an integer $n \geq 1$ such that $\phi(n) < \frac{n}{3}$, where ϕ is Euler’s phi-function. Please show your work.
Problem 4 (8 points): Consider $1260 = 4 \cdot 5 \cdot 7 \cdot 9$ and let $a \in \mathbb{Z}_{1260}$ with

$$a \equiv 3 \pmod{4},$$
$$a \equiv 1 \pmod{5},$$
$$a \equiv 5 \pmod{7},$$
$$a \equiv 4 \pmod{9}.$$

Please compute $y_0 \in \mathbb{Z}_4, y_1 \in \mathbb{Z}_5, y_2 \in \mathbb{Z}_7$ and $y_3 \in \mathbb{Z}_9$ such that

$$a = y_0 + y_1 \cdot 4 + y_2 \cdot 4 \cdot 5 + y_3 \cdot 4 \cdot 5 \cdot 7.$$

Then compute a. Please show all your work.
Problem 5 (5 points): Let $k = 2^5 + 2^3 + 2^2 = 44$. Please show how one can compute $a^k \mod n$ with 7 multiplications of residues modulo n.

Problem 6 (5 points): Please consider the RSA with the public modulus $n = pq$, where p is a prime with $p \equiv 2 \pmod{7}$ (e.g., $p = 23$) and where q is a prime with $q \equiv 3 \pmod{7}$ (e.g., $q = 17$), and with the public exponent $e = 7$. Please show that $d = \frac{3(p-1)(q-1)+1}{7}$ is an integer and that d is the private exponent for the RSA with such public moduli and public exponent 7.