NC STATE UNIVERSITY

MA 410 Theory of Numbers, final examination, May 2, 2017
919.515 .8785 (phone)

Prof. Erich Kaltofen kaltofen@math.ncsu.edu
www.math.ncsu.edu/~kaltofen/courses/NumberTheory/Spring17/ (URL)
(C) Erich Kaltofen 2017

Your Name: \qquad
For purpose of anonymous grading, please do not write your name on the subsequent pages.

This examination consists of 6 problems, which are subdivided into 11 questions, where each question counts for the explicitly given number of points, adding to a total of $\mathbf{5 0}$ points. Please write your answers in the spaces indicated, or below the questions, using the back of the sheets for completing the answers and for all scratch work, if necessary. You are allowed to consult three 8.5 in $\times 11$ in sheets with notes, but not your book or your class notes. If you get stuck on a problem, it may be advisable to go to another problem and come back to that one later.

You will have $\mathbf{1 2 0}$ minutes to do this test.
\qquad

2 \qquad

3 \qquad

4 \qquad

5 \qquad

6 \qquad

Total \qquad

Problem 1 (17 points)
(a, 4pts) Please consider the multiplication table for non-zero residues modulo 14, that is a 13×13 matrix A with entries $a_{i, j}=(i j \bmod 14)$ for $1 \leq i, j \leq 13$.
True or false: A is a Latin square. Please explain.
(b, 4pts) True of false: $2^{2016} \equiv 2018(\bmod 4034)$. Please explain. [Hint: $4034=2 \cdot 2017$ with 2017 a prime number.]
(c, 4pts) True or false: $\forall s, t$ such that $s \not \equiv t(\bmod 2)$ and $\operatorname{GCD}(s, t)=1:\left(2 s t, s^{2}-t^{2}, s^{2}+t^{2}\right)$ form a primitive Pythagorean triple. Please explain.
(d, 5pts) True or false: there exist positive integers $x, y, z \in \mathbb{Z}_{>0}$ such that $x^{4}+y^{4}=z^{3}$. Please explain.

Problem 2 (5 points): The following is a trace of the computation of the Legendre symbol $\left(\frac{-122}{211}\right)$ using Jacobi's reciprocity law. Please fill in the blanks.

$$
\begin{aligned}
& \left(\frac{-122}{211}\right)=\left(\frac{-1}{211}\right)\left(\frac{122}{211}\right) ; \quad\left(\frac{-1}{211}\right)= \\
& \left(\frac{122}{211}\right)=\left(\frac{2}{211}\right)\left(\frac{61}{211}\right) ; \quad\left(\frac{2}{211}\right)= \\
& \left(\frac{61}{211}\right)\left(\frac{211}{61}\right)=\square ; 211 \bmod 61=28 ; \\
& \left(\frac{28}{61}\right)=\left(\frac{2^{2}}{61}\right)\left(\frac{7}{61}\right) ; \quad\left(\frac{2^{2}}{61}\right)=\square \\
& \left(\frac{7}{61}\right)\left(\frac{61}{7}\right)=\overline{61 \bmod 7=5} \\
& \left.\left(\frac{5}{7}\right)=\left(\frac{-2}{7}\right)=\left(\frac{-1}{7}\right)\left(\frac{2}{7}\right) ; \quad\left(\frac{-1}{7}\right)=\overline{7}\right) \\
& \left(\frac{2}{7}\right)=
\end{aligned}
$$

Problem 3 (8 points): Let p be a prime with $p \equiv 5(\bmod 8)$ and let $a \in \mathbb{Z}_{p}$ be a quadratic residue modulo p. Please prove:
(a, 3pts) If $a^{(p-1) / 4} \equiv 1(\bmod p)$ then for $b=\left(a^{(p+3) / 8} \bmod p\right)$ one has $b^{2} \equiv a(\bmod p)$.
(b, 5pts) If $a^{(p-1) / 4} \equiv-1(\bmod p)$ then for $b=\left(a^{(p+3) / 8} 2^{(p-1) / 4} \bmod p\right)$ one has $b^{2} \equiv a(\bmod p)$.

Problem 4 (10 points): Consider the following table of indices (discrete logarithms) for the prime number 23 with respect to the primitive root $g=11$:

a	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22
$\operatorname{ind}_{11}(a)$	0	10	14	20	5	2	7	8	6	15	1	12	4	17	19	18	13	16	9	3	21	11

(a, 4pts) Please compute the average multiplicative order of the non-zero residues modulo 23, namely
$\frac{1}{22} \sum_{d \text { divides } 22}$ (number of non-zero residues of order $\left.d\right) \cdot d$.
(b, 6pts) Using the above table, please solve for $x \in \mathbb{Z}_{23}, y \in \mathbb{Z}_{23}$, and $z \in \mathbb{Z}_{2 \underline{3}}$ the three congruences

$$
20 x^{21} \equiv 21 \quad(\bmod 23), \quad 13 y^{10} \equiv 16 \quad(\bmod 23), \quad 11^{-3 z} \equiv 4 z^{3} \quad(\bmod 23)
$$

Please give all solutions and show your work.

Problem 5 (5 points): Suppose Alice has encrypted a residue $M \in \mathbb{Z}_{23}$ by the Taher El-Gamal's public key system with public keys $p=23, g=11$ and $h \equiv 11^{s} \equiv 17 \bmod 23$. Alice's ciphertext is

$$
E=\left(g^{r} \bmod 23, M \cdot h^{r} \bmod 23\right)=(19,1) .
$$

Please show how Bob computes M. [Hint: you can use the table on the previous page for deriving Bob's private key s, and for powering, multiplication, and reciprocal modulo 23.]

Problem 6 (5 points): Please find three positive integers $x, y, z \in \mathbb{Z}_{>0}$ such that $\operatorname{GCD}(x, y, z)=1$, x is even, $x \geq 4$ and $x^{4}+y^{2}=z^{2}$.

