
Abstract

TURNER, WILLIAM JONATHAN. Black Box Linear Algebra with the LinBox Library.

(Under the direction of Erich Kaltofen.)

Black box algorithms for exact linear algebra view a matrix as a linear operator

on a vector space, gathering information about the matrix only though matrix-vector

products and not by directly accessing the matrix elements. Wiedemann’s approach to

black box linear algebra uses the fact that the minimal polynomial of a matrix generates

the Krylov sequences of the matrix and their projections. By preconditioning the matrix,

this approach can be used to solve a linear system, find the determinant of the matrix,

or to find the matrix’s rank. This dissertation discusses preconditioners based on Beneš

networks to localize the linear independence of a black box matrix and introduces a

technique to use determinantal divisors to find preconditioners that ensure the cyclicity

of nonzero eigenvalues. This technique, in turn, introduces a new determinant-preserving

preconditioner for a dense integer matrix determinant algorithm based on the Wiedemann

approach to black box linear algebra and relaxes a condition on the preconditioner for

the Kaltofen-Saunders black box rank algorithm. The dissertation also investigates the



minimal generating matrix polynomial of Coppersmith’s block Wiedemann algorithm,

how to compute it using Beckermann and Labahn’s Fast Power Hermite-Padé Solver,

and a block algorithm for computing the rank of a black box matrix. Finally, it discusses

the design of the LinBox library for symbolic linear algebra.
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Chapter 1

Introduction

The black box approach to exact linear algebra views a matrix as a linear operator on a

vector space (Kaltofen and Trager, 1990, Section 1). Black box algorithms only gather

information about the black box matrix through matrix-vector products, and they do

not change the matrix itself. (See Figure 1.1 on the following page.) The black box

representation of matrices has long been present in numerical linear algebra. Textbooks

such as Golub and Van Loan (1989) include many examples of these iterative methods,

including the Lanczos methods (Lanczos, 1950, 1952) and the methods of conjugate

gradients (Hestenes and Stiefel, 1952).

In symbolic computation, we desire algebraic methods to compute an exact solution,

which is in contrast to the numerical approximation supplied in numerical analysis. Thus,

algorithms from one discipline may not be suitable to the other. For instance, symbolic

algorithms may be unstable numerically. On the other hand, the LaMacchia and Odlyzko

1



CHAPTER 1. INTRODUCTION 2

y ∈ Fn−−−−→ −−−−→Ay ∈ Fn

A ∈ Fn×n

Figure 1.1: Black box matrix model

(1991) versions of the Lanczos and conjugate gradient methods come directly from nu-

merical analysis, but self-orthogonal vectors can cause problems with Lanczos method

over a finite field. Wiedemann (1986) introduces an algebraic method that finds relations

in Krylov subspaces, and Lambert (1996) shows how the Wiedemann approach is related

to the Lanczos method.

Black box linear algebra algorithms usually involve preconditioning the matrix to

reduce a matrix problem to the computation of a minimal polynomial. This external

view of a matrix is in contrast to most matrix algorithms, which take an internal view of

the matrix and normally entail some elimination process. An elimination process, such as

Gaussian elimination, changes the matrix while solving the problem, which can destroy

useful structure and properties of the matrix. For example, Gaussian elimination may

fill in a sparse matrix, causing the matrix to become dense. A black box algorithm will

not do this because it does not change the matrix on which it acts.

Preconditioning of black box matrices is accomplished through a combination of pre-

and post-multiplication by black box matrices,

Ã = B1AB2.
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Because of the black box matrix model, the preconditioned matrix Ã will not be com-

puted. Instead, the preconditioning matrices B1 and B2 will be used directly. To apply

the preconditioned matrix Ã to a vector x, we compute three matrix-vector products,

Ãx = B1(A(B2x)).

Thus, the preconditioning matrices B1 and B2 must have efficient matrix-vector products

in addition to any other properties the problem may require.

Black box algorithms in symbolic computation must simultaneously meet three con-

straints on the resources they use. Algorithms must use no more than O(n) black box

matrix-vector products, n2(log n)O(1) additional arithmetic operations in F, and O(n)

intermediate storage for field elements (Kaltofen, 2000, Section 3).

Many algorithms in symbolic computation make random choices during the compu-

tation. These randomized or probabilistic algorithms have some inherent uncertainty,

but this uncertainty can be made boundedly small (von zur Gathen and Gerhard, 1999,

Section 6.5). Two common classes of probabilistic algorithms are Monte Carlo and Las

Vegas methods. Monte Carlo algorithms are always fast, but only probably correct.

On the other hand, Las Vegas algorithms (Babai, 1979) are always correct, but only

probably fast. A third class of algorithms, bounded probabilistic polynomial time (BPP)

algorithms (Boppana and Hirschfeld, 1989), are probably correct and probably fast. BPP

and Las Vegas methods can be converted to Monte Carlo methods by terminating the

methods before completion. If a certificate exists to check the correctness of the answer
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from a Monte Carlo algorithm, it can then be converted into a Las Vegas method by

rerunning the algorithm until the solution passes the test. Unfortunately this scheme

can create an infinite loop from a programming error, which cannot be distinguished

from continually making bad random choices (Kaltofen, 2000, Section 3).

1.1 Wiedemann Method

In what is considered the seminal work in the field, Wiedemann (1986) introduces al-

gorithms to solve a linear system and compute the determinant of a black box matrix

over a finite field. Wiedemann’s approach uses the fact that the minimal polynomial of

a matrix generates the Krylov sequences of a matrix and their projections.

1.1.1 Nonsingular Linear Systems

The simplest problem in linear algebra is, perhaps, to solve the linear system

Ax = b (1.1)

over a field F where the matrix A ∈ Fn×n is square and nonsingular. In this case, the

linear system (1.1) has a unique solution x ∈ Fn for each right-hand side vector b ∈ Fn.

Consider the Krylov sequence {Aib}∞i=0 ⊂ Fn and its minimal polynomial

fA,b(λ) = fA,b[0] + fA,b[1]λ+ · · ·+ fA,b[m]λm ∈ F[λ].
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The vectors of the Krylov sequence satisfy the linear equation

fA,b(A)b = fA,b[0]b+ fA,b[1]Ab+ · · ·+ fA,b[m]Amb = 0. (1.2)

Because the matrix A is nonsingular, the constant term of the minimal polynomial fA,b is

nonzero, fA,b[0] 6= 0, and the linear combination of Krylov vectors (1.2) can be rearranged

to obtain the solution x to the nonsingular linear system (1.1)

x = A−1b = − 1

fA,b[0]

(
fA,b[1]b+ fA,b[2]Ab+ · · ·+ fA,b[m]Am−1b

)
. (1.3)

Wiedemann (1986, Section II) uses a vector u ∈ Fn to project the Krylov sequence

to the bilinear projection sequence {uTAib}∞i=0. Because the minimal polynomial fA,b

of the Krylov sequence generates this sequence, the minimal polynomial fA,bu of the

bilinear projection sequence must divide the minimal polynomial fA,b of the Krylov se-

quence. If the vector u is chosen randomly from Sn where S is a finite subset of F,

these two minimal polynomials will be equal, fA,bu = fA,b, with probability at least

1 − deg(fA,b)/ |S| (Kaltofen and Saunders, 1991, Lemma 1). Wiedemann computes the

minimal polynomial fA,bu of the bilinear projection using the Berlekamp-Massey algo-

rithm (Berlekamp, 1968; Massey, 1969). One can easily check whether the minimal

polynomial fA,bu computed by the Berlekamp-Massey algorithm generates the Krylov se-

quence, in which case the two minimal polynomials are equal, fA,bu = fA,b. Wiedemann

gives two algorithms to correct for an unlucky random choice and compute fA,b from re-
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peated applications of the Berlekamp-Massey algorithm. Once the minimal polynomial

fA,b has been found, the solution to the linear system (1.1) can be computed from the

linear combination of Krylov vectors (1.3).

1.1.2 Singular and Nonsquare Linear Systems

Wiedemann (1986, Section III) gives two methods to find the solution to the linear

system (1.1) when the matrix A is singular or nonsquare. One method is to eliminate

linearly dependent rows and columns of the matrix until an inconsistency or a square

nonsingular system is found. This method requires using the minimal polynomial fA,b

of the Krylov sequence to eliminate linearly dependent columns and applying the same

method to the transposed matrix AT to eliminate linearly dependent rows. A second

method is to extend a nonsquare matrix A of full rank to a square nonsingular matrix by

adjoining randomly selected rows or columns. Coppersmith (1994) gives another method

to find the solution of the homogeneous linear system Ax = 0 when A is a square but

singular matrix.

If the Jordan canonical form of the matrix A has no nilpotent blocks of size greater

than one, the minimal polynomial of the matrix is divisible by λ, but not by λ2. In other

words,

fA(λ) = fA[1]λ+ fA[2]λ2 + · · ·+ fA[m]λm ∈ F[λ]

where fA[1] 6= 0. If the linear system (1.1) is consistent, then, there exists a vector y ∈ Fn
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such that b = Ay, and

fA[1]b+ · · ·+ fA[m]Am−1b = fA[1]Ay + · · ·+ fA[m]Amy = fA(A)y = 0.

Thus,

b = − 1

fA[1]

(
fA[2]Ab+ · · ·+ fA[m]Am−1b

)
= − 1

fA[1]
A
(
fA[2]b+ · · ·+ fA[m]Am−2b

)
and a solution to the linear system is

x = − 1

fA[1]

(
fA[2]b+ · · ·+ fA[m]Am−2b

)
.

This means the singular nonhomogeneous linear system (1.1) can be solved by precondi-

tioning the matrix A so that Ã has no nilpotent blocks of size greater than one (Eberly

and Kaltofen, 1997; Villard, 1998; Chen et al., 2002).

Kaltofen and Saunders (1991, Section 4) give a method to uniformly sample the

solution space of the square and singular linear system (1.1) if the rank of the matrix is

known. They first precondition the matrix so that the leading r × r principal minor of

Ã is nonzero where r = rank(A). Preconditioning the matrix to obtain a generic rank

profile is sufficient. As Kaltofen and Saunders note in Section 4 of their paper, this can be

done either with a parameterized matrix based on rearrangeable permutation networks
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such as Beneš networks (Wiedemann, 1986, Section V),

Ã = AP, (1.4)

where P is a parameterized matrix whose parameters can realize any column permuta-

tion matrix, or with unit upper and lower triangular Toeplitz matrices (Kaltofen and

Saunders, 1991, Theorem 2),

Ã = T1 AT2, (1.5)

where T1 is a unit upper triangular Toeplitz matrix,

T1 =



1 u2 · · · un

. . . . . .
...

1 u2

1


,

and T2 is a unit lower triangular Toeplitz matrix,

T2 =



1

w2 1

...
. . . . . .

wn · · · w2 1


.
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Preconditioning transforms the original linear system (1.1) into a new linear system,

Ãx̃ = b̃. (1.6)

Kaltofen and Saunders choose a random column vector v and solve the r× r nonsingular

linear system

Ãry
′
b,v = Ã′(b̃+ Ãv), (1.7)

where Ãr is the leading principal r×r submatrix of Ã and Ã′ ∈ Fr×n is the matrix formed

by the first r rows of Ã. The solution to the r × r nonsingular linear system (1.7) gives

the vector

yb,v =

y′b,v
0

 ∈ Fn
where yb,v − v uniformly samples the solution manifold of the preconditioned linear sys-

tem (1.6).

In Chapter 2, we provide an improved generic rank profile preconditioner that com-

bines the advantages of Wiedemann’s parameterized matrix and Kaltofen and Saunders’s

Toeplitz matrices.

1.1.3 Black Box Matrix Rank

Wiedemann (1986, Section II) notes the algorithms for computing the minimal poly-

nomial fA,b can be used to test probabilistically if A is singular. He expands this test
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into a binary search method to find the rank of a singular matrix using randomly se-

lected preconditioning matrices (Wiedemann, 1986, Section IV). Kaltofen and Saunders

(1991, Section 4) improve on Wiedemann’s approach to the rank problem by describing

a new algorithm that is asymptotically faster than his binary search algorithm over large

fields. They first precondition the matrix to place it into a generic rank profile. As in

Section 1.1.2, a generic rank profile can be achieved by preconditioning either with a

parameterized matrix based on rearrangeable permutation networks such as Beneš net-

works (Wiedemann, 1986, Section V), or with unit upper and lower triangular Toeplitz

matrices (Kaltofen and Saunders, 1991, Theorem 2).

Once the matrix has a generic rank profile, Kaltofen and Saunders apply a diagonal

multiplier so that, with high probability, the rank of the original singular matrix A is

one less than the degree of the minimal polynomial of the preconditioned matrix Ã. Two

matrix preconditioners for the Kaltofen-Saunders black box matrix rank algorithm are

the preconditioner Wiedemann (1986, Section V) introduces for computing determinants,

Ã = AP


d1

. . .

dn

 , (1.8)

where P is a parameterized matrix whose parameters can realize any column permutation
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matrix, and Kaltofen and Saunders’s rank preconditioner using Toeplitz matrices,

Ã = T1 A T2


d1

. . .

dn

 , (1.9)

where T1 is a unit upper triangular Toeplitz matrix and T2 is a unit lower triangular

Toeplitz matrix. It is also possible to preserve Toeplitz-like structure by preconditioning

the matrix with three Toeplitz matrices

Ã = T3 AT4 T5, (1.10)

where T3 and T4 are unit lower triangular Toeplitz matrices and T5 is an upper triangular

Toeplitz matrix (Chen et al., 2002, Section 5).

The Kaltofen-Saunders rank algorithm is a Monte Carlo algorithm. There is currently

no certificate for the rank of a black box matrix over an arbitrary field, although Saunders

et al. (2001) introduce a certificate over a field of characteristic zero.

The improved generic rank profile preconditioner we present in Chapter 2 is applicable

for the black box matrix rank problem in addition to the singular black box matrix system

solver described in Section 1.1.2. In Chapter 3, we relax slightly the condition of placing

the matrix into a generic rank profile before applying the diagonal matrix in the Kaltofen-

Saunders rank algorithm.
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1.1.4 Black Box Matrix Determinant

Wiedemann (1986, Section V) introduces an algorithm to compute the determinant of

a black box matrix over an abstract field F. For a random vector v ∈ Fn, the minimal

polynomial fA,v of the Krylov sequence {Aiv}∞i=0 is equal to the minimal polynomial fA

of the matrix A with high probability. As we saw in Section 1.1.1, for a second random

vector u, the minimal polynomial fA,v of the Krylov sequence is equal to the minimal

polynomial fA,vu of the bilinear projection sequence {uTAiv}∞i=0 with high probability.

If the characteristic polynomial det(λI − A) of the the matrix is equal to its minimal

polynomial fA, we have the relationship

det(λI − A) = fA = fA,v = fA,vu

with probability at least 1 − 2 deg(fA)/ |S| (Kaltofen and Pan, 1991, Lemma 2). This

relation gives us a probabilistic algorithm for computing the determinant of the matrix

A. We choose two random vectors u and v and use the Berlekamp-Massey algorithm to

find the minimal polynomial fA,vu of the bilinear projection sequence {uTAiv}∞i=0. The

determinant is read from the constant term of this polynomial,

det(A) = (−1)nfA,vu (0).

Wiedemann’s determinant algorithm requires the minimal polynomial of the matrix

to equal its characteristic polynomial. In other words, the matrix must be cyclic. To
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achieve this cyclicity, Wiedemann perturbs (“preconditions”) the matrix by mixing the

columns of the matrix to obtain a generic rank profile and then applying a diagonal

multiplier. Wiedemann introduces a preconditioner (1.8) that uses a parameterized ma-

trix and a diagonal multiplier for this purpose. However, Kaltofen and Saunders’s rank

preconditioner (1.9) can also be used for the determinant problem, and Kaltofen and

Pan (1992, Proposition 1) show two Toeplitz matrices may be used without the diagonal

matrix,

Ã = T1 AT2, (1.11)

where T1 is a unit upper triangular Toeplitz matrix and T2 is a lower triangular Toeplitz

matrix.

In Chen et al. (2002, Section 4), we improve on these preconditioners by showing a

diagonal matrix is sufficient,

Ã = A


d1

. . .

dn

 , (1.12)

and the generic rank profile is not required.

1.1.5 Dense Integer Matrix Determinant

The baby steps/giant steps algorithm of Kaltofen and Villard (2001, Section 2) provides

a way to compute the determinant of a dense integer matrix using Wiedemann’s determi-
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nant algorithm and Chinese remaindering. The algorithm computes the determinant of

the preconditioned matrix Ã modulo several prime numbers using residue arithmetic and

the Wiedemann determinant algorithm described in Section 1.1.4. It then calculates the

determinant of the preconditioned matrix Ã by the Chinese remainder algorithm. The

algorithm is able to use the Wiedemann determinant algorithm efficiently by computing

the bilinear projection sequence {uTAiv}∞i=0 using a “baby steps/giant steps” approach

introduced by Kaltofen (1992b, Section 3) that computes r = d
√

2ne baby steps vj = Ajv

and s = d2n/re giant steps uk = ((Ar)T)ku.

Kaltofen and Villard’s baby steps/giant steps algorithm is a Las Vegas algorithm.

It bounds the determinant of the preconditioned matrix Ã using Hadamard’s inequality

(Horn and Johnson, 1985, Section 7.8), and this bound determines how many moduli are

required in the determinant’s computation. Early termination could be used to create

a Monte Carlo algorithm. Kaltofen (2002) gives an improved version of this Monte

Carlo algorithm that dynamically changes the ratio of baby steps to giant steps. A

preconditioner that increases the magnitude of the determinant requires both the Las

Vegas and the Monte Carlo algorithms to use more moduli. Unfortunately, all of the

preconditioners presented for the Wiedemann determinant algorithm in Section 1.1.4

increase the magnitude of the determinant. It is possible to bound the algorithm using

the determinant of the original matrix A and avoid this increase in the number of moduli,

but doing so imposes restrictions on the moduli that can be used by the algorithm. As

Kaltofen and Villard (2001, Section 2) note, unit triangular Toeplitz matrices similar to
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those in Kaltofen and Pan (1992, Section 2) will preserve the determinant. However,

Toeplitz matrices are more costly to apply and consume more random field elements,

which decreases the preconditioner’s probability of success. Therefore, it is not clear

that unit triangular Toeplitz matrices form a good preconditioner for these baby steps/

giant steps determinant algorithms.

In Chapter 3, we provide a new preconditioner that preserves the determinant. This

preconditioner has the same probability of success as a diagonal matrix and can be

applied far more cheaply than Toeplitz matrices. It also avoids any new restrictions on

the moduli required in the determinant’s computation.

1.2 Block Wiedemann Method

Coppersmith (1994) introduces a block version of Wiedemann’s nonsingular system solver

discussed in Section 1.1.1. Instead of using vectors u ∈ Fn and v ∈ Fn, Coppersmith uses

blocks of vectors X ∈ Fn×β1 and Y ∈ Fn×β2 to create a sequence of matrices {XTAiY }∞i=0

instead of the scalar sequence {uTAiv}∞i=0 of Wiedemann’s original algorithm. Copper-

smith introduces a block Berlekamp-Massey algorithm to compute the right minimal

matrix generating polynomial FA,Y
X . This matrix polynomial can then be used to solve

the singular homogeneous system Ax = 0 (Coppersmith, 1994) and to find the determi-

nant of the matrix A (Kaltofen and Villard, 2001, Section 3).

Just as the Wiedemann and Lanczos methods are related (Lambert, 1996), the block

Wiedemann method is related to the block Lanczos method discussed by Coppersmith
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(1993) and Montgomery (1995).

In Chapter 4, we discuss linearly generated matrix sequences and the minimal gener-

ating polynomial, how to compute the minimal generating polynomial of a linearly gen-

erated matrix sequence using the Beckermann-Labahn Fast Power Hermite-Padé Solver

(FPHPS) algorithm, and a block Monte Carlo algorithm for computing the rank of a

matrix.

1.3 LinBox Library

Project LinBox is a collaboration of two dozen mathematicians and computer scientists in

Canada, France, and the United States. The goal of the project is to produce algorithms

and software for symbolic linear algebra, and black box linear algebra in particular. The

project focuses primarily on the algorithms and not on implementing the underlying field

arithmetic or the final interface a user might encounter.

The LinBox library is considered “middleware”. (See Figure 1.2 on the next page,

which is an adaptation of Figure 2.1 in Dı́az (1997).) It is designed to be accessible

to users outside the field of symbolic computation. For example, the library might be

plugged into a commercial software package such as Mathematica or Maple using plug-

and-play methodology (Kaltofen, 2000, Section 7). It must be designed in a way to

allow these different platforms to access it. On the other hand, the library uses generic

or reusable programming to access existing libraries to implement the field arithmetic

needed in the library’s algorithms, allowing the code to operate over many coefficient
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domains and a variety of implementations for any given domain.

software
plug−and−play

programming
generic

Maple Mathematica
Application

Program

NTL SacLibC++ types

LinBox

Figure 1.2: LinBox as middleware

The LinBox library follows, in part, the model of the Standard Template Library

(STL) (Musser and Saini, 1996). The library primarily uses the C++ template mecha-

nism (Stroustrup, 1997, Chapter 13) to implement the generic programming, with virtual

functions (Stroustrup, 1997, Chapter 12) playing a secondary role. Much of the library’s

design is inspired by the FoxBox project (Dı́az, 1997; Dı́az and Kaltofen, 1998). The

MTL [http://www.osl.iu.edu/research/mtl] numerical linear algebra project and

the Synaps [http://www-sop.inria.fr/galaad/logiels/synaps] symbolic computa-

tion projects have similar goals. One predecessor of the LinBox library is the WiLiSys

(Kaltofen and Lobo, 1999) implementation of the block Wiedemann algorithm (Dumas

et al., 2002).

In Chapter 5, we discuss the design of the LinBox library and the issues involved in
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its creation. We presented much of this work in Dumas et al. (2002). Related work is

also presented in Dumas (2000, Section 12.3).



Chapter 2

Preconditioners Based on Beneš

Networks

The preconditioners for computing the rank of a black box matrix and randomly sampling

the solution space of a singular black box system as discussed in Sections 1.1.3 and 1.1.2,

respectively, need to precondition an n×n matrix of rank r so that the first r rows of the

preconditioned matrix become linearly independent. In other words, the preconditioners

must localize the linear independence of the system. Using the terminology of Chen et al.

(2002, Section 3.1.1), the goal is to solve the PreCondInd problem. Two PreCondInd

preconditioners can then be used to solve both the PreCondrxr and PreCondGen

problems. These are the problems of ensuring the leading principal r × r minor of A is

nonzero and ensuring all leading principal minors of A of size up to and including r are

nonzero, respectively.

19
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In his original paper, Wiedemann (1986, Section V) uses a parameterized matrix

based on rearrangeable permutation networks such as Beneš networks to localize the

linear independence of a black box matrix. A Beneš network is a network of butterfly

switches that can realize any permutation of the inputs. A butterfly switch is a switch

that takes two inputs and can either leave them as they are or exchange them. (See

Figure 2.1.) Beneš (1964) shows the recursive nature of the network when n is a power

of two.

Figure 2.1: Butterfly switch

In this chapter (see also Chen et al., 2002), we improve on the earlier work pre-

sented in Parker (1995) and Wiedemann (1986) in two ways. First, in Section 2.1, we

use butterfly networks as in Parker (1995) instead of Beneš permutation networks as

in Wiedemann (1986). A butterfly network is essentially half of a Beneš network. How-

ever, unlike Parker, we generalize our networks to an arbitrary size n and are not limited

to powers of two. In Section 2.2, we show how to obtain preconditioners from these

networks. Then, in Section 2.3, we generalize the networks again, this time by using

switches of arbitrary radix.
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2.1 Butterfly Networks

Let us consider the n rows of an n × n matrix of rank r. We want to precondition the

matrix so the first r rows of the preconditioned matrix are linearly independent. We can

use a switching network to exchange rows until the first r rows are linearly independent.

Our goal is to switch any r rows of an arbitrary number n of rows to the beginning of

the network. However, we must first consider the case of switching any r rows into any

contiguous block when n is a power of two, n = 2l.

Definition 2.1. An l-dimensional butterfly network is a recursive network of butterfly

switches with 2l nodes at each level such that at level m the node i is merged with node

i+ 2m−1. Figure 2.2 illustrates a 3-dimensional butterfly with 8 nodes at each level. The

bold lines demonstrate the switch settings needed to achieve the desired result.

0 0 001 1 1 1

0 1 0 0 1 1 10

0 0 0 01 1 1 1

1 1 110 0 0 0

Figure 2.2: Butterfly network

We now show that when n is a power of two, a butterfly network can switch any r
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rows into any contiguous block. This result will be used when we consider arbitrary n.

Lemma 2.1. Let n = 2l. The l-dimensional butterfly network of Definition 2.1 on the

last page can switch any r indices 1 ≤ i1 < · · · < ir ≤ n into any desired contiguous

block of indices; wrapping the block around the outside, for our purposes, shall preserve

contiguity. For example, in Figure 2.2 on the previous page, the ones in the final con-

figuration would be considered contiguous. Furthermore, the network contains a total of

n log2(n)/2 switches.

Proof. Let us prove this lemma by induction. For n = 1, the proof is trivial because no

switches are required.

Suppose the lemma is true for n/2. Let us divide the n nodes in half with r1 given

such that ir1 ≤ n/2 < ir1+1. We can construct butterfly networks of dimension l − 1

for each of these collections of n/2 nodes. By the lemma, each of these subnetworks can

arrange the indices i1, . . . , ir1 and ir1+1, . . . , ir, respectively, into any desired contiguous

block.

Let us consider the contiguous block desired from the network. It is either contained

in the interior of the network in indices 1 ≤ j, . . . , j + r − 1 ≤ n, or it wraps around the

outside of the network and can be denoted by indices 1, . . . , j − 1 and n − r + j, . . . , n.

This second situation can be converted into the first by instead thinking of switching the

n−r indices not originally chosen into the contiguous block j, . . . , j+n−r−1. Thus, we

only have to consider the first situation. This can then be further divided into the two

cases when the contiguous block j, . . . , j + r − 1 is contained within one half and when
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the block is in both halves and connected in the center.

For the first case, let us assume the desired block is completely within the first half,

j + r − 1 ≤ n/2. We can use the first subnetwork to place i1, . . . , ir1 so they switch into

j, . . . , j+ r1− 1, and we can use the second subnetwork to position ir1+1, . . . , ir to switch

into j+ r1, . . . , j+ r− 1 as in Figure 2.3. A symmetric argument holds when the desired

contiguous block is contained in the second half, j > n/2.

r1

n
2

n
2

r1r -

r1 r1r -

Figure 2.3: Butterfly network case 1

For the case when j ≤ n/2 and j + r− 1 > n/2, let us assume r1 ≤ n/2− j + 1, and,

thus, we need to switch r2 = n/2− j−r1 +1 indices from the second half to the first. We

can then use the first subnetwork to place i1, . . . , ir1 so they switch into j, . . . , j + r1− 1,

and we can use the second subnetwork to position ir1+1, . . . , ir in a contiguous block that

wraps around the outside of the subnetwork so they switch into j+ r1, . . . , j+ r− 1 as in

Figure 2.4 on the next page. Once again, a symmetric argument holds for r1 ≥ n/2−j+1.

By the induction hypothesis, each of these subnetworks is of dimension l− 1 and has

n(log2(n) − 1)/4 switches. Thus, the dimension of the final butterfly network is l, and
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n
2

n
2

1r 2rr - - 2r

1r 2rr - -2r1r

1r

Figure 2.4: Butterfly network case 2

the total number of switches is

s = 2
n

4
(log2(n)− 1) +

n

2
=
n

2
log2(n).

Lemma 2.1 means we can switch any r rows of a n × n matrix into any contiguous

block for n = 2l. Now we are ready to consider our original goal of switching any r rows

into the first block of r rows for any n. To do so, we must first describe a generalized

butterfly network for any n.

Definition 2.2. When n is not a power of two, let us decompose n as a sum of powers

of two,

n =

p∑
i=1

2li where l1 < l2 < · · · < lp; let ni = 2li . (2.1)

First, we lay out butterfly networks for each of the ni blocks. Then, we build a gener-

alized butterfly network by connecting these butterfly networks using butterfly switches

in a recursive manner such that
∑p−1

i=1 ni is merged with the far right nodes of np as in

Figure 2.5 on the following page.

This generalized butterfly network can switch any r rows into the first block of r rows



CHAPTER 2. PRECONDITIONERS BASED ON BENEŠ NETWORKS 25

np
p- 1n

Figure 2.5: Generalized butterfly network

for any n.

Theorem 2.1. The generalized butterfly network of Definition 2.2 on the previous page

can switch any r indices 1 ≤ i1 < · · · < ir ≤ n into the contiguous block 1, 2, . . . , r. Fur-

thermore, it has a depth of dlog2(n)e and a total of no more than ndlog2(n)e/2 butterfly

switches. This bound is attained only when n = 2l.

Proof. If n = 2l, the proof follows directly from Lemma 2.1 on page 22 and equality is

obtained in the number of switches. Otherwise, we know p > 1 and np >
∑p−1

i=1 ni from

the decomposition of n (2.1) . We prove the first part of this theorem by induction.

Suppose the theorem is true for
∑p−1

i=1 ni. Let ir1 be the last index in the left-most

subnetwork, that is, ir1 ≤
∑p−1

i=1 ni < ir1+1. Then, we can switch the indices i1, . . . , ir1

into the contiguous block 1, . . . , r1 using a generalized butterfly network.

If r ≤
∑p−1

i=1 ni, we can use Lemma 2.1 on page 22 to position the remaining indices

ir1+1, . . . , ir so they switch into positions r1 + 1, . . . , r as in Figure 2.6 on the following

page. Otherwise let r2 = (
∑p−1

i=1 ni)−r1, and then we can use the same lemma to position

the indices as in Figure 2.7 on the next page.

The total number of butterfly switches is the number of switches for each of the

subnetworks plus another
∑p−1

i=1 ni switches to combine the two. Another way of counting
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r1 r1r -

r1 r1r -

n 1 p -1n+ . . .+ n p

Figure 2.6: Generalized butterfly network case 1

r1 r1 r2r - - r2

n pn 1 p -1n+ . . .+

r2r1 r1 r2r - -

Figure 2.7: Generalized butterfly network case 2

the switches is the sum of the number of switches for each of the ni blocks plus the number

of switches to connect these blocks,

s =

p∑
i=1

ni
2
li +

p−1∑
i=1

(
i∑

j=1

nj

)
.

From the decomposition of n into powers of two (2.1), we know li ≤ lp − (p − i) for

i < p and also
∑i

j=1 nj < ni+1. Thus,

s ≤
p∑
i=1

ni
2
lp −

p∑
i=1

ni
2

(p− i) +

p−1∑
i=1

(
i∑

j=1

nj

)
,
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and

s ≤
p∑
i=1

ni
2
lp −

p−1∑
i=1

(
i∑

j=1

nj
2

)
+

p−1∑
i=1

(
i∑

j=1

nj

)
=

p∑
i=1

ni
2
lp +

p−1∑
i=1

(
i∑

j=1

nj
2

)

because
∑p

i=1

(∑i
j=1 nj

)
=
∑p

i=1 ni(p − i). Therefore, again from the decomposition of

n into powers of two (2.1) when p > 1, the total number of butterfly switches is

s <

p∑
i=1

ni
2
lp +

p∑
i=2

ni
2
<
n

2
lp +

n

2
=
n

2
(lp + 1) =

n

2
dlog2(n)e.

This bound is never attained when p > 1. Furthermore, the depth of the network is

lp + 1 = dlog2(n)e.

Theorem 2.1 is important because it generalizes the butterfly network of Lemma 2.1

on page 22 and Parker (1995) to an arbitrary size n. Previously, when n 6= 2l, the

matrix was extended to the new dimension n′ = 2dlog2(n)e before the butterfly network

was applied. Theorem 2.1 shows a generalized butterfly network can be applied using

fewer switches than would be required by a larger matrix. However, this decrease in the

number of switches required comes at a cost. The generalized butterfly network is not

able to switch the r inputs into any contiguous block when n is not a power of two.
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2.2 Butterfly Network Preconditioners

Butterfly switching networks cannot be used directly to solve the PreCondInd problem.

Lemma 2.1 on page 22 and Theorem 2.1 on page 25 show there is a way to set the switches

to achieve the desired result. The setting of the switches depends on knowing where the

linearly independent rows of the matrix are found, which is information we do not have.

Wiedemann (1986, Section V) converts a permutation matrix into a parameterized

matrix by replacing the butterfly switches with exchange matrices of the form

1 a

0 1


1 0

b 1


1 c

0 1

 . (2.2)

Instead of truly switching the rows of the matrix, this exchange matrix mixes the rows.

By selecting random values for the matrix parameters, we are able to show the first r rows

of the preconditioned matrix Ã = BA are linearly independent with a certain probability

if the original matrix has at least r linearly independent rows. Lobo (1995, Section 1.4.1)

reduces this exchange matrix to a single variable,

1− a a

a 1− a

 . (2.3)
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Parker (1995) introduces the butterfly network described in Section 2.1 and an exchange

matrix of the form a b

a −b

 . (2.4)

Saunders (2001) uses a similar exchange matrix, but with the second row reversed, in his

paper on least squares problems,  a b

−b a

 . (2.5)

In Chen et al. (2002, Section 6.2), we prove the generic exchange matrix

Ê(α) =

1 α

1 1 + α

 with action Ê(a)

y[1]

y[2]

 =

 y[1] + ay[2]

y[2] + (y[1] + ay[2])


preserves the linear independence of the rows and can be used with the generalized but-

terfly networks of Theorem 2.1 on page 25 to create a PreCondInd preconditioner.

This particular switch is important because it requires two additions and one multi-

plication, one less multiplication than the exchange matrices of both Parker (2.4) and

Saunders (2.5). It also requires only one random variable and has determinant one.

2.3 Arbitrary Radix Switching Networks

In Section 2.1, we generalized the butterfly networks to arbitrary size n, but we are still

using butterfly switches, which act on only two inputs. This means that if a switching
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network composed of butterfly switches is to operate on more than two inputs, the

network must be composed of more than one switch. In this section, we consider networks

based on switches of arbitrary radix to reduce the total number of switches required. A

radix-β switch is similar to a butterfly switch. It allows any permutation of the β inputs.

Figure 2.8 shows switches or radix three and four.

Figure 2.8: Radix-3 (left) and radix-4 (right) switches

As in Section 2.1, our goal is to use a radix-β switching network to switch any r rows

of an arbitrary number n of rows to the beginning of the network. However, we must first

consider the case of switching any r rows into any contiguous block when n is a power

of β, n = βl.

Definition 2.3. An l-dimensional radix-β switching network is a recursive network

of radix-β switches with βl nodes at each level such that at level m the nodes i, i +

βm−1, . . . , i + (β − 1) βm−1 (1 ≤ i ≤ n/β) are merged. This network has l levels of

switches with βl−1 switches at each level for a total of l βl−1 switches in the network. The

structure of this network is similar to that of the butterfly network shown in Figure 2.2

on page 21.

We are now ready for the radix-β counterpart to Lemma 2.1 on page 22.
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Lemma 2.2. Let n = βl where β ≥ 2. The l-dimensional radix-β switching network of

Definition 2.3 on the previous page can switch any r indices 1 ≤ i1 < · · · < ir ≤ n into any

desired contiguous block of indices; for our purposes, wrapping the block around the out-

side shall preserve contiguity. Furthermore, the network contains a total of n logβ(n)/β

switches.

Proof. Following the example of Lemma 2.1 on page 22, let us prove the lemma by

induction. For n = 1, the proof is trivial because no switches are required.

Suppose the lemma is true for n/β. Let us divide the n nodes into β equal subnetworks

with r1, r2, . . . , rβ−1 given such that irk ≤ kn/β < irk+1 for every k. Let us also denote

r0 = 0 and rβ = r. We can construct radix-β switching networks of dimension l − 1 for

each of these collections of n/β nodes. By the lemma, for every 1 ≤ k ≤ β, the k-th

subnetwork can arrange the indices irk−1+1, . . . , irk into any desired contiguous block.

Let us consider the contiguous block desired from the network. It is either contained

in the interior of the network in indices 1 ≤ j, . . . , j + r − 1 ≤ n, or it wraps around the

outside of the network and can be denoted by indices 1, . . . , j − 1 and n − r + j, . . . , n.

This second situation can be converted into the first by thinking of switching the n − r

indices not originally chosen into the contiguous block j, . . . , j+n− r−1. Thus, we only

have to consider the first situation.

We can use the first subnetwork to place i1, . . . , ir1 so they switch into j, . . . , j+r1−1.

We can then use the second subnetwork to place ir1+1, . . . , ir2 so they switch into j +

r1, . . . , j + r2 − 1. We can continue in this manner until we use the β-th subnetwork to
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place irβ−1+1, . . . , ir so they switch into j+rβ−1, . . . , j+r−1. In each of these subnetworks,

the indices may wrap around the outside of the subnetwork to allow them to switch into

the correct position as was needed in case 2 of the proof of Lemma 2.1 on page 22. (See

Figure 2.4 on page 24.)

Using the induction hypothesis, each of these subnetworks is of dimension l−1 and has

n(logβ(n)− 1)/β2 switches. Thus, the dimension of the final radix-β switching network

is l, and the total number of switches required is

s = β
n

β2

(
logβ(n)− 1

)
+
n

β
=
n

β
logβ(n).

As with Lemma 2.1 on page 22 when β = 2, Lemma 2.2 means we can switch any r

rows of an n× n matrix into any contiguous block when n = βl. We must now consider

a network of arbitrary size n.

Definition 2.4. When n is not a power of the radix β, let us decompose n as a sum of

powers of β,

n =

p∑
i=1

ci β
li where ci ∈ {1, . . . , β − 1} and l1 < l2 < · · · < lp; let ni = ci β

li . (2.6)

First, we lay out radix-β switching networks for each of the βli blocks. Then, we build

a generalized radix-β switching network by connecting these networks with switches

recursively, such that
∑p−1

i=1 ni is merged with the far right nodes of each of the βlp blocks

with switches of radix cp + 1 ≤ β. If cp > 1, the remaining np −
∑p−1

i=1 ni nodes of each
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of the cp blocks of size βlp are merged with switches of radix cp < β. These two sets of

extra switches do not interact, so they constitute only one extra layer of switches after

the last level of radix-β switching networks.

Another way to think of this level of connecting switches is to think of it as one set

of switches of radix cp + 1 ≤ β that switch the corresponding outputs of the cp radix-β

networks with the combined outputs of the generalized radix-β network for
∑p−1

i=1 ni and

βp −
∑p−1

i=1 ni “phantom” outputs to the left of the generalized subnetwork. In this way,

we see there is only one additional level to connect all of the subnetworks.

Before we consider a completely arbitrary network size n, let us first consider the case

when n = c βl where 1 < c < β. This is a case that does not arise when β = 2.

Lemma 2.3. Let n = c βl where β ≥ 2 and 1 ≤ c ≤ β − 1. The generalized radix-β

switching network of Definition 2.4 on the last page can switch any r indices 1 ≤ i1 <

· · · < ir ≤ n into any desired contiguous block of indices; for our purposes, wrapping

the block around the outside shall preserve contiguity. Furthermore, it has a depth of

dlogβ(n)e and a total of no more than βdlogβ(n)edlogβ(n)e/β switches of radix no greater

than β. This bound is attained only when c = 1 or l = 0.

Proof. If c = 1, the proof is directly from Lemma 2.2 on page 30. Otherwise, let

r1, r2, . . . , rc−1 be given such that irk ≤ kn/β < irk+1 for every k. Let us also denote

r0 = 0 and rc = r. We can construct radix-β switching networks of dimension l for each

of these collections of βl nodes. By Lemma 2.2, for every 1 ≤ k ≤ c, the k-th radix-β

network can arrange the indices irk−1+1, . . . , irk to any desired contiguous block.
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As in the proof of Lemma 2.2, let us consider the contiguous block desired from the

network. It is either contained in the interior of the network in indices 1 ≤ j, . . . , j +

r − 1 ≤ n or it wraps around the outside of the network and can be denoted by indices

1, . . . , j − 1 and n − r + j, . . . , n. This second situation can be converted into the first

by instead switching the n − r indices not originally chosen into the contiguous block

j, . . . , j + n− r − 1. Thus, we once again only have to consider the first situation.

We can use the first radix-β network to place i1, . . . , ir1 so they switch into j, . . . , j +

r1− 1. We can then use the second radix-β network to place ir1+1, . . . , ir2 so they switch

into j + r1, . . . , j + r2 − 1. We can continue in this manner until we use the c-th radix-β

network to place irc−1+1, . . . , ir so they switch into j+ rc−1, . . . , j+ r−1. In each of these

radix-β networks, the indices may wrap around the outside of the network to allow them

to switch into the correct position as was needed in case 2 of the proof of Lemma 2.1 on

page 22. (See Figure 2.4 on page 24.)

The number of switches needed when c 6= 1 is the number for the c radix-β networks

plus βl switches to combine the networks,

s =
c βl

β
l + βl ≤ β βl

β
l + βl =

βl+1

β
(l + 1) =

βdlogβ(n)e

β
dlogβ(n)e.

This bound is never attained when c 6= 1 and l 6= 0. Furthermore, the depth of the

network for c 6= 1 is l + 1 = dlogβ(n)e.

The network uses fewer than βdlogβ(n)edlogβ(n)e/β switches unless n = βl or n = c.

We are now ready to present the radix-β counterpart to Theorem 2.1 on page 25 for
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an arbitrary network size n.

Theorem 2.2. Let β ≥ 2. The generalized radix-β switching network discussed in

Definition 2.4 on page 32 can switch any r indices 1 ≤ i1 < · · · < ir ≤ n into the

contiguous block 1, 2, . . . , r. Furthermore, it has a depth of dlogβ(n)e and a total of

no more than βdlogβ(n)edlogβ(n)e/β switches of radix no greater than β. This bound is

attained only when n = βdlogβ(n)e or n < β.

Proof. The proof of this theorem is very similar to the proof of Theorem 2.1 on page 25.

If n = c βl, the proof follows directly from Lemma 2.3 on page 33. Otherwise, we

know p > 1 and np >
∑p−1

i=1 ni from the decomposition of n into powers of β (2.6) .

Following the example of Theorem 2.1 on page 25, we prove the first part of the theorem

by induction. Suppose the theorem is true for
∑p−1

i=1 ni. Let ir1 be the last index in the

left-most subnetwork, ir1 ≤
∑r−1

i=1 ni < ir1+1. Then, we can switch the indices i1, . . . , ir1

into the contiguous block 1, . . . , r1 using a generalized butterfly network.

Let r2, . . . , rc−1 be given such that, for every k, irk is the last of the chosen indices

before the end of the first (k − 1)-st radix-β network,

irk ≤ (k − 1) βl +
r−1∑
i=1

ni < irk+1.

Let us also denote rβ = r. As in the proofs of Theorem 2.1 and Lemma 2.3, we can

use the first radix-β network to place i1, . . . , ir1 so they switch into j, . . . , j + r1 − 1.

Then, we can use the second radix-β network to place ir1+1, . . . , ir2 so they switch into
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j + r1, . . . , j + r2 − 1. We can continue in this manner until we use the c-th radix-β

network to place irc−1+1, . . . , ir so they switch into j+ rc−1, . . . , j+ r−1. In each of these

radix-β networks, the indices may wrap around the outside of the network to allow them

to switch into the correct position as was needed in case 2 of the proof of Theorem 2.1

on page 25 (See Figure 2.7 on page 26.)

The total number of butterfly switches is the number of switches for each of the

subnetworks plus the number of switches to combine them. When cp = 1, this is an

additional
∑p−1

i=1 ni < βlp switches. When cp 6= 1, the number of additional switches

needed is βl. Another way of counting the switches is the sum of the number of switches

for each of the ni blocks plus the number of switches to connect these blocks,

s =

p∑
i=1

ci β
lili
β

+

p−1∑
i=1

(
i∑

j=1

cj β
lj

)
+

p∑
i=2
ci>1

(
βli −

i−1∑
j=1

cj β
lj

)
.

In other words,

s ≤
p∑
i=1

ci β
lili
β

+

p∑
i=2

βli =

p∑
i=1

ni
β
li +

p∑
i=2

βli .

From the decomposition of n into powers of β (2.6), we know li ≥ i− 1 for 1 ≤ i ≤ p,

so
p∑
i=2

βli ≤
lp+1∑
i=2

βi−1 =

lp∑
i=1

βi

and
p∑
i=1

ni
β
li ≤

p∑
i=1

(β − 1)βli

β
li ≤

lp∑
i=0

(β − 1)βi

β
i =

lp∑
i=1

(β − 1)βi

β
i.
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Thus,
p∑
i=1

ni
β
li ≤

lp∑
i=1

(β − 1)βi

β
lp −

lp−1∑
i=1

(β − 1)βi

β
(lp − i).

However,
∑lp−1

i=0 (β − 1)βi = βlp − 1, so

lp∑
i=1

(β − 1)βi

β
lp =

lp−1∑
i=0

(β − 1)βilp = βlplp − lp

and

lp−1∑
i=1

(β − 1)βi

β
(lp − i) =

lp−1∑
i=1

(
i∑

j=1

(β − 1)βj

β

)
=

lp−1∑
i=1

(
i∑

j=1

(β − 1)βj−1

)

=

lp−1∑
i=1

(
βi − 1

)
=

lp−1∑
i=1

βi − lp + 1.

Therefore, the number of switches required when p > 1 is given by

s ≤
p∑
i=1

ni
β
li +

p∑
i=2

βli ≤ βlplp −
lp−1∑
i=1

βi − 1 +

lp∑
i=1

βi

< βlplp + βlp =
βlp+1(lp + 1)

β
=
βdlogβ(n)edlogβ(n)e

β
.

This bound is never attained if p > 1. However, Lemma 2.3 on page 33 tells us this

bound is attained when p = 1 and c = 1 or l = 0. These are the cases when n = βdlogβ(n)e

and n < β.

The depth of the network when p > 1 is the depth of the largest subnetworks of a

power of three plus one level to combine the rest of the network with these subnetworks.

Thus, the complete network has a depth of lp + 1 = dlogβ(n)e.
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2.4 Arbitrary Radix Network Preconditioners

As in Section 2.2, these arbitrary radix switching networks cannot be used directly to

solve the PreCondInd problem. Once again, the switching of rows must be converted

into a mixing that preserves the desired linear independence. Unfortunately, finding a

good radix-β exchange matrix is not easy. For this discussion, let us consider the β × β

matrix

E(α1, . . . , αβ2) =



α1 α2 · · · αβ

αβ+1 αβ+2 · · · α2β

...
...

. . .
...

α(β−1)β+1 α(β−1)β+2 · · · αβ2


, (2.7)

where α1, . . . , αβ2 are indeterminates over the field. It is possible to choose values

a1, . . . , aβ2 for α1, . . . , αβ2 to achieve any desired permutation of the inputs. Thus, this

symbolic matrix (2.7) can be used as a radix-β exchange matrix. For the k-th switch

in the generalized radix-β network, we can embed this symbolic exchange matrix (2.7)

into an n× n identity matrix as was done by Chen et al. (2002, Section 6) to obtain the

matrix Êk. This may not be the best switching matrix, but we can use it to prove the

following counterpart to Theorem 6.3 in Chen et al. (2002).

Theorem 2.3. Let F be a field, let A be an n×n matrix over F with r linearly independent

rows, let s be the number of switches in the generalized radix-β switching network from

Theorem 2.2 on page 35, and let S be a finite subset of F. Let N be the number of

random numbers required in this network. If a1, . . . , aN are randomly chosen uniformly
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and independently from S then the first r rows of

(
s∏

k=1

Êk

)
A

are linearly independent with probability no less than

1−
rdlogβ(n)e
|S|

≥ 1−
ndlogβ(n)e
|S|

.

Proof. The network requires

N ≤ sβ2 ≤ βdlogβ(n)e+1dlogβ(n)e

random numbers since the radix-β switching network uses s ≤ βdlogβ(n)edlogβ(n)e/β

switches of radix no greater than β by Theorem 2.2 on page 35, and each switch uses no

more than β2 random numbers as seen in the symbolic matrix (2.7) on the last page.

Let

Ã =

(
s∏

k=1

Êk

)
A.

The matrix A is over the field F, so each row of A is a row vector of polynomials in

α1, . . . , αN of degree zero. Each switch in the generalized radix-β switching network

increases the degree of the polynomials by one, and the depth of the network is dlogβ(n)e.

This means the rows of Ã are vectors of polynomials in α1, . . . , αN of degree dlogβ(n)e,

and the determinant of an r× r submatrix of this preconditioned matrix is a polynomial
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of degree rdlogβ(n)e.

Given that A has r linearly independent rows, we can designate these rows to be

switched by the generalized radix-β switching network of Theorem 2.2 on page 35 to the

first r rows of the preconditioned matrix Ã. This means there is an r × r submatrix

of the first r rows of Ã whose determinant is not identically zero. Because this is a

polynomial of degree rdlogβ(n)e, the Schwartz/Zippel lemma tells us that (a1, . . . , aN)

is a root of it with probability no greater than rdlogβ(n)e/|S|. With probability no less

than 1 − rdlogβ(n)e/|S|, it is not a root of the polynomial, and thus we have an r × r

submatrix of the first r rows of Ã whose determinant is not zero. Therefore, the first r

rows of Ã are linearly independent with probability no less than

1−
rdlogβ(n)e
|S|

≥ 1−
ndlogβ(n)e
|S|

.

The logβ(n) term in Theorem 2.3 means a preconditioner based on a generalized

radix-β switching network offers some improvement as β increases. However, the number

of random values required, and thus the size of the random set S from which they are

chosen, grows exponentially for the particular exchange matrix (2.7). Further work should

investigate better exchange matrices.



Chapter 3

Preconditioners and Determinantal

Divisors

The random diagonal matrices in the preconditioners for computing the rank and deter-

minant of a black box matrix presented in Sections 1.1.3 and 1.1.4, respectively, serve

to ensure cyclicity of the nonzero eigenvalues of the preconditioned matrix, so the pre-

conditioned matrix will have only one Jordan block for each nonzero eigenvalue. For

the determinant problem, the preconditioned matrix Ã must be nonsingular and cyclic

for a nonsingular matrix A. Using the terminology of Chen et al. (2002, Section 3.1.3),

the preconditioner for the determinant problem must solve the PreCondCyc problem.

For the rank problem, the preconditioner must solve the PreCondCycNil problem.

In other words, the preconditioned matrix Ã must have the property that its minimal

polynomial is f Ã(λ) = λ g(λ) and its characteristic polynomial is det(λI − Ã) = λkg(λ)

41
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where g(0) 6= 0 and k ≥ 1.

The notion of ensuring there is only one Jordan block for each nonzero eigenvalue

for a matrix is an interesting one and is unique to symbolic linear algebra. In numerical

linear algebra, one often tries to diagonalize a matrix, which often creates several Jordan

blocks for a nonzero eigenvalue. For example, the identity matrix

I =


1

. . .

1


is often the goal of a numerical preconditioner, but it is one of the worst matrices for

the Wiedemann determinant algorithm since it has only a linear minimal polynomial,

f I = λ− 1.

The standard approach to proving a cyclicity preconditioner is to show that the char-

acteristic polynomial det(λI − Ã) of the preconditioned matrix Ã is squarefree, which

means Ã has n distinct eigenvalues. Wiedemann (1986, Section V) uses induction and

a generic rank profile obtained with a parameterized matrix P to prove his precondi-

tioner (1.8) is squarefree. Following his proof, Kaltofen and Pan (1992, Section 2) prove

inductively that the two Toeplitz matrices of their preconditioner (1.11) also ensure the

characteristic polynomial is squarefree. In Chen et al. (2002, Section 4), we break from

these inductive proofs to show directly that the characteristic polynomial of a matrix

preconditioned with a diagonal matrix (1.12) is squarefree. For their rank precondi-
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tioner (1.9), Kaltofen and Saunders (1991, Section 2) use the generic rank profile and

Wiedemann’s induction proof to show the degree of the minimal polynomial of their pre-

conditioned matrix Ã is deg(f Ã) = rank(A) + 1. In Chen et al. (2002, Section 5), we

again follow the inductive proofs of Wiedemann (1986) and Kaltofen and Pan (1992) to

prove three Toeplitz matrices (1.10) also produce the desired degree.

However, a matrix need not have a squarefree characteristic polynomial in order to

be cyclic. For example, a Jordan block

J =



a 1

. . . . . .

a 1

a


, a 6= 0

is cyclic, but its characteristic polynomial is not squarefree,

det(λI − J) = (λ− a)n.

In this chapter, we present a new approach to prove a cyclicity preconditioner that

involves computing the determinantal divisors of the characteristic matrix.

In Section 3.1, we use this approach to prove a fast new preconditioner for the deter-

minant problem for a dense integer matrix described in Section 1.1.5. The dense integer
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matrix determinant preconditioner is in the form of a unit upper bidiagonal multiplier,

Ã = A



1 a1

. . . . . .

1 an−1

1


.

Then, in Section 3.2, we use the same approach to relax slightly the generic rank profile

condition in the Kaltofen-Saunders rank algorithm described in Section 1.1.3.

3.1 Determinant-Preserving Preconditioners

To compute the determinant of a matrix A by Wiedemann’s algorithm, we must pre-

condition the matrix so that, if the original matrix A is nonsingular, the preconditioned

matrix Ã is nonsingular and cyclic. This cyclicity ensures the characteristic and minimal

polynomials (det(λI − Ã) and f Ã, respectively) agree. We can then use Wiedemann’s

algorithm to compute the minimal polynomial of the preconditioned matrix,

f Ã = λn + f Ã[n− 1]λn−1 + · · ·+ f Ã[0] = det(λI − Ã).

The determinant of Ã is det(Ã) = (−1)nf Ã[0]. If the preconditioner changes the matrix

in a known way, we can recover the determinant of A.

One might think the requirement that A be nonsingular could pose a problem, but
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this is not the case. If the matrix is singular, multiplication by any matrix will result in

another singular matrix Ã. All singular matrices have a zero eigenvalue, and thus their

minimal polynomials have zero constant terms

f Ã = f Ã[m]λm + f Ã[m− 1]λm−1 + · · ·+ f Ã[1]λ.

Because the minimal polynomial divides the characteristic polynomial, a zero constant

term in f Ã means det(Ã) = 0. Thus, the constant coefficient of the minimal polynomial

of every singular matrix must be zero.

Recall the definition of the determinantal divisors, invariant factors, and the Smith

form of a polynomial matrix.

Definition 3.1. Let F be a field and M ∈ Fn×n [λ]. Then, the k-th determinantal

divisor s∗k (M) of M is the greatest common divisor of all k×k minors of the matrix, and

the Smith form of M is the diagonal matrix

S (M) = diag(s1 (M) , . . . , sr (M) , 0, . . . , 0) ∈ Fn×n [λ]

where sk (M) is the k-th invariant factor of M and is given by the equation

sk (M) =


s∗k (M) /s∗k−1 (M) if k 6= 1

s∗k (M) if k = 1.
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Here, r is the maximal integer such that s∗r (M) 6= 0 (Gohberg et al., 1982, Chapter S1).

Notice s∗n (M) = det(M), so for any square matrix A over a field, the largest deter-

minantal divisor of its characteristics matrix is its characteristic polynomial,

s∗n (λI − A) = det(λI − A) 6= 0.

Thus, the Smith form of the characteristic matrix is nonsingular,

S (λI − A) = diag(s1 (λI − A) , . . . , sn (λI − A)).

The largest invariant factor of λI − A is the minimal polynomial fA of A. One way

to prove that a matrix is cyclic is to show that all invariant factors of its characteristic

matrix, except the largest, are one. We can do this by examining its determinantal

divisors.

Lemma 3.1. Let F be a field, A ∈ Fn×n, and

U =



1 α1

. . . . . .

1 αn−1

1


∈ F[α1, α2, . . . , αn−1]n×n,

where α1, . . . , αn−1 are distinct indeterminates over F. Let λ be an indeterminate distinct

from α1, . . . , αn−1. Then, for all k with 1 ≤ k ≤ n − 1, the greatest common divisor of
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the k × k minors of λI − AU in F[α1, . . . , αn−1, λ] is contained in F[λ].

Proof. Let A[j] be the j-th column of the matrix A. Then,

AU =

[
A[1] A[2] + α1A

[1] · · · A[n] + αn−1A
[n−1]

]

and

λI − AU =

[
λe1 − A[1] λe2 − A[2] − α1A

[1] · · · λen − A[n] − αn−1A
[n−1]

]
,

where ei is the i-th elementary unit vector and λ is an indeterminate in F distinct from

α1, . . . , αn−1. Each αj occurs only in column j+1. Any k×k principal minor of λI−AU

that does not include the (j+1)-st row and column of the matrix is constant in αj. These

minors are also the characteristic polynomials of the corresponding submatrices of AU ,

so they are not identically zero.

Similar arguments hold for UA, UTA, and AUT.

Lemma 3.2. Let F be a field, A ∈ Fn×n have m of its first n − 1 columns linearly

independent, and

U =



1 α1

. . . . . .

1 αn−1

1


∈ F[α1, α2, . . . , αn−1]n×n,



CHAPTER 3. PRECONDITIONERS AND DETERMINANTAL DIVISORS 48

where α1, . . . , αn−1 are distinct indeterminates over F. Let λ be an indeterminate distinct

from α1, . . . , αn−1. Then, the first m invariant factors of λI − AU are all one.

Proof. Let A[i1,...,il;j1,...,jl] be the submatrix of the matrix A formed by the intersection

of rows i1, . . . , il and columns j1, . . . , jl, so det
(
A[i1,...,il;j1,...,jl]

)
is the corresponding mi-

nor. Because m of the first n − 1 columns of A are linearly independent, for every k

with 1 ≤ k ≤ m, there is a k × k minor, denoted det
(
A[i1,...,ik;j1,...,jk]

)
, that is nonzero.

The coefficient of the term
∏k

l=1 αjl in the minor det
(

(λI − AU)[i1,...,ik;j1+1,...,jk+1]
)

is

(−1)k det
(
A[i1,...,ik;j1,...,jk]

)
6= 0.

Consider the graded lexicographic ordering. Terms are ordered first by decreasing

total degree. Terms of the same total degree are ordered lexicographically using the

variable ordering

α1 � α2 � · · · � αn−1 � λ.

This ordering forces the leading term of one k × k minor of the characteristic matrix

λI − AU to be free of λ. The leading term of the greatest common divisor of all k × k

minors must also be free of λ. Lemma 3.1 on page 46 says this greatest common divisor is

free of α1, . . . , αn−1, so the leading term must be a constant. Thus, the greatest common

divisors, and also the invariant factors, are one.

More formally, because each entry of λI − AU has total degree of at most one and

each αj occurs in only one column of λI − AU , each k × k minor of λI − AU has total

degree of at most k and must be, at most, linear in each αj, and only αj1 , . . . , αjk , λ
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appear in det
(

(λI − AU)[i1,...,ik;j1+1,...,jk+1]
)

. Thus, the leading term of this minor is

lt
(

det
(

(λI − AU)[i1,...,ik;j1+1,...,jk+1]
))

= (−1)k det
(
A[i1,...,ik;j1,...,jk]

) k∏
l=1

αjl .

Let gk denote the greatest common divisor of the k × k minors of λI − AU in

F[α1, . . . , αn−1, λ] = F[α1, . . . , αn−1][λ]. Thus,

gk | det
(

(λI − AU)[i1,...,ik;j1+1,...,jk+1]
)

and

lt(gk) | lt
(

det
(

(λI − AU)[i1,...,ik;j1+1,...,jk+1]
))

. (3.1)

By Lemma 3.1 on page 46, gk ∈ F[λ], which means gk is free of α1, . . . , αn−1. The

leading term of gk is also free of α1, . . . , αn−1. By Equation (3.1), the leading term of

gk is free of λ. Thus, the leading term must be a constant, lt(gk) ∈ F. Therefore,

gk ∈ F, and gk = 1 because gk must divide det(λI −AU), which includes the monic term

λn. By Gauß’ Lemma, the greatest common divisor of the k × k minors of λI − AU in

F(α1, . . . , αn−1)[λ] must also be one. This, in turn, means the first m invariant factors of

λI − AU are all one.

Similar arguments hold for AUT when m of the last n− 1 columns of A are linearly

independent, UA when m of the last n− 1 rows of A are linearly independent, and UTA

when m of the first n− 1 rows of A are linearly independent.
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When A is nonsingular, its first n−1 columns are linearly independent, so all invariant

factors of the characteristic matrix except the largest must be one. We now have a

symbolic determinant-preserving preconditioner.

Theorem 3.1. Let F be a field, A ∈ Fn×n be nonsingular, and

U =



1 α1

. . . . . .

1 αn−1

1


∈ F[α1, α2, . . . , αn−1]n×n

where α1, . . . , αn−1 are distinct indeterminates over F. Then, AU is nonsingular and

cyclic.

Proof. Clearly, U is nonsingular, so AU is also.

By Lemma 3.2 on page 47, all invariant factors of λI − AU except the largest must

be one. The largest invariant factor, which is the minimal polynomial of AU , must also

be the characteristic polynomial, and thus the matrix is cyclic.

The comments following the proof of Lemma 3.2 on page 47 about AUT, UA, and

UTA also apply to Theorem 3.1.

The symbolic preconditioner Ã = AU could be used in the baby steps/giant steps

determinant algorithms. The algorithm would be deterministic, but it would also be

exponential in the size of the input matrix. We can use the Schwartz-Zippel Lemma

(Zippel, 1979; Schwartz, 1980; Zippel, 1990) to convert this symbolic preconditioner to
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a randomized one that will make the baby steps/giant steps determinant algorithms

probabilistic and polynomial time.

Theorem 3.2. Let F be a field, A ∈ Fn×n be nonsingular, and S be a finite subset of F.

If

U =



1 a1

. . . . . .

1 an−1

1


where a1, . . . , an−1 are chosen uniformly and independently from S, then AU is nonsin-

gular and cyclic with probability at least 1− n(n− 1)/(2 |S|).

Proof. Suppose |F| > n(n−1)/2; otherwise the result is trivial. Clearly U is nonsingular.

Thus, AU is also nonsingular.

By Theorem 3.1 on the last page, if

U =



1 α1

. . . . . .

1 αn−1

1


∈ F[α1, α2, . . . , αn−1]n×n

where α1, . . . , αn−1 are distinct indeterminates over F, the matrix AU is nonsingular and
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cyclic. Let y ∈ Fn be a vector such that

y, (AU)y, . . . , (AU)n−1y

are linearly independent. The determinant of the matrix with these vectors as its columns

is a nonzero polynomial in α1, . . . , αn−1. This polynomial has total degree at most n(n−

1)/2 in the indeterminates α1, . . . , αn−1. If values a1, . . . , an−1 for α1, . . . , αn−1 are chosen

uniformly and independently from S, the determinant is a nonzero element of F with

probability at least 1− n(n− 1)/(2 |S|) by the Schwartz-Zippel Lemma. In this case, if

U =



1 a1

. . . . . .

1 an−1

1


,

the vectors y, (AU)y, . . . , (AU)n−1y are linearly independent.

Theorem 3.2 gives one preconditioner that preserves the determinant of the original

matrix. This preconditioner consists of multiplying on the right by a random unit upper

bi-diagonal matrix but there is nothing special about an upper bi-diagonal matrix or

multiplication on the right. We could prove this by rewriting all of the preceding work

to show the preconditioning may be attained through multiplication on either the right

or the left by either a random unit upper bi-diagonal matrix or a random unit lower
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bi-diagonal matrix, but the following corollaries prove all four cases give determinant-

preserving preconditioners.

Corollary 3.1. Let F be a field, A ∈ Fn×n be nonsingular, and S be a finite subset of

F. If

L =



1

a1 1

. . . . . .

an−1 1


where a1, . . . , an−1 are chosen uniformly and independently from S, then LA is nonsin-

gular and cyclic with probability at least 1− n(n− 1)/(2 |S|)

Proof. Clearly L, LA, and AT are all nonsingular, and (LA)T = ATLT where LT is of

the form of the matrix U in Theorem 3.2 on page 51.

Let F be the Smith form of the matrix λI −ATLT. There exist unimodular matrices

P and Q such that P (λI − ATLT)Q = F . However, the Smith form of a matrix is

symmetric, so

F = (P (λI − ATLT)Q)
T

= QT(λI − LA)PT.

Due to the uniqueness of the Smith form, the matrices λI−ATLT and λI−LA have the

same Smith form, and, thus, ATLT and LA have the same minimal and characteristic

polynomials. Thus, LA is cyclic exactly when ATLT is cyclic.

Corollary 3.1 uses transposition and the uniqueness of the Smith form to give a sec-

ond determinant-preserving preconditioner for the baby steps/giant steps determinant
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algorithms. The following lemma uses similarity transformations to convert these two

preconditioners into two more determinant-preserving preconditioners. Thus, we have

four possible determinant-preserving preconditioners for the baby steps/giant steps de-

terminant algorithms.

Corollary 3.2. Let F be a field, A ∈ Fn×n be nonsingular, and S be a finite subset of

F. If

L =



1

a1 1

. . . . . .

an−1 1


and

U =



1 a1

. . . . . .

1 an−1

1


where a1, . . . , an−1 are chosen uniformly and independently from S, then AL and UA are

nonsingular and cyclic with probability at least 1− n(n− 1)/(2 |S|).

Proof. Clearly L and U are nonsingular. Thus, AL and UA are also nonsingular. Also,

AL = L−1(LA)L and UA = U(AU)U−1. AL and UA are similar to LA and AU ,

respectively. Similar matrices have characteristic matrices with the same invariant fac-

tors (Horn and Johnson, 1985, page 154), and, thus, the matrices have the same minimal
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and characteristic polynomials. Therefore, AL is cyclic if and only if LA is; similarly for

UA and AU .

These four preconditioners all have determinant one. They use n − 1 random field

elements compared to n for the diagonal matrix of Chen et al. (2002, Section 4), and

their probability of success is the same as for the diagonal matrix. They do, however,

use 2n− 2 field operations instead of n.

3.2 Rank Preconditioner

To compute the rank of a matrix A using the Kaltofen-Saunders rank algorithm, we

must precondition the matrix so the minimal polynomial of the preconditioned matrix

Ã is f Ã(λ) = λ g(λ) and its characteristic polynomial is det(λI − Ã) = λkg(λ) where

g(0) 6= 0. In other words, all of the invariant factors except the largest are one or λ.

From the discussion of determinantal divisors and invariant factors at the beginning of

Section 3.1, we see it is possible to find the degree of the minimal polynomial of a matrix

by bounding it using the determinantal divisors of the characteristic matrix. We start

this section very much like Section 3.1. In fact, our first lemma is almost identical to

Lemma 3.1 on page 46.

Lemma 3.3. Let F be a field, A ∈ Fn×n, and D = diag(δ1, . . . , δn) where δ1, . . . , δn are

distinct indeterminates over F. Let λ be an indeterminate distinct from δ1, . . . , δn. Then,

for all k with 1 ≤ k ≤ n−1, the greatest common divisor of the k×k minors of λI−AD

in F[δ1, . . . , δn, λ] is contained in F[λ].
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Proof. As in the proof of Lemma 3.1 on page 46, we can prove this lemma through the

fact that each δj occurs in only one column.

A similar argument will also hold for DA.

Continuing as in Section 3.1, we now show the first r determinantal divisors and

invariant factors of the characteristic matrix λI − AD are all constant. The following

lemma is nearly identical to Lemma 3.2 on page 47.

Lemma 3.4. Let F be a field, A ∈ Fn×n have rank r with r ≤ n − 1, and D =

diag(δ1, . . . , δn) where δ1, . . . , δn are distinct indeterminates over F. Let λ be an indeter-

minate distinct from δ1, . . . , δn. Then, the first r determinantal divisors and invariant

factors of λI − AD are all one.

Proof. Following the proof of Lemma 3.2 on page 47, the proof of this lemma uses a

graded lexicographic ordering to show the first r determinantal divisors of λI−AD must

be constant.

Again, a similar argument will also hold for DA.

We know the first r invariant factors of the characteristic matrix are constant–in

fact one–but we don’t know anything about the rest of them other than, except for the

largest, they cannot depend on δ1, . . . , δn. In fact, these first r invariant factors are the

only constant factors.

At this point, we diverge from the path of Section 3.1. In that section, we moved

directly from Lemma 3.2 on page 47, which proves the first m invariant factors are all
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one, to Theorem 3.1 on page 50, which proves the symbolic preconditioner was cyclic

and, thus, suitable for the determinant problem. For the rank problem, we have one

more lemma to consider before presenting the symbolic preconditioner. However, this

lemma, unlike the preceding lemmas of this section, does not involve a preconditioning

matrix.

Lemma 3.5. Let F be a field and A ∈ Fn×n have rank r with r ≤ n − 1. Let λ be an

indeterminate over F. Then, for all k with r + 1 ≤ k ≤ n, the k-th invariant factor of

λI − A is divisible by λ.

Proof. Because r = rank(A), every k×k minor of A must be zero for all k with k ≥ r+1;

otherwise the rank of A would have to be greater than r. Consider any k × k minor of

λI−A, det
(

(λI − A)[i1,...,ik;j1,...,jk]
)

. Expanding this minor, the only term not containing

a power of λ is

det
(
A[i1,...,ik;j1,...,jk]

)
= 0.

This is true for every k × k minor of λI − A, so the the greatest common divisors of

the k × k minors of λI − A in F[λ] must be divisible by λ. In particular, the (r + 1)-st

greatest common divisor, or the (r + 1)-st determinantal divisor, of λI − A is divisible

by λ. From Definition 3.1 on page 45, the (r + 1)-st determinantal divisor s∗r+1 (λI − A)

of λI − A is the product of the first r + 1 invariant factors of λI − A,

s∗r+1 (λI − A) =
r+1∏
i=1

si (λI − A) .
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Thus, there exists an i with 1 ≤ i ≤ r + 1 such that λ divides si (λI − A). Because the

j-th invariant factor divides the (j + 1)-st for all j, this means λ divides every invariant

factor sk (λI − A) with k ≥ i. In particular, λ divides every invariant factor sk (λI − A)

with k ≥ r + 1.

Because rank(AD) ≤ rank(A), Lemma 3.5 says all of the invariant factors of the

characteristic matrix λI − AD, except the first r, are divisible by λ.

Corollary 3.3. Let F be a field, A ∈ Fn×n have rank r with r ≤ n − 1, and D =

diag(δ1, . . . , δn) where δ1, . . . , δn are distinct indeterminates over F. Let λ be an indeter-

minate distinct from δ1, . . . , δn. Then, every invariant factor of λI−AD, except the first

r, is divisible by λ.

Proof. The proof follows from Lemma 3.4 on page 56, Lemma 3.5 on the last page,

and the fact that rank(AD) ≤ rank(A) by Sylvester’s inequality (Gantmacher, 1977,

page 66).

Once more, a similar argument is also true for DA.

Lemma 3.3 on page 55, Lemma 3.4 on page 56, and Corollary 3.3 give an upper bound

on the degree of the minimal polynomial. To find a lower bound, the matrix must have an

additional property. In Kaltofen and Saunders (1991, Lemma 2), the additional property

was that the leading principal minors of A are nonzero up to the rank of the matrix.

However, this property is more restrictive than is required. The following theorem is a

generalization of Kaltofen and Saunders’s lemma.
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Theorem 3.3. Let F be a field, A ∈ Fn×n have rank r with r ≤ n − 1, and D =

diag(δ1, . . . , δn) where δ1, . . . , δn are distinct indeterminates over F. If any r×r principal

minor of A is nonzero, then the minimal polynomial of AD is fAD = λ g(λ) where

g(0) 6= 0 and has degree deg(fAD) = r + 1. Furthermore, the characteristic polynomial

of AD is det(λI − AD) = λn−rg(λ).

Proof. Let g be the polynomial such that fAD = λkg(λ) where g(0) 6= 0. The proof of

Lemma 4.1 in Chen et al. (2002) says the characteristic polynomial of DA has no repeated

roots except λ. The same argument can be used to show the characteristic polynomial

of AD also has no repeated roots except λ. This means all invariant factors of λI −AD

except the largest are either one or a power of λ, so

det(λI − AD) = λpfAD.

Lemma 3.4 on page 56 says the first r invariant factors are one. At the same time,

Lemma 3.3 on the last page says the other n − r are all divisible by λ. Thus, the

characteristic polynomial of AD is divisible by λn−r, and p ≥ n − r − 1. This gives an

upper bound for the degree of the minimal polynomial, deg(fAD) ≤ r + 1. However,

there is an r × r principal minor det
(
A[i1,...,ir;i1,...,ir]

)
of A that is nonzero. This means

the determinant det(λI − AD) contains the term

± det
(
A[i1,...,ir;i1,...,ir]

)( r∏
l=1

δil

)
λn−r 6= 0,
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which is not divisible by λn−r+1. Thus, the characteristic polynomial is not divisible by

λn−r+1. Because λ divides the minimal polynomial fAD, p = n − r − 1, k = 1, and the

product of all but the largest invariant factor of λI − AD is

s∗n−1 (λI − AD) =
n−1∏
i=1

si (λI − AD) = λn−r−1.

Therefore, the minimal polynomial has degree deg(fAD) = r + 1.

The same is also true of DA.

The symbolic preconditioner AD could be used in the Kaltofen-Saunders rank algo-

rithm. The algorithm would be deterministic, but it would also be exponential in the

size of the input matrix. Again, we can use the Schwartz-Zippel Lemma (Zippel, 1979;

Schwartz, 1980; Zippel, 1990) to convert this symbolic preconditioner to a randomized

one that will make the Kaltofen-Saunders rank algorithm probabilistic and polynomial

time.

Theorem 3.4. Let F be a field, A ∈ Fn×n have rank r with r ≤ n− 1, and S be a finite

subset of F. Let A have a nonzero r × r principal minor. If D = diag(d1, . . . , dn) where

d1, . . . , dn are chosen uniformly and independently from S, then the characteristic poly-

nomial of AD is det(λI − AD) = λn−rg(λ) where g(0) 6= 0 and the minimal polynomial

of AD is fAD = λ g(λ) and has degree deg(fAD) = r + 1, all with probability at least

1− r(r + 1)

2 |S|
≥ 1− n(n− 1)

2 |S|
.
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Proof. Suppose |F| > r(r + 1)/2; otherwise the result is trivial. By Theorem 3.3 on

page 59, if D = diag(δ1, . . . , δn) where δ1, . . . , δn are distinct indeterminates over F,

det(λI − AD) = λn−rg(λ) and fAD = λ g(λ) where g(0) 6= 0 and deg(fAD) = r + 1. Let

y ∈ Fn be a vector such that

y, (AD)y, . . . , (AD)ry

are linearly independent. There is a (r+ 1)× (r+ 1) submatrix of the matrix with these

vectors as its columns whose determinant is a nonzero polynomial in δ1, . . . , δn. This

polynomial has total degree at most r(r+ 1)/2 in the indeterminates δ1, . . . , δn. If values

d1, . . . , dn for δ1, . . . , δn are chosen uniformly and independently from S, the determinant

is a nonzero element of F with probability at least 1−r(r+1)/(2 |S|) ≥ 1−n(n−1)/(2 |S|)

by the Schwartz-Zippel Lemma. In this case, if D = diag(d1, . . . , dn), then the vectors

y, (AD)y, . . . , (AD)ry

are linearly independent and the invariant factors of λI − AD are f1, . . . , fs, where

f̂1, . . . , f̂s are the invariant factors of λI − AD and fi is obtained from f̂i by replac-

ing the indeterminates δ1, . . . , δn with the values d1, . . . , dn, respectively.

Theorem 3.5 gives the required preconditioner. We no longer need to mix both the

rows and columns of the matrix before applying the diagonal matrix. We only need to

mix one or the other.

There is nothing unique about multiplying on the right by a diagonal matrix; we
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could also multiply on the left by a diagonal matrix. We could prove this by rewriting

all of the preceding work for DA and DA, but the following corollary proves it with less

work.

Corollary 3.4. Let F be a field, A ∈ Fn×n have rank r with r ≤ n− 1, and S be a finite

subset of F. Let A have a nonzero r × r principal minor. If D = diag(d1, . . . , dn) where

d1, . . . , dn are chosen uniformly and independently from S, then the minimal polynomial

of DA is fDA = λ g(λ) where g(0) 6= 0 and has degree deg(fDA) = r+ 1 with probability

at least

1− r(r + 1)

2 |S|
≥ 1− n(n− 1)

2 |S|
.

Proof. Clearly, (DA)T = ATDT = ATD. Let F be the Smith form of the matrix λI −

ATD. There exist unimodular matrices P andQ such that P (λI−ATD)Q = F . However,

the Smith form of a matrix is symmetric, so

F = (P (λI − ATD)Q)
T

= QT(λI −DA)PT.

Due to the uniqueness of the Smith form, the matrices λI − ATD and λI − DA have

the same Smith form, and thus ATD and DA have the same minimal and characteristic

polynomials.

This same proof also shows that the preconditioner DA of Chen et al. (2002, Section 4)

could be replaced with AD.

The fact that we only need to mix rows or columns, and not both, may give an advan-



CHAPTER 3. PRECONDITIONERS AND DETERMINANTAL DIVISORS 63

tage over the preconditioner for the Kaltofen-Saunders rank algorithm. A preconditioner

based on a Beneš network suffices, but it would only be marginally better than using

the generalized butterfly network preconditioners of Chen et al. (2002), since a Beneš

network uses one fewer level of switches than two generalized butterfly networks. On

the other hand, a preconditioner based on only one generalized butterfly network is not

sufficient since it cannot ensure the existence a nonzero r × r principal minor when n is

not a power of two. However, not being able to generalize a Beneš network to arbitrary

size n may not be of great concern for the rank problem since embedding the original

matrix into a 2dlog2 ne × 2dlog2 ne matrix that is zero otherwise adds no new work for the

switches of Chen et al. (2002).

Theorem 3.4 on page 60 and Corollary 3.4 on the previous page give Monte Carlo

methods to compute the rank of a matrix A. There is currently no certificate for the

rank of a matrix over an arbitrary field. However, these Monte Carlo methods will always

return a value that is no larger than the rank of the matrix.

Theorem 3.5. Let F be a field, A ∈ Fn×n have rank r, and D = diag(d1, . . . , dn) ∈ Fn×n.

Then, the characteristic polynomials of AD and DA are divisible by λn−r and the degree

of the minimal polynomials of AD and DA are at most min{n, r + 1}.

Proof. By Sylvester’s inequality (Gantmacher, 1977, page 66), rank(AD) ≤ rank(A) and

rank(DA) ≤ rank(A).

If A is nonsingular, rank(AD) ≤ r = n. Then, n− r = 0, so λn−r = 1, which always

divides the characteristic polynomial det(λI −AD). At the same time, the degree of the
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minimal polynomial fAD is

deg(fAD) ≤ n = r < r + 1.

If, on the other hand, A is singular, rank(AD) ≤ r ≤ n− 1. Then, by Lemma 3.5 on

page 57, the k-th invariant factor of λI−AD is divisible by λ for all k with rank(AD)+1 ≤

k ≤ n. In particular, the k-th invariant factor of λI −AD is divisible by λ for all k with

r + 1 ≤ k ≤ n. Thus, λn−r−1 divides the product of the first n − 1 invariant factors of

λI − AD,

λn−r−1 |
n−1∏
k=1

sk (λI − AD)

and deg(
∏n−1

k=1 sk (λI − AD)) ≥ n− r− 1. Because det(λI −AD) is the product of the n

invariant factors of λI −AD and fAD is the n-th invariant factor of λI −AD, the degree

of fAD is

deg(fAD) = deg(sn (λI − AD))

= deg(det(λI − AD))− deg(
n−1∏
k=1

sk (λI − AD))

≤ n− (n− r − 1) = r + 1 ≤ n.

A similar argument holds for deg(fDA).



Chapter 4

Block Wiedemann Method

The original Wiedemann method uses two vector projections, u and v, to produce a

scalar sequence {uTAiv}∞i=0 that is linearly generated by the minimal polynomial fA

of the matrix A (Wiedemann, 1986). The block Wiedemann method introduced by

Coppersmith (1994) uses two block projections, X ∈ Fn×β1 and Y ∈ Fn×β2 with 1 ≤

β1, β2 ≤ n, to construct a block matrix sequence {XTAiY }∞i=0. This matrix sequence

is linearly generated by not only a scalar polynomial, but also by vector and matrix

polynomials. It also has both a minimal generating polynomial and a minimal generating

matrix polynomial.

To compute the minimal generating matrix polynomial, Kaltofen (1995) solves a ho-

mogeneous block Toeplitz system. Equivalently, one could solve a homogeneous block

Hankel system. Coppersmith (1994) and Dickinson et al. (1974) use generalizations of

the Berlekamp-Massey algorithm to the multivariate case. Dickinson et al. note that

65
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Rissanen (1972) developed another multivariate algorithm, but that it is more a general-

ization of the approach in Rissanen (1971) than the Berlekamp-Massey algorithm since

it uses the idea that a new solution should be a linear combination of previous solutions,

but not the observation that the essential contained in all previous partial solutions is

summarized by one particular past solution (Dickinson et al., 1974, Section VII).

Beckermann and Labahn (1994) introduce the power Hermite-Padé approximation

problem, which is a generalization of the Hermite-Padé approximation problem. They

then follow the lead of Van Barel and Bultheel (1992) and give examples showing how

other Hermite-Padé approximation problems can be stated in terms of a power Hermite-

Padé approximation problem so that all may be solved in a unified manner. Beckermann

and Labahn describe a Fast Power Hermite-Padé Solver (FPHPS) algorithm to solve

their power Hermite-Padé problem by computing all solutions along a “diagonal path”

(Beckermann and Labahn, 1994, Section 3). This computational technique was also used

by Van Barel and Bultheel (1991) to solve the Hermite-Padé approximation problem.

In Section 4.1, we define the right minimal generating matrix polynomial F for a

linearly generated matrix sequence {Bi}∞i=0 and some properties of the sequence and F .

Then, in Section 4.2, we discuss how to compute F using the Beckermann-Labahn Fast

Power Hermite-Padé Solver (FPHPS) algorithm. In Section 4.3, we investigate additional

properties of the block Wiedemann and block Krylov sequences and their right minimal

generating matrix polynomials, FA,Y
X and FA,Y , respectively. Finally, we present a block

Monte Carlo algorithm for computing the rank of a matrix A in Section 4.4.
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4.1 Linearly Generated Matrix Sequences

In this section, we discuss the notions of generating a sequence of matrices by vector and

matrix polynomials. We then show that the set of all right generating vector polyno-

mials of the sequence forms a module over the polynomials F [λ], and that this module

has a basis over F [λ]. We use this basis to define the right minimal generating matrix

polynomial for the matrix sequence. Finally, we discuss how a right generating vector

polynomial is related to an equivalence relation modulo a power of λ similar to the equiv-

alence relation the Berlekamp-Massey algorithm solves (Dornstetter, 1987, Theorem 2).

This equivalence relation can be used to compute the right minimal generating matrix

polynomial.

Before we discuss what it means for a matrix sequence to be linearly generated by vec-

tor and matrix polynomials, we must first recall what it means for a nonzero polynomial

to linearly generate a sequence in a vector space. The following definition comes from

standard recursion theory. (See, for example, Kaltofen, 1995, Section 3, and Kaltofen,

1992a.)

Definition 4.1. Let F be a field, and let the matrix sequence {Bi}∞i=0 ∈
(
F
β1×β2

)
Z≥0 with

β1, β2 > 0. Then, the matrix sequence is linearly generated by the (scalar) polynomial

g =
∑d

i=0 g[i]λi ∈ F [λ] if g 6= 0 and

d∑
i=0

g[i]Bi+j = 0β1×β2 , ∀j ≥ 0.
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The polynomial g is a generating (scalar) polynomial for the matrix sequence.

By replacing the coefficients g[i] Definition 4.1 on the previous page with vector

coefficients C[i] over the field, we get a similar definition for vector polynomials.

Definition 4.2. Let F be a field, and let the matrix sequence {Bi}∞i=0 ∈
(
F
β1×β2

)
Z≥0

with β1, β2 > 0. Then, the matrix sequence is linearly generated from the right by the

vector polynomial

C =
d∑
i=0

C[i]λi ∈ (F [λ])β2 = Fβ2 [λ]

if C 6= 0 and
d∑
i=0

Bi+jC[i] = 0β1 , ∀j ≥ 0.

The vector polynomial C is a right generating vector polynomial for the matrix sequence

(Kaltofen and Villard, 2001, Section 3).

We have defined a right generating vector polynomial for the sequence. Because

vectors do not commute under multiplication with matrices, a vector polynomial that

generates the sequence from the right will not generally generate it from the left. How-

ever, we can use a similar definition to define a left generating vector polynomial. In

this dissertation, we will consider mostly right generating vector polynomials. For con-

venience, we will consider any generating vector polynomial for a matrix sequence to

generate the sequence from the right unless otherwise specified.

We are now ready to take our first step towards defining the minimal generating matrix

polynomial of a matrix sequence. The polynomial vectors of dimension β2, Fβ2 [λ], form
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a module over the ring of polynomials F [λ]. We begin by showing that the set of right

generating vector polynomials for any matrix sequence {Bi}∞i=0 ∈
(
F
β1×β2

)
Z≥0 forms a

submodule of the module of vector polynomials Fβ2 [λ] over the polynomials F [λ].

Lemma 4.1. Let F be a field and β1, β2 > 0. The set of right generating vector poly-

nomials of the matrix sequence {Bi}∞i=0 ∈
(
F
β1×β2

)
Z≥0 forms a F [λ]-submodule of the

F [λ]-module Fβ2 [λ].

Proof. Let G be the set of right generating vector polynomials for the matrix sequence.

Clearly, G ⊂ Fβ2 [λ], so we only need to show G is closed under addition and polynomial

multiplication.

Let C1 =
∑d1

i=0 C1[i]λi be a right generating vector polynomial for the matrix se-

quence. For any g ∈ F [λ],

d1∑
i=0

Bj+igC1[i] = g

d1∑
i=0

Bj+iC1[i] = 0β1 , ∀j ≥ 0,

which means G is closed under polynomial multiplication. Let C2 =
∑d2

i=0 C2[i]λi be

another right generating vector polynomial for the matrix sequence, C3 = C1 + C2, and

d3 = deg(C3). Then,

d3∑
i=0

Bj+iC3[i] =

d1∑
i=0

Bj+iC1[i] +

d2∑
i=0

Bj+iC2[i] = 0β1 , ∀j ≥ 0,

so G is closed under addition.

Before we define the right minimal generating matrix polynomial for a matrix se-
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quence, we must first describe what it means for a matrix sequence to be linearly gener-

ated by a matrix polynomial.

Definition 4.3. Let F be a field, and let the matrix sequence {Bi}∞i=0 ∈
(
F
β1×β2

)
Z≥0

with β1, β2 > 0. Then, the matrix sequence is linearly generated from the right by the

matrix polynomial

G =
d∑
i=0

G[i]λi ∈ (F [λ])β1×β2 = Fβ1×β2 [λ]

if det(G) 6= 0 and
d∑
i=0

Bi+jG[i] = 0β1×β2 , ∀j ≥ 0.

The matrix polynomial G is a right generating matrix polynomial for the sequence.

As one might expect, the columns of a right generating matrix polynomial are right

generating vector polynomials for the matrix sequence. We can define a left generat-

ing matrix polynomial in a similar manner, and its rows will be left generating vector

polynomials for the sequence. As with vector polynomials, we will consider only right

generating matrix polynomials in this dissertation. For convenience, we will consider any

generating matrix polynomial for a matrix sequence to generate the sequence from the

right unless otherwise specified.

If the matrix polynomial G generates the matrix sequence {Bi}∞i=0 from the right,

its columns must be right generating vector polynomials of the sequence. Thus, any

matrix sequence that is linearly generated from the right by a matrix polynomial must

be linearly generated from the right by a vector polynomial.
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By Lemma 4.1 on page 69, the right generating vector polynomials of the matrix

sequence {Bi}∞i=0 form a module over F [λ]. This means any linear combination over F [λ]

of right generating vector polynomials must also be a right generating vector polynomial.

Thus, if the matrix polynomial G generates the matrix sequence, the columns of GM

must also generate the sequence from the right for any matrix polynomial M ∈ Fβ2×β2 [λ].

If det(M) 6= 0, then det(GM) 6= 0 and GM generates the sequence from the right.

Corollary 4.1 (to Lemma 4.1 on page 69). Let F be a field, and let the matrix

sequence {Bi}∞i=0 ∈
(
F
β1×β2

)
Z≥0 with β1, β2 > 0 be linearly generated from the right by

the matrix polynomial G. Then, for any nonsingular matrix polynomial M ∈ Fβ2×β2 [λ],

the matrix polynomial GM also generates the matrix sequence.

Proof. The proof follows from Lemma 4.1 on page 69 and the multiplicativity of the

determinant.

Using Corollary 4.1, we can now show a matrix sequence is linearly generated by a

polynomial if and only if it is generated from the right by a matrix polynomial.

Theorem 4.1. Let F be a field, and let the matrix sequence {Bi}∞i=0 ∈
(
F
β1×β2

)
Z≥0 with

β1, β2 > 0. Then, the matrix sequence is linearly generated by a polynomial if and only

if it is linearly generated from the right by a matrix polynomial.

Proof. Suppose the polynomial g =
∑d

i=0 g[i]λi generates {Bi}∞i=0. Then, the matrix
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polynomial gI has determinant det(gI) = gβ2 6= 0 and

d∑
i=0

Bi+j (g[i]I) =
d∑
i=0

Bi+jg[i] =
d∑
i=0

g[i]Bi+j = 0β1×β2 , ∀j ≥ 0.

Thus, the matrix sequence is linearly generated from the right by the matrix polynomial

gI.

On the other hand, suppose the matrix polynomial G generates {Bi}∞i=0, and let

adj(G) be the adjoint matrix of G. If det(G) = g =
∑d

i=0 g[i]λi, then

det(G adj(G)) = det(det(G)I) = det(gI) = gβ2 6= 0

and the matrix polynomial gI generates the matrix sequence from the right. Thus,

d∑
i=0

g[i]Bi+j =
d∑
i=0

Bi+jg[i] =
d∑
i=0

Bi+j (g[i]I) = 0β1×β2 , ∀j ≥ 0,

and g generates the matrix sequence.

Similarly, a matrix sequence is linearly generated by a matrix polynomial from the

left if and only if it is linearly generated by a polynomial. Thus, the three notions are

equivalent, and we say such a matrix sequence is linearly generated.

Unlike a vector space, a module does not generally have a basis. However, the modules

formed by the right generating vector polynomials of a linearly generated matrix sequence

{Bi}∞i=0 do have a basis over the ring of polynomials F [λ]. We can show such a basis
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exists by first showing there exists a basis for the module over the rational functions

F (λ). We then show a basis over F (λ) that is chosen so that the matrix whose columns

are the basis vectors has minimal determinantal degree spans the module over F [λ] and

is thus a basis for the module over F [λ]. We will use this basis over F [λ] to define the

minimal generating matrix polynomial for the matrix sequence.

Lemma 4.2. Let F be a field, and let the matrix sequence {Bi}∞i=0 ∈
(
F
β1×β2

)
Z≥0 with

β1, β2 > 0 be linearly generated. Then, the F [λ]-module G of the right generating vector

polynomials of the matrix sequence has a basis of β2 elements over F [λ].

Proof. Because {Bi}∞i=0 is linearly generated, there exists a polynomial g =
∑d

i=0 g[i]λi

such that
d∑
i=0

Bi+jg[i] = 0β1×β2 , ∀j ≥ 0.

Let ei ∈ Fβ2 be the i-th unit vector in the vector space Fβ2 . Then,

d∑
i=0

Bi+jg[i]ek = 0β2 , ∀j ≥ 0, 1 ≤ k ≤ β1,

so the vectors ge1, . . . , geβ2 ∈ Fβ2 [λ] generate the matrix sequence from the right and

are linearly independent over the field of rational functions F (λ). Thus, ge1, . . . , geβ2 is

a basis for G over F (λ).

Let the vectors b1, . . . , bβ2 be a basis for G over F (λ) such that the determinantal

degree of the β2 × β2 matrix formed using the basis vectors b1, . . . , bβ2 as its columns is
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minimal. In other words, given any basis b′1, . . . , b
′
β2

for G over F (λ),

deg

(
det

([
b1 · · · bβ2

]))
≤ deg

(
det

([
b′1 · · · b′β2

]))
. (4.1)

Suppose there exists a generating vector polynomial C ∈ G that is not a linear combina-

tion of b1, . . . , bβ2 over F [λ]. C is, however, a linear combination of b1, . . . , bβ2 over F (λ).

Thus,

C(λ) =

β2∑
i=1

ci(λ)bi(λ),

where ci(λ) /∈ F [λ] for at least one i. Let d(λ) be the least common denominator of

all the ci, and let ci = ci(λ) + ri(λ)/d(λ) with deg(ri) < deg(d) for 1 ≤ i ≤ β2. Thus,

ri(λ) 6= 0 for at least one i. Let i0 be given such that ri0(λ) 6= 0. The generating vector

polynomial C is

C(λ) =

β2∑
i=1

(
ci(λ) +

ri(λ)

d(λ)

)
bi(λ) =

β2∑
i=1

ci(λ)bi(λ) +

β2∑
i=1

ri(λ)

d(λ)
bi(λ).

Then,

C(λ)−
β2∑
i=1

ci(λ)bi(λ) =

β2∑
i=1

ri(λ)

d(λ)
bi(λ)

must be a vector polynomial, and the vector polynomials b′1, . . . , b
′
β2

where

b′i =


∑β2

i=1(ri(λ)/d(λ)) bi(λ) if i = i0,

bi if i 6= i0.
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form a basis for G over F (λ). However,

det

([
b′1 · · · b′β2

])
=
ri0(λ)

d(λ)
det

([
b1 · · · bβ2

])
,

so

deg

(
det

([
b′1 · · · b′β2

]))
< deg

(
det

([
b1 · · · bβ2

]))
,

which contradicts the minimal determinantal degree requirement (4.1) on the basis vec-

tors b1, . . . , bβ2 . Thus, b1, . . . , bβ2 must be a basis for G over F [λ].

Now that the module G has a basis over F [λ], we begin to see the definition of the

right minimal generating matrix polynomial. Any matrix G whose columns form a basis

over F [λ] for the module generates the matrix sequence from the right. However, just as a

linearly generated scalar sequence may have multiple generating polynomials of minimal

degree, there may be multiple right generating matrix polynomials whose columns form a

basis over F [λ] for the module. We need a way to define a unique right minimal generating

matrix polynomial. In the case of generating polynomials, the minimal polynomial is the

monic generating polynomial of minimal degree. For matrix polynomials, we can show

that the matrices formed by the basis elements of two basis over F [λ] for the module are

right equivalent with respect to multiplication on the right by a unimodular matrix. This

equivalence will allow us to use a canonical form to define the right minimal generating

matrix polynomial of the matrix sequence.

Theorem 4.2. Let F be a field, and let the matrix sequence {Bi}∞i=0 ∈
(
F
β1×β2

)
Z≥0 with
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β1, β2 > 0 be linearly generated. Then, given any two bases over F [λ] for the module G of

right generating vector polynomials of the matrix sequence, the matrices whose columns

are the basis elements are right equivalent with respect to multiplication on the right by a

unimodular matrix.

Proof. Let b1, . . . , bβ2 and b′1, . . . , b
′
β2

be two bases for G over F [λ], and let

G1 =

[
b1 · · · bβ2

]
and G2 =

[
b′1 · · · b′β2

]
.

The columns of G2 must be linear combinations over F [λ] of the columns of G1, so there

exists a matrix polynomial U1 ∈ Fβ2×β2 [λ] such that G2 = G1U1. Conversely, the columns

of G1 are linear combinations of the columns of G2 over F [λ], so there exists another

matrix polynomial U2 ∈ Fβ2×β2 [λ] such that G1 = G2U2. Thus,

G1 = G2U2 = G1U1U2

and det(U1U2) = 1, so U1 and U2 must be unimodular matrices with

det(U2) =
1

det(U1)
.

Theorem 4.2 says the determinants of any two matrices whose columns are the ele-

ments of two bases for G over F [λ] are equal up to a constant factor.

Corollary 4.2. Let F be a field, and let the matrix sequence {Bi}∞i=0 ∈
(
F
β1×β2

)
Z≥0 Let
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b1, . . . , bβ2 and b′1, . . . , b
′
β2

be two bases for G over F [λ], and let

G1 =

[
b1 · · · bβ2

]
and G2 =

[
b′1 · · · b′β2

]
.

Then, there exists a field element c ∈ F such that det(G1) = c det(G2).

Proof. The proof follows from Theorem 4.2 on page 75.

For a canonical form of the right equivalence with respect to multiplication on the

right by a unimodular matrix, recall the definition of the Popov form (Popov, 1972;

Villard, 1997a, Definition 2).

Definition 4.4. Let F be a field, let M ∈ Fβ2×β2 [λ], and let M [j] be the j-th column of

M . M is said to be column reduced if the matrix [M ]c formed by the leading coefficients

of the columns of M has rank equal to that of M , rank([M ]c) = rank(M). Thus, the

determinantal degree of M is the sum of the degrees of its columns,

deg(det(M)) =
n∑
j=1

deg(M [j]).

If, in addition, M satisfies the following properties, we say M is in Popov form:

1. the column degrees are increasingly ordered;

2. the last entry of degree deg(M [j]) in M [j] is monic and is called the pivot element

of column j with row index rj;

3. if deg(M [j]) = deg(M [k]) and j < k, then rj < rk;
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4. all entries in a row containing a pivot element have degrees lower than that of the

pivot element.

Any two matrices that are right equivalent with respect to multiplication on the right

by a unimodular matrix have the same unique Popov form (Kailath, 1980, page 484).

This canonical form, which is also called the polynomial echelon form and was first

introduced by Popov (1970), can be used to define a unique right minimal generating

matrix polynomial F for the linearly generated matrix sequence {Bi}∞i=0.

Definition 4.5. Let F be a field, and let the matrix sequence {Bi}∞i=0 ∈
(
F
β1×β2

)
Z≥0 with

β1, β2 > 0 be linearly generated. Then, the right minimal generating matrix polynomial

F for the linearly generated matrix sequence {Bi}∞i=0 is the Popov canonical form of

the matrices whose columns are the basis elements over F [λ] of the module G of right

generating vector polynomials of the matrix sequence.

Again, there is a similar definition for the left minimal generating matrix polynomial,

but we will constrain ourselves to only discussing the right minimal generating matrix

polynomial unless otherwise specified.

One consequence of the minimal generating matrix polynomial being in Popov form

is that it is column reduced. Because the columns of F form a basis over F [λ] for the

module G of right generating vector polynomials of {Bi}∞i=0, they must also form a basis

over F (λ) for G and must be linearly independent over F [λ] and F (λ). Thus, both F and

[F ]c must have full rank. In other words, the leading coefficient vectors of the columns

of F are linearly independent over F. We can then show that there is no cancellation
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in leading terms when multiplying F by a polynomial vector on the right. We first

show there is no cancellation in the leading terms for any matrix M where the leading

coefficient vectors of the columns of M are linearly independent over F.

Lemma 4.3. Let F be a field, let M ∈ Fβ2×β2, and let M [i] be the i-th column of M .

Suppose the leading coefficient vectors of the columns of M are linearly independent over

F. Then, for any nonzero vector polynomial C =
∑d

i=0 C[i]λi ∈ Fβ2 [λ], the degree of

MC is

deg(MC) = max
1≤i≤β2

{deg(M [i]) + deg(C [i])}.

Proof. Let M [i,j] be the (i, j)-th entry of M and d be

d = max
1≤i,j≤β2

{deg(M [i,j]) + deg(C [j])} = max
1≤j≤β2

{deg(M [j]) + deg(C [j])}.

The i-th entry of MC is

(MC)[i] =

β2∑
j=1

M [i,j]C [j]

and has degree

deg((MC)[i]) ≤
β2∑
j=1

deg(M [i,j]C [j]) =

β2∑
j=1

(
deg(M [i,j]) + deg(C [j])

)
≤ d.

Thus, the degree of MC is bounded by

deg(MC) = max
1≤i≤β2

deg((MC)[i]) ≤ d.
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On the other hand,

MC =

β2∑
j=1

M [j]C [j],

and the degree of M [j]C [j] is bounded by

deg(M [j]C [j]) = max
1≤i≤β2

deg(M [i,j]C [j]) ≤ d.

By the definition of d, there must be at least one index j where this bound is attained.

If it is attained at the index j, the coefficient of λd in M [j]C [j] is the leading coefficient

of M [j]C [j]; otherwise, the coefficient is zero. Thus, the coefficient of λd in M [j]C [j] is

(M [j]C [j])[d] =


0β2 , if deg(M [j]C [j]) < d,

lc(M [j]) lc(C [j]) if deg(M [j]C [j]) = d,

for 1 ≤ j ≤ β2, and the coefficient of λd in MC is

(MC)[d] =

β2∑
j=1

(M [j]C [j])[d] =
∑

1≤j≤β2

deg(M [j]C[j])=d

lc(M [j]) lc(C [j]) 6= 0β2

since (MC)[d] is a linear combination over F of the leading vector coefficients of the

columns of M and these leading vector coefficients are linearly independent F. This sum

is not empty since there must exist at least one j such that deg(M [j]C [j]) = d.

Lemma 4.3 gives the following corollary that says there is no cancellation in leading

terms when multiplying F by a polynomial vector on the right.
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Corollary 4.3. Let F be a field, and let the matrix sequence {Bi}∞i=0 ∈
(
F
β1×β2

)
Z≥0 with

β1, β2 > 0 be linearly generated. Let F be the minimal generating matrix polynomial of

{Bi}∞i=0. Then, for any nonzero C ∈ Fβ2 [λ],

deg(FC) = max
1≤i≤β2

{deg(F [i]) + deg(C [i])}.

Proof. The proof follows from Definition 4.5 on page 78 and Lemma 4.3 on page 79.

Corollary 4.3 also says the columns of F form a minimal basis for G (Villard, 1997a,

Theorem 2; Forney, 1975, Main Theorem).

Corollary 4.1 on page 71 says that multiplying the minimal generating matrix poly-

nomial on the right by a nonsingular matrix gives a matrix polynomial that generates the

matrix sequence from the right. However, because the columns of the minimal generating

matrix polynomial form a basis for the module of right generating vector polynomials,

it is also possible to show that any generating matrix polynomial is the product of the

minimal generating matrix polynomial and a nonsingular matrix polynomial.

Theorem 4.3. Let F be a field, and let the matrix sequence {Bi}∞i=0 ∈
(
F
β1×β2

)
Z≥0 with

β1, β2 > 0 be linearly generated. Let F be the minimal generating matrix polynomial of

{Bi}∞i=0. If the matrix polynomial G generates {Bi}∞i=0, then there exists a nonsingular

matrix polynomial M ∈ Fβ2×β2 [λ] such that G = FM . Furthermore, deg(det(G)) ≥

deg(det(F )) and deg(G) ≥ deg(F ).

Proof. By Definition 4.5 on page 78, the columns of F form a basis over F [λ] for G.



CHAPTER 4. BLOCK WIEDEMANN METHOD 82

Thus, there exists a matrix polynomial M such that G = FM . By the multiplicativity

of the determinant, det(G) = det(F ) det(M). However, det(G) 6= 0 and det(F ) 6= 0

because the columns of the two matrix polynomials must be linearly independent over

F [λ] and F (λ). Therefore, det(M) 6= 0 and

deg(det(G)) = deg(det(F )) + deg(det(M)) ≥ deg(det(F )).

Let F [i] be the i-th column of F and G[i] be the i-th column of G. There exists an

i0 such that the i0-th column of F has the same degree as a vector polynomial as the

matrix polynomial. By Corollary 4.3 on the last page, the degree of the j-th column of

G is

deg(G[j]) = max
1≤i≤β2

{deg(F [i]) + deg(M [i,j])} ≥ deg(F [i0]) + deg(M [i0,j])

for all 1 ≤ j ≤ β2, where M [i,j] is the (i, j)-th entry of M . If deg(G) < deg(F ), then

deg(G[j]) ≤ deg(G) < deg(F ) = deg(F [i0]), 1 ≤ j ≤ β2,

This means deg(M [i0,j]) < 0 and M [i0,j] = 0 for 1 ≤ j ≤ β2. Thus, det(M) = 0, which

contradicts the first part of the proof.

We now turn our attention to some properties of the minimal generating matrix

polynomial F that will allow us to compute it. We first look at the its degree as a matrix

polynomial. The following corollary shows that this degree is less than the degree of the
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minimal polynomial of the sequence.

Corollary 4.4. Let F be a field, and let the matrix sequence {Bi}∞i=0 ∈
(
F
β1×β2

)
Z≥0 with

β1, β2 > 0 be linearly generated by the polynomial g. Then, deg(F ) ≤ deg(g).

Proof. Because g generates the matrix sequence, the matrix polynomial gI generates the

sequence as well. By Theorem 4.3 on page 81, deg(F ) ≤ deg(gI) = deg(g).

Thus, the degree of the minimal generating matrix polynomial is no greater than the

degree of the minimal polynomial of the matrix sequence. Let us define γ2 to be the

degree of the minimal generating matrix polynomial.

Definition 4.6. Let F be a field, and let the matrix sequence {Bi}∞i=0 ∈
(
F
β1×β2

)
Z≥0

with β1, β2 > 0 be linearly generated. Then, γ2 is the degree of the minimal generating

matrix polynomial F for the linearly generated matrix sequence {Bi}∞i=0, γ2 = deg(F ).

Example 4.1. Consider the matrix sequence generated by the polynomial f = λ2−λ−1

with

B0 =

0 1

1 2

 and B1 =

1 0

3 1

 .
Here, γ2 ≤ 2.

We now show the first γ2 elements of the matrix sequence {Bi}γ2−1
i=0 generate the entire

sequence {Bi}∞i=0.

Lemma 4.4. Let F be a field, and let the matrix sequence {Bi}∞i=0 ∈
(
F
β1×β2

)
Z≥0 with

β1, β2 > 0 be linearly generated. Then, there exists a matrix polynomial F̃ =
∑γ2−1

i=0 F̃ [i]λi
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of degree at most γ2 − 1 such that

Bj+γ2 =

γ2−1∑
i=0

Bi+jF̃ [i], ∀j ≥ 0.

Proof. Let F [i] be the i-th column of the minimal generating matrix polynomial F of the

matrix sequence,

F =

[
F [1] · · · F [β2]

]
,

and let di be the degree of F [i], di = deg(F [i]). Thus, di ≤ γ2 for 1 ≤ i ≤ γ2 by

Definition 4.6 on the last page. Consider the matrix polynomial

G =

[
λγ2−d1F [1] · · · λγ2−dγ2F [γ2]

]
=

γ2∑
i=0

G[i]λi.

Every column of G generates the matrix sequence {Bi}∞i=0 from the right, so

γ2∑
i=0

Bi+jG[i] = 0β1×β2 , ∀j ≥ 0,

and

Bj+γ2G[γ2] = −
γ2−1∑
i=0

Bi+jG[i], ∀j ≥ 0.

The leading matrix coefficient of G is the matrix formed by the leading coefficients of the

columns of the minimal generating matrix polynomial F , G[γ2] = [F ]c. Because F is in

Popov form, the matrix G[γ2] must have full rank and thus be invertible. Therefore, for
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all j ≥ 0,

Bj+γ2 = −

(
γ2−1∑
i=0

Bi+jG[i]

)
G[γ2]−1 =

γ2−1∑
i=0

Bi+j

(
−G[i]G[γ2]−1) .

When β1 = β2 = 1, the linearly generated matrix sequence {Bi}∞i=0 is a linearly

generated sequence of field elements, {Bi}∞i=0 ∈ FZ≥0 , and the minimal generating matrix

polynomial F is the minimal polynomial f of the sequence, F = f . In this case, a

generating vector polynomial for the sequence is just a polynomial over the field, and

any polynomial that generates the first 2γ2 elements of the sequence must generate the

entire sequence {Bi}∞i=0 (Kaltofen, 1992a). The proof follows from showing the rank of

the Hankel matrix H(γ2, γ2 + 1) is maximal, where

H(ν1, ν2) =



B0 B1 · · · Bν2−1

B1 B2 · · · Bν2

...
...

. . .
...

Bν1−1 Bν1 · · · Bν1+ν1−2


∈ Fβ1ν1×β2ν2 .

More sequence elements may be needed to determine if a vector polynomial generates

a matrix sequence, but the proof of how many elements are needed still involves rank

considerations. However, for blocking factors greater than one, the matrix H(γ2, γ2 + 1)

is not a Hankel matrix, but a block Hankel matrix. Again, γ2 plays a role.

Lemma 4.5. Let F be a field, and let the matrix sequence {Bi}∞i=0 ∈
(
F
β1×β2

)
Z≥0 with
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β1, β2 > 0 be linearly generated. Let ν1 ≥ 1 and ν2 ≥ γ2. Then,

rank(H(ν1, ν2)) = rank(H(ν1, γ2)).

Proof. We prove the lemma by induction on ν2.

Suppose the lemma is true for ν2 ≥ γ2. Then, rank(H(ν1, ν2 + 1)) ≥ rank(H(ν1, ν2))

because H(ν1, ν2) is a submatrix of H(ν1, ν2 + 1). By Lemma 4.4 on page 83, there exists

a polynomial F̃ =
∑γ2−1

i=0 F̃ [i]λi of degree at most γ2 − 1 such that

Bj+γ2 =

γ2−1∑
i=0

Bi+jF̃ [i], ∀j ≥ 0.

This means

Bγ2+j =

[
Bj · · · Bj+γ2−1

]
M, ∀j ≥ 0,

where

M =


F̃ [0]

...

F̃ [γ2 − 1]

 ∈ F
β2γ2×β2 .

Thus, [
Bj · · · Bγ2+j

]
=

[
Bj · · · Bγ2+j−1

] [
I M

]

and [
Bi · · · Bγ2+i+j

]
=

[
Bi · · · Bγ2+i+j−1

]I 0 0

0 I M


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for every i ≥ 0 and j ≥ 0. Thus,

H(ν1, ν2 + 1) = H(ν1, ν2)

I 0 0

0 I M


and rank(H(ν1, ν2 + 1)) ≤ rank(H(ν1, ν2)).

Lemma 4.5 only gives a bound on the required number of columns in the block Hankel

matrix. For the required number of rows, we need a new definition.

Definition 4.7. Let γ1 be the first index such that the block Hankel matrix

H(γ1, γ2 + 1) =



B0 B1 · · · Bγ2

B1 B2 · · · Bγ2+1

...
...

. . .
...

Bγ1−1 Bγ1 · · · Bγ1+γ2−1


has maximal rank. In other words, for any ν1 ≥ γ1,

rank(H(ν1, γ2 + 1)) = rank(H(γ1, γ2 + 1)).

We can show that the degree of the minimal polynomial f of the matrix sequence

provides an upper bound for γ1, just as Corollary 4.4 on page 83 shows it gives an upper

bound for γ2.

Theorem 4.4. Let F be a field, and let the matrix sequence {Bi}∞i=0 ∈
(
F
β1×β2

)
Z≥0 with
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β1, β2 > 0 be linearly generated by the polynomial g. Then, γ1 ≤ deg(g).

Proof. The proof is by induction, similar to that of Corollary 4.4 on page 83. The goal

is to show that rank(H(ν1, γ2 + 1)) = rank(H(deg(g), γ2 + 1)) for all ν1 ≥ deg(g).

Let d = deg(g) and g =
∑d

i=0 g[i]λi. Suppose rank(H(ν1, γ2+1)) = rank(H(d, γ2+1)).

Then,

rank(H(ν1 + 1, γ2 + 1)) ≥ rank(H(ν1, γ2 + 1))

because H(ν1, γ2 + 1) is a submatrix of H(ν1 + 1, γ2 + 1). Also,

d∑
i=0

g[i]Bj+i = 0β1×β2 , ∀j ≥ 0.

since g generates the matrix sequence. Thus,

g[d]Bj+d = −
d−1∑
i=0

g[i]Bj+i, ∀j ≥ 0,

and

Bj+d = − 1

g[d]

d−1∑
i=0

g[i]Bj+i, ∀j ≥ 0.

Let M be the block matrix

M = − 1

g[d]

[
g[0]I · · · g[d− 1]I

]
∈ Fβ1×dβ1 ,
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so

Bj+d = − 1

g[d]

[
g[0]I · · · g[d− 1]I

]


Bj

...

Bj+d−1

 , ∀j ≥ 0,

and 
Bj

...

Bj+d

 =

 I
M




Bj

...

Bj+d−1

 , ∀j ≥ 0,

which means 
Bi

...

Bi+j+d

 =


I 0

0 I

0 M




Bi

...

Bi+j+d−1

 ,

for all j ≥ 0 and i ≥ 0. Thus,

H(ν1 + 1, γ2 + 1) =


I 0

0 I

0 M

H(ν1, γ2 + 1)

and rank(H(ν1 + 1, γ2 + 1)) ≤ rank(H(ν1, γ2 + 1)).

Theorem 4.4 says the degree of the minimal generating matrix polynomial is no greater

than the degree of the minimal polynomial of the matrix sequence. For example, the γ1

for Example 4.1 on page 83 is also bounded by γ1 ≤ 2.

The new quantity γ1, along with Lemma 4.5 on page 85, gives the rank requirements
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needed to decide if a vector polynomial generates the matrix sequence {Bi}∞i=0.

Corollary 4.5 (to Lemma 4.5 on page 85). Let F be a field, and let the matrix

sequence {Bi}∞i=0 ∈
(
F
β1×β2

)
Z≥0 with β1, β2 > 0 be linearly generated. Let ν1 ≥ γ1 and

ν2 ≥ γ2. Then,

rank(H(ν1, ν2 + 1)) = rank(H(γ1, γ2 + 1)).

Proof. The proof follows from Definition 4.7 on page 87 and Lemma 4.5 on page 85.

This maximality of rank means that γ1 determines how much of the matrix sequence

is required to decide if a vector polynomial generates the matrix sequence.

Theorem 4.5. Let F be a field, and let the matrix sequence {Bi}∞i=0 ∈
(
F
β1×β2

)
Z≥0 with

β1, β2 > 0 be linearly generated. Let ν1 ≥ γ1. Then, a vector polynomial

C =
d∑
i=0

C[i]λi ∈ Fβ2 [λ]

generates the matrix sequence {Bi}∞i=0 from the right if and only if

d∑
j=0

Bi+jC[j] = 0β1 , 0 ≤ i ≤ ν1 − 1. (4.2)

Proof. Suppose C generates the matrix sequence from the right. Then,

d∑
j=0

Bi+jC[j] = 0β1 , i ≥ 0,
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and C satisfies Equation (4.2).

Conversely, suppose C satisfies Equation (4.2). Then,

ν2∑
j=0

Bi+jC[j] = 0β1 , 0 ≤ i ≤ γ1 − 1,

where ν2 = max{d, γ2} and C[d+ 1] = · · · = C[ν2] = 0 if d < ν2. This means the

coefficients of C form a vector in the right null space of H(γ1, ν2 + 1),



B0 B1 · · · Bν2

B1 B2 · · · Bν2+1

...
...

. . .
...

Bγ1−1 Bγ1 · · · Bγ1+ν2−1





C[0]

C[1]

...

C[ν2]


= 0γ1β1 .

If C does not generate the matrix sequence, there exists a k ≥ γ1 such that

ν2∑
j=0

Bk+jC[j] 6= 0β1 ,

and the vector formed by the coefficients of C is not in the right null space of the larger

block Hankel matrixH(k+1, ν2+1). However, rank(H(k+1, ν2+1)) = rank(H(γ1, ν2+1))

by Corollary 4.5 on the previous page. Thus, the two matrices must have the same right

null spaces, and C must generate the matrix sequence.

There is no requirement in Theorem 4.5 that C[d] 6= 0, so we only know that the

degree of C as a vector polynomial is bounded by d, deg(C) ≤ d.



CHAPTER 4. BLOCK WIEDEMANN METHOD 92

Because γ2 is the degree of the minimal generating matrix polynomial F , we can

set d = γ2. Then, Theorem 4.5 says that if the vector polynomial C =
∑γ2

i=0 C[i]λi is

a column of the minimal generating matrix polynomial F , its coefficients must form a

solution to the β1γ1×β2(γ2+1) homogeneous block Hankel system defined byH(γ1, γ2+1),



B0 B1 · · · Bγ2

B1 B2 · · · Bγ2+1

...
...

. . .
...

Bγ1−1 Bγ1 · · · Bγ2+γ1−1





C[0]

C[1]

...

C[γ2]


= 0γ1β1 ,

or, equivalently, the β1γ1 × β2(γ2 + 1) homogeneous block Toeplitz system,



Bγ2 Bγ2−1 · · · B0

Bγ2+1 Bγ2 · · · B1

...
...

. . .
...

Bγ2+γ1−1 Bγ2+γ1−2 · · · Bγ1−1





C[γ2]

C[γ2 − 1]

...

C[0]


= 0γ1β1 .

Finding a basis for the solutions to these homogeneous systems over F is one way to find

a basis over F [λ] for the generating vector polynomials of the linearly generated matrix

sequence {Bi}∞i=0 and, thus, the minimal generating matrix polynomial F .

The reversal of a polynomial g with respect to the degree d for d ≥ deg(g) is revd(g) =

λdg(1/λ) (von zur Gathen and Gerhard, 1999, page 244). Similarly, the reversal of a

vector polynomial C with respect to the degree d for d ≥ deg(C) is revd(C) = λdC(1/λ).
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The degree of the reversal is at most d, deg(Ĉ) ≤ d. Then, Theorem 4.5 on page 90 gives

a block version of the modular equivalence solved by the Berlekamp-Massey algorithm.

Theorem 4.6. Let F be a field, and let the matrix sequence {Bi}∞i=0 ∈
(
F
β1×β2

)
Z≥0 with

β1, β2 > 0 be linearly generated. Let

C =
d∑
i=0

C[i]λi ∈ Fβ2 [λ] ,

ν1 ≥ γ1, and ν2 ≥ d. Then, C is a right generating vector polynomial for the matrix

sequence if and only if its vector polynomial reversal Ĉ with respect to degree d satisfies

the equivalence relation

(
ν1+ν2−1∑
i=0

Biλ
i

)
Ĉ(λ) ≡ C(res)(λ) (mod λν1+ν2) (4.3)

for a vector polynomial C(res) of degree at most d− 1.

Proof. The vector polynomial Ĉ is

Ĉ = revd(C) = λdC

(
1

λ

)
=

d∑
i=0

C[d− i]λi.

For any vector polynomial C,

(
∞∑
i=0

Biλ
i

)
Ĉ =

d−1∑
i=0

(
d∑

j=d−i

Bj+i−dC[j]

)
λi +

∞∑
i=d

(
d∑
j=0

Bj+i−dC[j]

)
λi

=
d−1∑
i=0

(
d∑

j=d−i

Bj+i−dC[j]

)
λi +

∞∑
i=0

(
d∑
j=0

Bj+iC[j]

)
λi+d.
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If C generates the matrix sequence from the right,

d∑
j=0

Bi+jC[j] = 0β1 , 0 ≤ i ≤ ν1 + ν2 − d− 1,

by Theorem 4.5 on page 90. Let C(res) be the vector polynomial

C(res) =
d−1∑
i=0

(
d∑

j=d−i

Bj+i−dC[j]

)
λi,

which has degree at most d− 1. Then,

(
∞∑
i=0

Biλ
i

)
Ĉ − C(res) =

∞∑
i=0

(
d∑
j=0

Bj+iC[j]

)
λi+d

=
∞∑

i=γ1+γ2−d

(
d∑
j=0

Bj+iC[j]

)
λi+d

=
∞∑

i=γ1+γ2

(
d∑
j=0

Bj+i−dC[j]

)
λi

and the equivalence relation (4.3) holds.

If, on the other hand, the equivalence relation (4.3) is true, C(res) must be the vector

polynomial

C(res) =
d−1∑
i=0

(
d∑

j=d−i

Bj+i−dC[j]

)
λi

because of the degree bound deg(C(res)) ≤ d− 1. Thus,

ν1+ν2−1∑
i=d

(
d∑
j=0

Bj+i−dC[j]

)
λi = 0
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and
d∑
j=0

Bj+i−dC[j] = 0, d ≤ i ≤ ν1 + ν2 − 1.

In other words,
d∑
j=0

Bi+jC[j] = 0, 0 ≤ i ≤ ν1 + ν2 − d− 1,

and C generates the matrix sequence by Theorem 4.5 on page 90.

Again, Theorem 4.6 only requires the degree of C be no more than d, deg(C) ≤ d.

The degree of the minimal generating matrix polynomial F of the matrix sequence

{Bi}∞i=0 is at most γ2 by Definition 4.6 on page 83. This means the columns of F have

degrees at most γ2, and we have the following requirement for the columns of F .

Corollary 4.6. Let F be a field, and let the matrix sequence {Bi}∞i=0 ∈
(
F
β1×β2

)
Z≥0 with

β1, β2 > 0 be linearly generated. Let ν1 ≥ γ1 and ν2 ≥ γ2. If

C =
d∑
i=0

C[i]λi ∈ Fβ2 [λ]

is a column of the minimal generating matrix polynomial F for the matrix sequence

{Bi}∞i=0, then the vector polynomial reversal Ĉ of C with respect to degree d must satisfy

the equivalence relation

(
ν1+ν2−1∑
i=0

Biλ
i

)
Ĉ(λ) ≡ C(res)(λ) (mod λν1+ν2)

for a vector polynomial C(res) of degree at most d− 1.
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Proof. The proof follows from Theorem 4.6 on page 93 and Definition 4.6 on page 83.

As in Theorem 4.5 on page 90 and Theorem 4.6 on page 93, Corollary 4.6 requires

only that d ≥ deg(C). These results are all useful in computing the minimal generating

matrix polynomial F . The rank of the block Hankel matrix H(ν1, ν2 + 1) also gives a

lower bound on the determinantal degree of F that will be useful in the block Wiedemann

method.

Lemma 4.6. Let F be a field, and let the matrix sequence {Bi}∞i=0 ∈
(
F
β1×β2

)
Z≥0 with

β1, β2 > 0 be linearly generated. Then, for any ν1 ≥ 1 and ν2 ≥ 0, the rank of the block

Hankel matrix

H(ν1, ν2 + 1) =



B0 B1 · · · Bν2

B1 B2 · · · Bν2+1

...
...

. . .
...

Bν1−1 Bν1 · · · Bν1+ν2−1


is at most the determinantal degree of the minimal generating matrix polynomial F of

the matrix sequence {Bi}∞i=0,

rank(H(ν1, ν2 + 1)) ≤ deg(det(F )).

Proof. The proof is accomplished by examining the right null space of the block Hankel



CHAPTER 4. BLOCK WIEDEMANN METHOD 97

matrix H(ν1, ν2 + 1). Let

Cj =

dj∑
i=0

Cj[i]λ
i ∈ Fβ2 [λ]

be the j-th column of the minimal generating matrix polynomial F and dj = deg(Cj).

Then, by construction, C1, . . . , Cβ2 are linearly independent over F [λ] and the sum of

their degrees is the determinantal degree of F ,

deg(det(F )) =

β2∑
j=1

deg(Cj) =

β2∑
j=1

dj.

Because each of the Cj generate the matrix sequence from the right, if dj ≤ ν2, the

ν2 − dj + 1 vectors

~Cj,0 =

[
Cj[0] Cj[1] · · · Cj[dj] 0 0 · · · 0

]T

,

~Cj,1 =

[
0 Cj[0] Cj[1] · · · Cj[dj] 0 · · · 0

]T

,

...

~Cj,ν2−dj =

[
0 0 · · · 0 Cj[0] Cj[1] · · · Cj[dj]

]T

are in the right null space of H(ν1, ν2 + 1). If dj > ν2, the column Cj does not contribute

any vectors to the right null space of H(ν1, ν2 + 1). Because C1, . . . , Cβ2 are linearly

independent over F [λ], the set of vectors

{~Cj,i | 1 ≤ j ≤ β2, 0 ≤ i ≤ ν2 − dj} ⊂ Null(H(ν1, ν2 + 1)) ⊂ F(γ2+1)β2
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is linearly independent over F. Thus,

dim(Null(H(ν1, ν2 + 1))) ≥
∑

1≤j≤β2
dj≤ν2

(ν2 − dj + 1) ≥
β2∑
j=1

(ν2 − dj + 1)

= β2(ν2 + 1)−
β2∑
j=1

dj

and the rank of H(ν1, ν2 + 1) is

rank(H(ν1, ν2 + 1)) = β2(ν2 + 1)− dim(Null(H(ν1, ν2 + 1)))

≤
β2∑
j=1

dj = deg(det(F )).

We will use Lemma 4.6 when we discuss the block Wiedemann method in Section 4.3,

but first we turn our attention to computing the minimal generating matrix polynomial

F for any linearly generated matrix sequence {Bi}∞i=0.

4.2 Fast Power Hermite-Padé Solver

In this section, we examine how to compute the minimal generating matrix polynomial

F of any linearly generated matrix sequence {Bi}∞i=0 using the Beckermann-Labahn Fast

Power Hermite-Padé Solver (FPHPS) algorithm. We begin by examining the relation-

ship between the power Hermite-Padé approximation problem, the vector Hermite-Padé

approximation problem, and computing generating vector polynomials of the matrix

sequence. Then, we investigate properties of the particular power Hermite-Padé approx-
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imation problem to be solved in order to show it provides a basis over F [λ] for the right

generating vector polynomials. The minimal generating matrix polynomial can then be

constructed by computing the Popov form of the matrix whose columns are these basis

elements.

Definition 4.8. The polynomial tuple P = (P [1], . . . ,P [m]) is a vector Hermite-Padé

approximant for the vector polynomials G [1], . . . ,G [m] ∈ Fs [λ] of type (N , σ) with the

multiindex N = (N [1], . . . ,N [m]) if there exists a vector polynomial R ∈ Fs [λ] such

that
m∑
i=1

G [i](λ)P [i](λ) = λσR(λ)

and deg(P [i]) ≤ N [i] for 1 ≤ i ≤ m (Beckermann and Labahn, 1994, Example 2.5).

Beckermann and Labahn (1994) introduce a generalized Hermite-Padé approximation

problem, called a power Hermite-Padé approximation problem.

Definition 4.9 (Beckermann and Labahn, 1994, Definition 1.1). The polyno-

mial tuple P = (P [1], . . . ,P [m]) is a power Hermite-Padé approximant of the type

(N , σ, s) given by the polynomial tuple F = (F [1], . . . ,F [m]) with the multiindex

N = (N [1], . . . ,N [m]) if there exists a polynomial R′ ∈ F [λ] such that

F (λ) ·P(λs) =
m∑
i=1

F [i](λ)P [i](λs) = λσR′(λ)

and deg(P [i]) ≤ N [i] for 1 ≤ i ≤ m.
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We first look at the equivalence of the vector Hermite-Padé approximation problem

and the power Hermite-Padé approximation problem.

Lemma 4.7. Let F be a field, G [1], . . . ,G [m] ∈ Fs [λ], and F = (F [1], . . . ,F [m]) be

the polynomial tuple given by F [i](λ) = (1, λ, λ2, . . . , λs−1) · G [i](λs). Then, a polynomial

tuple P = (P [1], . . . ,P [m]) solves the vector Hermite-Padé approximation problem

m∑
i=1

G [i](λ)P [i](λ) = λσR(λ) ∈ Fs [λ] (4.4)

of type (N , σ) if and only if it solves the power Hermite-Padé approximation problem

F (λ) ·P(λs) =
m∑
i=1

F [i](λ)P [i](λs) = λσsR′(λ) ∈ F [λ] (4.5)

of type (N , σs, s).

Proof. P solves the vector Hermite-Padé approximation problem (4.4) if and only if

m∑
i=1

G [i,j](λ)P [i](λ) = λσR(λ), 1 ≤ j ≤ m,

where

G [i] =

[
G [i,1] G [i,2] · · · G [i,s]

]T

∈ Fs [λ]

and

R =

[
R[1] R[2] · · · R[s]

]T

∈ Fs [λ] ,
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which is equivalent to

m∑
i=1

G [i,j](λs)P [i](λs) = λσsR[j](λs), 1 ≤ j ≤ s,

and
m∑
i=1

λj−1G [i,j](λs)P [i](λs) = λσs+j−1R[j](λs), 1 ≤ j ≤ s.

Thus, P solves the vector Hermite-Padé approximation problem (4.4) if and only if

s∑
j=1

m∑
i=1

λj−1G [i,j](λs)P [i](λs) =
s∑
j=1

λσs+j−1R[j](λs)

or, equivalently,

m∑
i=1

(
s∑
j=1

λj−1G [i,j](λs)

)
P [i](λs) = λσs

s∑
j=1

λj−1R[j](λs).

Therefore, the vector Hermite-Padé approximation problem (4.4) is equivalent to the

power Hermite-Padé approximation problem (4.5) where R′(λ) =
∑s

j=1 λ
j−1R[j](λs).

Lemma 4.7 gives a relationship between the vector Hermite-Padé approximation prob-

lem and the power Hermite-Padé approximation problem. The power substitution λ← λs

and the vector (1, λ, λ2, . . . , λs−1) in the computation of F enforce a unique relationship

between the rows of the vector Hermite-Padé approximant (4.4) and the powers of the

power Hermite-Padé approximant (4.5). Namely, the coefficient of the λi term in the

j-th row of the vector Hermite-Padé approximant is the coefficient of the λis+j term in
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the power Hermite-Padé approximant.

The modular equivalence of Theorem 4.6 on page 93 shows the reversals of a gener-

ating vector polynomial must solve the power Hermite-Padé approximation problem in

much the same way that the reversals of a generating polynomial are Padé approxima-

tions (von zur Gathen and Gerhard, 1999, Lemma 12.8).

Theorem 4.7. Let F be a field, and let the matrix sequence {Bi}∞i=0 ∈
(
F
β1×β2

)
Z≥0 with

β1, β2 > 0 be linearly generated. Let

C =
d∑
i=0

C[i]λi ∈ Fβ2 [λ] ,

ν1 ≥ γ1, ν2 ≥ d, and σ = (ν1 + ν2)β1. Then, C is a right generating vector polynomial

for the matrix sequence {Bi}∞i=0 if and only if the vector polynomial reversal Ĉ of C with

respect to degree d and a vector polynomial C(res) of degree at most d− 1 form a solution

P =

C(res)

Ĉ

 ∈ Fβ1+β2 [λ]

to the power Hermite-Padé approximation problem of type (N , σ, β1) given by the multi-

index N = (N [1], . . . ,N [β1+β2]) with

N [i] =


ν2 − 1 if 1 ≤ i ≤ β1,

ν2 if β1 + 1 ≤ i ≤ β1 + β2
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and the polynomial tuple F = (F [1], . . . ,F [β1+β2]) with

F [i](λ) = (1, λ, λ2, . . . , λβ1−1) · G [i](λβ1)

where G [i] is the i-th column of the matrix polynomial

G (λ) =

[
I −

(∑ν1+ν2−1
i=0 Biλ

i
)] ∈ Fβ1×(β1+β2) [λ] .

Proof. By Theorem 4.6 on page 93, C generates the matrix sequence from the right if

and only if there exists some R(λ) ∈ Fβ1 [λ] such that

C(res)(λ)−

(
ν1+ν2−1∑
i=0

Biλ
i

)
Ĉ(λ) = λν1+ν2R(λ)

or [
I −

(∑ν1+ν2−1
i=0 Biλ

i
)]
C(res)(λ)

Ĉ(λ)

 = λν1+ν2R(λ)

for some vector polynomial C(res) of degree at most d−1. This is equivalent to the vector

Hermite-Padé approximation problem

β1+β2∑
i=1

G [i](λ)P [i](λ) = λν1+ν2R(λ)

of type (N , ν1 + ν2), and is, thus, equivalent to the desired power Hermite-Padé approx-

imation problem by Lemma 4.7 on page 100.
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Theorem 4.7 shows a generating vector polynomial is related to a solution of a corre-

sponding power Hermite-Padé approximation problem.

For example, consider the matrix sequence described in Example 4.1 on page 83. If

ν1 = γ1 = 2 and ν2 = γ2 = 2, the corresponding power Hermite-Padé approximation

problem is given by the the matrix polynomials

ν1+ν2−1∑
i=0

Biλ
i =

 λ+ λ2 + 2λ3 1 + λ2 + λ3

1 + 3λ+ 4λ2 + 7λ3 2 + λ+ 3λ2 + 4λ3


and

G (λ) =

[
I −

(∑ν1+ν2−1
i=0 Biλ

i
)]

=

1 0 −λ− λ2 − 2λ3 −1− λ2 − λ3

0 1 −1− 3λ− 4λ2 − 7λ3 −2− λ− 3λ2 − 4λ3

 .

Thus, because the columns of the minimum generating matrix polynomial F have degree

at most γ2 = 2, they are related to the solutions of the power Hermite-Padé approxima-

tion problem given by σ = (ν1 + ν2)β1 = 8, the polynomial tuple

F =



1

λ

−λ− λ2 − 3λ3 − λ4 − 4λ5 − 2λ6 − 7λ7

−1− 2λ− λ3 − λ4 − 4λ5 − λ6 − 4λ7



T

,
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and the multiindex N = (1, 1, 2, 2). However, we do not know that any solution to this

power Hermite-Padé approximation problem is related to a generating vector polynomial.

For that, we need another definition.

Definition 4.10 (Beckermann and Labahn, 1994, Definition 3.1). Let the poly-

nomial tuple P = (P [1], . . . ,P [m]) be a solution to a power Hermite-Padé approxima-

tion problem of type (N , σ, s). Then, the defect of P is one more than the minimum

difference in degree of a member polynomial and the corresponding degree bound,

dct(P) = min
1≤i≤β1+β2

{
N [i] + 1− deg(P [i])

}
.

The defect of a polynomial tuple is one minus its τ -degree in Definition 4 of (Van

Barel and Bultheel, 1991), dct(P) = 1 − τ -deg(P). The following theorem shows

that given a power Hermite-Padé approximation problem corresponding to a linearly

generated matrix sequence {Bi}∞i=0 and a bound ν2 on generating vector polynomial

degrees, the defect dct(P), and thus the τ -degree, of the polynomial tuple solution P

to the power Hermite-Padé approximation problem relates the polynomial tuple to a

generating vector polynomial of the linearly generated matrix sequence through a vector

polynomial reversal of degree ν2 + 1− dct(P).

Theorem 4.8. Let F be a field, and let the matrix sequence {Bi}∞i=0 ∈
(
F
β1×β2

)
Z≥0 with

β1, β2 > 0 be linearly generated. Let ν1 ≥ γ1, ν2 ≥ γ2, and σ = (ν1 + ν2)β1. Let the poly-

nomial tuple P = (P [1], . . . ,P [β1+β2]) be a solution to the power Hermite-Padé approx-
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imation problem of type (N , σ, β1) given by the multiindex N = (N [1], . . . ,N [β1+β2])

with

N [i] =


ν2 − 1 if 1 ≤ i ≤ β1,

ν2 if β1 + 1 ≤ i ≤ β1 + β2

and the polynomial tuple F = (F [1], . . . ,F [β1+β2]) with

F [i](λ) = (1, λ, λ2, . . . , λβ1−1) · G [i](λβ1)

where G [i] is the i-th column of the matrix polynomial

G (λ) =

[
I −

(∑ν1+ν2−1
i=0 Biλ

i
)] ∈ Fβ1×(β1+β2) [λ] .

Then, the reversal of the vector polynomial

[
P [β1+1] P [β1+2] · · · P [β1+β2]

]T

∈ Fβ2 [λ]

with respect to degree ν2 + 1 − dct(P) is a right generating vector polynomial for the

matrix sequence {Bi}∞i=0.

Proof. Let d = ν2 + 1− dct(P) and let C(res) and Ĉ be the vector polynomials

C(res) =

[
P [1] P [2] · · · P [β1]

]T

∈ Fβ1 [λ]
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and

Ĉ =

[
P [β1+1] P [β1+2] · · · P [β1+β2]

]T

∈ Fβ2 [λ] .

By Definition 4.10 on page 105, deg(C(res)) ≤ d − 1 and deg(Ĉ) ≤ d, so there exist

C[1], . . . , C[d] ∈ F such that Ĉ =
∑d

i=0 C[d− i]λi. Thus, Ĉ is the reversal of the vector

polynomial C =
∑d

i=0 C[i]λi with respect to degree d that must generate the matrix

sequence by Theorem 4.7 on page 102.

The Fast Power Hermite-Padé Solver (FPHPS) algorithm (Beckermann and Labahn,

1994, Section 3) computes a basis for the polynomials tuples P satisfying the power

Hermite-Padé approximation problem of type (N , σ, s) and, thus, also for the vector

Hermite-Padé approximation problem by Lemma 4.7 on page 100. It does this by iterat-

ing through the powers σ of λ so that at the end of the k-th step, the algorithm has com-

puted polynomial tuples P1,k, . . . ,Pm,k and their defects dct(P1,k), . . . , dct(Pm,k). Af-

ter the k-step, any solution P to the power Hermite-Padé approximation F (λ)·P(λs) ≡

0 (mod λk) can be written as exactly one linear combination of the polynomial tuples

P1,k, . . . ,Pm,k,

P = g1(λ)P1,k + · · ·+ gm(λ)Pm,k,

where deg(gj) < dct(Pj), 1 ≤ j ≤ m (Beckermann and Labahn, 1994, Theorem 3.4).

Only the Pj with positive defect contribute to this basis for the solutions. After kβ1 steps

of the FPHPS algorithm using s = β1, m = β1 + β2, and F and N as in Theorem 4.7

on page 102, the polynomial tuples P1,kβ1 , . . . ,Pβ1+β2,kβ1 form a basis over F [λ] for the
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solutions to the equation

[
I −

(∑ν1+ν2−1
i=0 Biλ

i
)]

P(λ) = λkR(λ).

At the end of the σ = (γ1 + γ2)β1 steps, the output of the algorithm FPHPS is the

polynomial tuples P1,σ, . . . ,Pβ1+β2,σ and their defects dct(P1,σ), . . . , dct(Pβ1+β2,σ).

The FPHPS algorithm presented by Beckermann and Labahn (1994, Section 3) has

some freedom in the choice of the index π of the polynomial tuple used to update the

approximants. For our purposes, we will consider an implementation that chooses π to

have the smallest possible value whenever there is a choice in its value. (See Appendix A.)

We want to show the FPHPS algorithm provides a basis for the generating vector

polynomials of the associated block sequence. The first step is to show the algorithm

provides the correct number of solutions. To do this, we need to examine the relationship

between a solution to the power Hermite-Padé approximation problem and the part of

the solution corresponding to the reversal of the generating vector polynomial.

The first result we require is that if the part corresponding to the vector polynomial

reversal has a zero constant term, then the entire solution does also. This will be used

later to determine the number of solutions that are possible.

Lemma 4.8. Let F be a field, M ∈ Fβ1×β2 [λ], ν2 > 0, and σ ≥ β1. Let the polynomial

tuple P = (P [1], . . . ,P [β1+β2]) be a solution to the power Hermite-Padé approximation
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problem of type (N , σ, β1) given by the polynomial tuple F = (F [1], . . . ,F [β1+β2]) with

F [i](λ) = (1, λ, λ2, . . . , λβ1−1) · G [i](λβ1)

where G [i] is the i-th column of the matrix polynomial

G (λ) =

[
I M

]
∈ Fβ1×(β1+β2) [λ] .

If (P [β1+1](0), . . . ,P [β1+β2](0)) = 0β2, then (P [1](0), . . . ,P [β1](0)) = 0β1.

Proof. There exists a polynomial R(λ) ∈ F [λ] such that

F (λ) ·P(λβ1) =

β1+β2∑
i=1

F [i](λ)P [i](λβ1) = λσR(λ) = λβ1
(
λσ−β1R(λ)

)
,

and, by Lemma 4.7 on page 100, there exists a vector polynomial R′(λ) ∈ Fβ1 [λ] such

that
β1+β2∑
i=1

G [i](λ)P [i](λ) = λR′(λ).

Let A = (A [1], . . . ,A [β1]) and B = (B[1], . . . ,B[β2]) be the polynomial sub-tuples such

that A [i] = P [i] for 1 ≤ i ≤ β1 and B[i] = P [i+β1] for 1 ≤ i ≤ β2. Then,

A +MB = λR′(λ)

which means A (0) + M(0)B(0) = 0 and A (0) = −M(0)B(0). Thus, if B(0) = 0,
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A (0) = 0 also.

Lemma 4.8 can be used to determine the number of solutions to the problem. We use

it to provide a relationship between the output of the FPHPS algorithm and the number

of solutions to the power Hermite-Padé approximation problem such that the part of the

constant terms corresponding to the vector polynomial reversal are linearly independent

over F [λ].

Lemma 4.9. Let F be a field, M ∈ Fβ1×β2 [λ], ν2 > 0, and σ ≥ β1. Let the poly-

nomial tuples P1,σ, . . . ,Pβ1+β2,σ be the output of the FPHPS algorithm for the power

Hermite-Padé approximation problem of type (N , σ, β1) given by the polynomial tuple

F = (F [1], . . . ,F [β1+β2]) with

F [i](λ) = (1, λ, λ2, . . . , λβ1−1) · G [i](λβ1)

where G [i] is the i-th column of the matrix polynomial

G (λ) =

[
I M

]
∈ Fβ1×(β1+β2) [λ] .

For any polynomial tuple P = (P [1], . . . ,P [β1+β2]), let B be the polynomial sub-tuple

B = (P [β1+1], . . . ,P [β1+β2]), and let Lσ = {1, . . . , β1 + β2} \ {πσ−β1 , . . . , πσ−1}. Then,

there exist k ≤ β2 solutions P1, . . . ,Pk to the power Hermite-Padé approximation prob-

lem such that B1(0), . . . ,Bk(0) are linearly independent over F if and only if there are

distinct l1, . . . , lk ∈ Lσ with dct(Plj ,σ) > 0. The approximants are given by Pj = Plj ,σ
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for 1 ≤ j ≤ k.

Proof. Clearly, P1(0), . . . ,Pk(0) are linearly independent over F if B1(0), . . . ,Bk(0) are

also linearly independent over F. Suppose Pk(0), . . . ,Pk(0) are linearly independent

over F. For every c1, . . . , ck ∈ F,
∑k

i=1 ciP i(0) 6= 0. Let A = (P
[1]
, . . . ,P

[β1]
). If

B1(0), . . . ,Bk(0) are linearly dependent over F, there exist c1, . . . , ck ∈ F such that∑k
i=1 ciBi(0) = 0. By Lemma 4.8 on page 108, this means

∑k
i=1 ciA i(0) = 0, and, thus,∑k

i=1 ciP i(0) = 0, which contradicts the linear independence of the constant tuples

P1(0), . . . ,Pk(0) over F. Therefore, P1(0), . . . ,Pk(0) are linearly independent over F

if and only if B1(0), . . . ,Bk(0) are linearly independent over F.

Using Corollary 4.2 of Beckermann and Labahn (1994), there exist k ≤ β2 solutions

P1, . . . ,Pk to the power Hermite-Padé approximation problem such that the scalar

tuples P1(0), . . . ,Pk(0) are linearly independent over F if and only if there exist distinct

l1, . . . , lk ∈ Lσ with dct(Plj ,σ) > 0, and the linearly independent approximants are given

by Pj = Plj ,σ for 1 ≤ j ≤ k.

There can be up to β2 solutions to the power Hermite-Padé approximation problem

such that the constant coefficients of the last β2 entries of each polynomial tuple are

linearly independent over F. Theorem 4.7 on page 102 can then be used to show there

are exactly β2 such solutions. In other words, at least β2 of the polynomial tuples

produced by the FPHPS algorithm must have positive defect by Lemma 4.9. However,

we can use the relation between generating vector polynomials and solutions to the power

Hermite-Padé approximation problem to show there can be no more the β2.
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Theorem 4.9. Let F be a field, and let the matrix sequence {Bi}∞i=0 ∈
(
F
β1×β2

)
Z≥0

with β1, β2 > 0 be linearly generated. Let ν1 ≥ γ1, ν2 ≥ γ2, and σ = (ν1 + ν2)β1. Let

the polynomial tuples P1,σ, . . . ,Pβ1+β2,σ be the output of the FPHPS algorithm for the

power Hermite-Padé approximation problem of type (N , σ, β1) given by the multiindex

N = (N [1], . . . ,N [β1+β2]) with

N [i] =


ν2 − 1 if 1 ≤ i ≤ β1,

ν2 if β1 + 1 ≤ i ≤ β1 + β2

and the polynomial tuple F = (F [1], . . . ,F [β1+β2]) with

F [i](λ) = (1, λ, λ2, . . . , λβ1−1) · G [i](λβ1)

where G [i] is the i-th column of the matrix polynomial

G (λ) =

[
I −

(∑ν1+ν2−1
i=0 Biλ

i
)] ∈ Fβ1×(β1+β2) [λ] .

For any polynomial tuple P = (P [1], . . . ,P [β1+β2]), let B be the polynomial sub-tuple

B = (P [β1+1], . . . ,P [β1+β2]). Then, exactly β2 of the polynomial tuples constructed by the

FPHPS algorithm have positive defect. Furthermore, if these approximants with positive

defect are denoted Pi1,σ, . . . ,Piβ2
,σ, then Bi1,σ(0), . . . ,Biβ2

,σ(0) are linearly independent

over F.
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Proof. Let C1, . . . , Cβ2 be the columns of the minimal generating matrix polynomial F of

the matrix sequence {Bi}∞i=0. Let Ĉi be the vector polynomial reversal of Ci with respect

to degree di = deg(Ci). Then, by Theorem 4.7 on page 102, for each Ci, there exists a

vector polynomial Ci
(res) of degree at most di − 1 such that the polynomial tuple

Pi =

Ci(res)

Ĉi

 ∈ Fβ1+β2 [λ]

solves the power Hermite-Padé approximation problem. Pi(0) 6= 0 and dct(Pi) > 0. Be-

cause F is in Popov form, the leading coefficients of C1, . . . , Cβ2 are linearly independent

over F. Thus, Ĉ1(0), . . . , Ĉβ2(0), and P1(0), . . . ,Pβ2(0), are also linearly independent

over F and P1, . . . ,Pβ2 are linearly independent over F [λ]. By Lemma 4.9 on page 110,

β2 of the polynomial tuples Pi1,σ, . . . ,Piβ2
,σ found by the FPHPS algorithm have posi-

tive defect and such that Bi1,σ(0), . . . ,Biβ2
,σ(0) are linearly independent over F.

Suppose there exists another approximant P = (P [1], . . . ,P [β1+β2]) that is linearly

independent from P1, . . . ,Pβ2 over F [λ]. Let B = (P [β1+1], . . . ,P [β1+β2]), and let B̂

be the reversal of B with respect to degree d = ν2 + 1 − dct(P). By Theorem 4.8 on

page 105, B̂ generates the matrix sequence {Bi}∞i=0, which means B̂ must be a linear

combination of C1, . . . , Cβ2 over F [λ],

B̂ =

β2∑
i=1

giCi
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where gi ∈ F [λ] for 1 ≤ i ≤ β2. Thus,

B = revd(B̂) = λd
β2∑
i=1

gi

(
1

λ

)
Ci

(
1

λ

)
=

β2∑
i=1

λd−digi

(
1

λ

)
Ĉi(λ).

The leading coefficients of C1, . . . , Cβ2 are linearly independent over F, which means

deg(B̂) = max
1≤i≤β2

{deg(gi) + deg(Ci)} = max
1≤i≤β2

{deg(gi) + di}

by Lemma 4.3 on page 79 and

deg(gi) + di ≤ deg(B̂) ≤ d, 1 ≤ i ≤ β2.

Thus,

deg(gi) ≤ d− di, 1 ≤ i ≤ β2,

and

λd−digi

(
1

λ

)
∈ F [λ] , 1 ≤ i ≤ β2.

Therefore, B is a linear combination of Ĉ1, . . . , Ĉβ2 over F [λ].

Let P0 be the polynomial tuple

P0 = P −
β2∑
i=1

λd−digi

(
1

λ

)
Pi(λ).
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P0 solves the power Hermite-Padé approximation problem, and

B0 = B −
β2∑
i=1

λd−digi

(
1

λ

)
Ĉi(λ) = 0β2 .

Then, by Lemma 4.8 on page 108, P0 = 0β1+β2 , and P is not linearly independent

over F [λ] from P1, . . . ,Pβ2 , which is a contradiction. Therefore, there cannot be more

than β2 solutions to the power Hermite-Padé approximation problem that are linearly

independent over F [λ], and, thus, only β2 of the approximants P1,σ, . . . ,Pβ1+β2,σ have

positive defect (Beckermann and Labahn, 1994, Corollary 4.2).

Let Pi1,σ, . . . ,Piβ2
,σ be the polynomial tuples found by the FPHPS algorithm that

have positive defect. The reversals of Bi1,σ, . . . ,Biβ2
,σ are linearly independent over

F [λ], and, by Theorem 4.8 on page 105, they generate the matrix sequence. We can

use a proof similar to that of Theorem 4.9 to show that they span the generating vector

polynomials over F [λ]. However, we first need to show that the leading coefficients of the

output polynomial tuples are linearly independent over F. The following lemma shows

this linear independence is maintained throughout the FPHPS algorithm.

Lemma 4.10. Let F be a field, β1, β2 > 0, ν2 > 0, F = (F [1], . . . ,F [β1+β2]) ∈ Fm [λ]

be a polynomial tuple, and N = (N [1], . . . ,N [β1+β2]) be the multiindex given by

N [i] =


ν2 − 1 if 1 ≤ i ≤ β1,

ν2 if β1 + 1 ≤ i ≤ β1 + β2,

.
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Then, the leading coefficients of P1,σ, . . . ,Pβ1+β2,σ are linearly independent over F for

all σ ≥ 0 in the FPHPS algorithm.

Proof. The proof is by induction. The leading coefficients of P1,0, . . . ,Pβ1+β2,0 are lin-

early independent over F by construction.

Suppose the leading coefficients lc(P1,σ), . . . , lc(Pβ1+β2,σ) are linearly independent

over F. If Λσ = {}, the leading coefficients lc(P1,σ+1), . . . , lc(Pβ1+β2,σ+1) are also linearly

independent over F since lc(Pi,σ+1) = lc(Pi,σ) for 1 ≤ i ≤ β1 + β2.

If Λσ 6= {} and l ∈ Λσ, l 6= π = πσ, then dct(Pπ,σ) ≥ dct(Pl,σ), |N [π] −N [l]| ≤ 1,

and

deg(Pl,σ) = N [l] + 1− dct(Pl,σ)

= N [π] + 1− dct(Pπ,σ) + ((dct(Pπ,σ)− dct(Pl,σ))− (N [π] −N [l]))

= deg(Pπ,σ) + ((dct(Pπ,σ)− dct(Pl,σ))− (N [π] −N [l])).

If dct(Pπ,σ) = dct(Pl,σ), then l > π and N [l] ≤ N [π], which means deg(Pl,σ) ≥

deg(Pπ,σ). If dct(Pπ,σ) > dct(Pl,σ), then (dct(Pπ,σ)− dct(Pl,σ))− (N [π]−N [l]) ≥ 0,

and deg(Pl,σ) ≥ deg(Pπ,σ).

Thus, for every 1 ≤ i ≤ β1 + β2,

lc(Pi,σ+1) =


lc(Pi,σ)− ci,σ

cπ,σ
lc(Pπ,σ) if i ∈ Λσ, deg(Pl,σ) = deg(Pπ,σ),

lc(Pi,σ) otherwise,
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and linear independence over F is preserved.

The linear independence of the leading coefficients over F leads to a basis for the

generating vector polynomials over F [λ]. The proof is similar to that of Theorem 4.9 on

page 112.

Theorem 4.10. Let F be a field, and let the matrix sequence {Bi}∞i=0 ∈
(
F
β1×β2

)
Z≥0

with β1, β2 > 0 be linearly generated. Let ν1 ≥ γ1, ν2 ≥ γ2, and σ = (ν1 + ν2)β1. Let

the polynomial tuples P1,σ, . . . ,Pβ1+β2,σ be the output of the FPHPS algorithm for the

power Hermite-Padé approximation problem of type (N , σ, β1) given by the multiindex

N = (N [1], . . . ,N [β1+β2]) with

N [i] =


ν2 − 1 if 1 ≤ i ≤ β1,

ν2 if β1 + 1 ≤ i ≤ β1 + β2

and the polynomial tuple F = (F [1], . . . ,F [β1+β2]) with

F [i](λ) = (1, λ, λ2, . . . , λβ1−1) · G [i](λβ1)

where G [i] is the i-th column of the matrix polynomial

G (λ) =

[
I −

(∑ν1+ν2−1
i=0 Biλ

i
)] ∈ Fβ1×(β1+β2) [λ] .

Then, exactly β2 of the polynomial tuples P1,σ, . . . ,Pβ1+β2,σ have positive defect. Let
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these be denoted Pi1,σ, . . . ,Piβ2
,σ and let dj = ν2 + 1 − dct(Pij ,σ). Then, the vector

polynomial reversals

bj = revdj

([
Pij ,σ

[β1+1] · · · Pij ,σ
[β1+β2]

]T
)
∈ Fβ2 [λ] , 1 ≤ j ≤ β2,

form a basis over F [λ] for the module of right generating vector polynomials of the ma-

trix sequence {Bi}∞i=0, their leading coefficient vectors are linearly independent over F,

deg(bj) = dj for 1 ≤ j ≤ β2, and

deg

(
det

([
b1 · · · bβ2

]))
=

β2∑
j=1

dj = β2(ν2 + 1)−
β2∑
j=1

dct(Pij ,σ).

Proof. Let Bi,σ be the polynomial sub-tuple Bi,σ = (Pi,σ
[β1+1], . . . ,Pi,σ

[β1+β2]). The

polynomial tuples Pi1,σ, . . . ,Piβ2
,σ exist and Bi1,σ(0), . . . ,Biβ2

,σ(0) are linearly inde-

pendent over F by Theorem 4.9 on page 112. This means

deg(bj) = dj = ν2 + 1− dct(Pij ,σ) ≤ deg(Pij ,σ), 1 ≤ j ≤ β2,

and the leading coefficients of b1, . . . , bβ2 are linearly independent over F. Thus,

deg

(
det

([
b1 · · · bβ2

]))
=

β2∑
j=1

deg(bj) =

β2∑
j=1

dj = β2(ν2 + 1)−
β2∑
j=1

dct(Pij ,σ).

By Theorem 4.8 on page 105, b1, . . . , bβ2 generate the matrix sequence.

Let C =
∑d

i=0 C[i]λi be a right generating vector polynomial for the matrix sequence
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with degree d. By Theorem 4.7 on page 102, the vector polynomial reversal Ĉ of C with

respect to degree d and a vector polynomial C(res) of degree at most d−1 form a solution

P =

C(res)

Ĉ

 ∈ Fβ1+β2 [λ]

to the power Hermite-Padé approximation problem with degree deg(P) ≤ d. There

exist polynomials g1, . . . , gβ2 ∈ F [λ] with deg(gj) ≤ dct(Pij ,σ) for 1 ≤ i ≤ β2 such that

P =
∑β2

j=1 gjPijσ. If b̂j is the vector polynomial reversal of bj with respect to degree dj,

then Ĉ =
∑β2

j=1 gj b̂j and

C(λ) = λdĈ

(
1

λ

)
= λd

β2∑
i=j

gj

(
1

λ

)
b̂j

(
1

λ

)
=

β2∑
j=1

λd−digj

(
1

λ

)
bj(λ).

By Lemma 4.10 on page 115, the leading coefficients of Pi1,σ, . . . ,Piβ2
,σ are linearly

independent over F, and

deg(P) = max
1≤j≤β2

{deg(gj) + deg(Pij ,σ)}

by Lemma 4.3 on page 79. Thus,

deg(P) ≥ deg(gj) + deg(Pij ,σ), 1 ≤ j ≤ β2,
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and

deg(gj) ≤ deg(P)− deg(Pij ,σ) ≤ deg(P)− dj ≤ d− dj, 1 ≤ j ≤ β2.

Therefore,

λd−djgj ∈ F [λ] , 1 ≤ j ≤ β2,

and C is a linear combination of b1, . . . , bβ2 over F [λ].

The update mechanism in the FPHPS algorithm ensures that, if ν1 ≥ γ1 and ν2 ≥ γ2,

stopping the algorithm at σ < (ν1 +ν2)β1 will result in either too many polynomial tuples

with positive defect or the determinantal degree of the potential basis elements described

in Theorem 4.10 will be no larger than prescribed at σ = (ν1 +ν2)β1. This is because the

algorithm iterates over the order σ of the power Hermite-Padé approximation problem,

and at every σ it chooses π to be the index of the polynomial tuple with largest defect

that does not have order σ. The algorithm uses this polynomial tuple to update the

others. This polynomial tuple is the only one to have its defect changed, and it will

always decrease. Thus, once the algorithm has only β2 polynomial tuples with positive

defect remaining, either these polynomial tuples must designate a basis for G as described

in Theorem 4.10 or the algorithm must eventually decrease the defect of at least one of

them. As shown in Theorem 4.10, decreasing the defect of one of the polynomial tuples

will increase the determinantal degree of the matrix whose columns are the basis elements.

In fact, suppose the algorithm produces only β2 polynomial tuples, Pi1,σ, . . . ,Piβ2
,σ,
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with positive defect and order σ < (ν1 + ν2)β1. If all of these polynomial tuples have

order σ + 1, then

Pij ,σ+1 = Pij ,σ, 1 ≤ j ≤ β2.

If one of these polynomial tuples does not have order σ+1, the update mechanism requires

that there exists a j with 1 ≤ j ≤ β2 such that π = ij, and Pij ,σ+1 = λPij ,σ. This

means Bij ,σ+1(0) = 0β2 , and thus Bi1,σ+1(0), . . . ,Biβ2
,σ+1(0) are not linearly independent

over F. By induction, Bi1,(ν1+ν2)β1(0), . . . ,Biβ2
,(ν1+ν2)β1(0) cannot be linearly independent

over F, which contradicts Theorem 4.9 on page 112. Therefore, if ν1 ≥ γ1 and ν2 ≥ γ2,

once the FPHPS algorithm has produced only β2 polynomial tuples, Pi1,σ, . . . ,Piβ2
,σ,

with positive defect and order σ < (ν1 + ν2)β1, these β2 polynomial tuples have order

(ν1 + ν2)β1 and are thus the polynomial tuples computed by the FPHPS algorithm for

σ = (ν1 + ν2)β1,

Pij ,(ν1+ν2)β1 = Pij ,σ, 1 ≤ j ≤ β2.

On the other hand, if ν2 < γ2, the FPHPS algorithm will return fewer than β2

polynomial tuples with positive defect since any basis over F [λ] for the module of right

generating vector polynomials must contain at least element of degree no less than γ2.

Unfortunately, stopping the algorithm at σ < (ν1 + ν2)β1 may result in β2 polynomial

tuples with positive defect.

Theorem 4.10 on page 117 gives method for computing the minimal generating ma-

trix polynomial for any linearly generated matrix sequence {Bi}∞i=0. First, compute the

polynomial tuple F = (F [1], . . . ,F [β1+β2]) with F [i](λ) = (1, λ, λ2, . . . , λβ1−1) · G [i](λβ1)
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where G [i] is the i-th column of the matrix polynomial

G (λ) =

[
I −

(∑ν1+ν2−1
i=0 Biλ

i
)] ∈ Fβ1×(β1+β2) [λ] .

Then, call the Beckermann-Labahn FPHPS algorithm with F , s = β1, σ = (γ1 + γ2)β1,

and multiindex N = (N [1], . . . ,N [β1+β2]) with

N [i] =


ν2 − 1 if 1 ≤ i ≤ β1,

ν2 if β1 + 1 ≤ i ≤ β1 + β2.

The last β2 entries of the β2 vector polynomial reversals with positive defects form a

basis for the module of right generating vector polynomials of the matrix sequence. The

minimal generating matrix polynomial is the Popov form of the matrix whose columns

are these basis vectors.

For example, consider Example 4.1 on page 83 with the input to the FPHPS algorithm

σ = (2 + 2)2 = 8,

F =



1

λ

−λ− λ2 − 3λ3 − λ4 − 4λ5 − 2λ6 − 7λ7

−1− 2λ− λ3 − λ4 − 4λ5 − λ6 − 4λ7



T

,
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and N = (1, 1, 2, 2). The algorithm produces the polynomial tuples

P1,8 =



λ3

0

−2λ3

λ3


, P2,8 =



1
2
λ3

λ3

0

1
2
λ3


, P3,8 =



−1

−2

λ

−1


, P4,8 =



1

1

−1

λ+ 1


,

and their defects

dct(P1,8) = −1, dct(P2,8) = −1, dct(P3,8) = 2, and dct(P4,8) = 2.

Thus, the last two entries of the vector polynomial reversals of P1,8 and P2,8 form the

columns of the matrix

G =

 1 −λ

−λ λ+ 1


whose Popov form is the minimal generating matrix polynomial

F =

λ− 1 −1

−1 λ

 = G

−1 −1

−1 0

 .

4.3 Block Wiedemann and Krylov Sequences

In Sections 4.1 and 4.2, we considered any linearly generated matrix sequences {Bi}∞i=0.

In general, we do not know any bounds on the γ1 and γ2 or the determinantal degree
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of F . However, the block Wiedemann and block Krylov sequences, {XTAiY }∞i=0 and

{AiY }∞i=0, respectively, arising from the block Wiedemann method are special, and we

can find upper bounds for general block projections X and Y . These bounds follow from

relations on the minimal generating matrix polynomials for the two sequences, FA,Y and

FA,Y
X , and the minimal polynomial fA of the matrix A.

We first show the block Wiedemann and block Krylov sequences are linearly generated

by the minimal polynomial fA of the matrix A.

Lemma 4.11. Let F be a field, A ∈ Fn×n, X ∈ Fn×β1, and Y ∈ Fn×β2 with 1 ≤ β1, β2 ≤

n. Then, the block Wiedemann and block Krylov sequences, {XTAiY }∞i=0 and {AiY }∞i=0,

respectively, are linearly generated by the minimal polynomial fA of the matrix A.

Proof. The minimal polynomial fA =
∑m

i=0 f
A[i]λi generates the matrix power sequence

{Ai}∞i=0,
m∑
i=0

fA[i]Ai+j = 0n×n, ∀j ≥ 0.

Multiplying this equation on the right by the block projection Y gives the equation

m∑
i=0

fA[i]Ai+jY = 0n×β2 , ∀j ≥ 0,

and thus fA generates the block Krylov sequence. Similarly,

m∑
i=0

fA[i]XTAi+jY = 0β1×β2 , ∀j ≥ 0,
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and fA generates the block Wiedemann sequence.

Because the block Wiedemann and block Krylov sequences are linearly generated, all

of the results of Sections 4.1 and 4.2 hold for these matrix sequences. In particular, the

existence of the modules of right generating vector polynomials for the sequences over

F [λ] and the minimal generating matrix polynomials FA,Y
X and FA,Y . We now show

that the module over F [λ] of the right generating vector polynomials of the block Krylov

sequence {AiY }∞i=0 is a sub-module of the module of right generating vector polynomials

of the block Wiedemann sequence {XTAiY }∞i=0. This result will be used to relate FA,Y
X

and FA,Y .

Lemma 4.12. Let F be a field, A ∈ Fn×n, X ∈ Fn×β1, and Y ∈ Fn×β2 with 1 ≤

β1, β2 ≤ n. Then, the module GA,Y of right generating vector polynomials of the block

Krylov sequence {AiY }∞i=0 is a sub-module of the module GA,Y
X of right generating vector

polynomials of the block Wiedemann sequence {XTAiY }∞i=0.

Proof. By Lemma 4.1 on page 69, GA,Y and GA,Y
X are both sub-modules of the F [λ]-

module Fβ2 [λ], so we only need to show that GA,Y is contained within GA,Y
X .

Let C =
∑d

i=0 C[i]λi be a right generating vector polynomial for the block Krylov

sequence. Then,
d∑
i=0

Ai+jY C[i] = 0n, ∀j ≥ 0,

and
d∑
i=0

XTAi+jY C[i] = 0β1 , ∀j ≥ 0.
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Thus, C is a right generating vector polynomial for the block Wiedemann sequence, and

G
A,Y ⊂ GA,Y

X .

Any vector polynomial that generates the block Krylov sequence {AiY }∞i=0 must also

generate the block Wiedemann sequence {XTAiY }∞i=0. Thus, FA,Y generates the block

Wiedemann sequence, and we have the following relations between FA,Y
X and FA,Y . (Re-

call the definition of the invariant factors of a polynomial matrix from Definition 3.1 on

page 45.)

Theorem 4.11. Let F be a field, A ∈ Fn×n, X ∈ Fn×β1, and Y ∈ Fn×β2 with 1 ≤

β1, β2 ≤ n. Let N be the sum of the degrees of the β2 largest invariant factors of the

characteristic matrix λI − A,

N =

β2−1∑
i=0

deg(sn−i (λI − A)),

Then, FA,Y generates the block Wiedemann sequence {XTAiY }∞i=0 from the right,

deg(det(FA,Y
X )) ≤ deg(det(FA,Y )) ≤ N ≤ n,

and

deg(FA,Y
X ) ≤ deg(FA,Y ) ≤ deg(fA) ≤ n,

where fA is the minimal polynomial of the matrix A.

Proof. By Lemma 4.12 on the last page, the columns of FA,Y must generate the block
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Wiedemann sequence {XTAiY }∞i=0, so FA,Y must also generate {XTAiY }∞i=0. By The-

orem 4.3 on page 81, deg(det(FA,Y
X )) ≤ deg(det(FA,Y )) and deg(FA,Y

X ) ≤ deg(FA,Y ).

Because the block Krylov sequence is linearly generated by the minimal polynomial fA

of the matrix A,

deg(FA,Y ) ≤ deg(fA) ≤ n

by Corollary 4.4 on page 83.

For the rest of the proof, consider first the invariant factors of the minimal generating

matrix polynomial FA,Y and the characteristic matrix λI − A of the matrix A. The

i-th largest invariant factor of FA,Y divides the i-th largest invariant factor of λI − A

(Kaltofen and Villard, 2001, Theorem 1; 2002), so

deg(sβ2−i
(
FA,Y

)
) ≤ deg(sn−i (λI − A)), 0 ≤ i ≤ β2 − 1,

and, thus,

deg(det(FA,Y )) =

β2−1∑
i=0

deg(sβ2−i
(
FA,Y

)
) ≤

β2−1∑
i=0

deg(sn−i (λI − A)) = N ≤ n.

Theorem 4.11 gives an upper bound for the degree of the minimal generating matrix

polynomials and, thus, for γ2. Theorem 4.4 on page 87 says γ1 ≤ deg(fA) ≤ n for both

sequences. This is the best bound we can find for the block Wiedemann sequence given

a general block left projection X. However, we can find a much better bound for the

block Krylov sequence. To do so, we again turn to the block Hankel matrices.
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Just as we denoted the minimal generating matrix polynomials of the block Wiede-

mann and Krylov sequences as FA,Y
X and FA,Y , respectively, we will denote the block

Hankel matrices constructed from the block Wiedemann and block Krylov sequences as

HA,Y
X (ν1, ν2) and HA,Y (ν1, ν2). In other words,

HA,Y
X (ν1, ν2) =



XTY XTAY · · · XTAν2−1Y

XTAY XTA2Y · · · XTAν2Y

...
...

. . .
...

XTAν1−1Y XTAν1Y · · · XTAν1+ν2−2Y


∈ Fβ1ν1×β2ν2

and

HA,Y (ν1, ν2) =



Y AY · · · Aν2−1Y

AY A2Y · · · Aν2Y

...
...

. . .
...

Aν1−1Y Aν1Y · · · Aν1+ν2−2Y


∈ Fnν1×β2ν2

for all ν1, ν2 > 0. We will use these block Hankel matrices to determine a bound for γ1

for the block Krylov sequence.

Theorem 4.12. Let F be a field, A ∈ Fn×n, and Y ∈ Fn×β2 with 1 ≤ β2 ≤ n. Then,

rank(HA,Y (ν1, γ2 + 1)) = rank(HA,Y (1, γ2 + 1)) for all ν1 ≥ 1. In other words, γ1 = 1.
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Proof. Consider the block Hankel matrix HA,Y (ν1, γ2 + 1) for ν1 ≥ 1,

HA,Y (ν1, γ2 + 1) =



I

A

...

Aν1−1


[
Y AY · · · Aγ2Y

]
.

The left of these two matrices has full rank,

rank





I

A

...

Aν1−1




= n, ν1 ≥ 1

so, by Sylvester’s inequality (Gantmacher, 1977, page 66),

n+ rank

([
Y AY · · · Aγ2Y

])
− n ≤ rank(HA,Y (ν1, γ2 + 1))

≤ rank

([
Y AY · · · Aγ2Y

])

for all ν1 ≥ 1. Thus, rank(HA,Y (ν1, γ2 + 1)) = rank(HA,Y (1, γ2 + 1)) for all ν1 ≥ 1.

We have found bounds for γ1 and γ2 for the block Wiedemann and block Krylov

sequences, {XTAiY }∞i=0 and {AiY }∞i=0, respectively, using general projection matrices X

and Y . However, since these block projections will be randomly chosen in most cases,
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we can also bound the probability of γ1 and γ2 being smaller. Yet again, we consider the

rank of the block Hankel matrix.

By Villard (1997a, Corollary 1) and the Schwartz-Zippel Lemma, γ1 ≤ dn/β1e and

γ2 ≤ dn/β2e for random matrices X and Y with β1 ≥ β2. In other words, only the first

dn/β1e + dn/β2e entries of the block Wiedemann sequence are needed to compute the

minimal generating matrix polynomial FA,Y
X for random projections X and Y .

The bounds γ1 ≤ dn/β1e and γ2 ≤ dn/β2e hold for random projection matrices X

and Y , but it is possible to make bad random choices for the projections.

Example 4.2. Consider the companion matrix to the irreducible polynomial λ4 − 2,∗

A =



0 0 0 2

1 0 0 0

0 1 0 0

0 0 1 0


∈ R4×4,

and the block projection matrices

X = Y =

1 0 0 0

0 0 0 0


T

∈ R4×2.

The degree of the minimal generating matrix polynomial is deg(FA,Y
X ) = γ2 = 4. We

can use the FPHPS algorithm from Theorem 4.10 on page 117 with ν1 = ν2 = 4 to

∗Thank you to Gilles Villard for suggesting this example.
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compute the minimal generating matrix polynomial FA,Y
X . In this case, Theorem 4.10

gives the matrix

G =

1− 1
2
λ4 0

0 1


whose columns form a basis over F [λ] for GA,Y

X . Thus, the minimal generating matrix

polynomial is

FA,Y
X =

0 λ4 − 2

1 0

 = G

0 −2

1 0

 .
The block projection vector Y has introduced zero vectors, forcing γ2 and the degree of

the minimal generating matrix polynomial to increase.

Example 4.3. Consider the matrices A and X given by Example 4.2 along with the

block projection matrix

Y =

1 0 0 0

0 0 1 0


T

∈ R4×2.

Here, γ2 = 2 = dn/β2e. However, the first six matrices in the block Wiedemann

sequence are

XTY =

1 0

0 0

 , XTAY =

0 0

0 0

 , XTA2Y =

0 2

0 0

 ,
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XTA3Y =

0 0

0 0

 , XTA4Y =

2 0

0 0

 , and XTA5Y =

0 0

0 0

 .

This means rank(HA,Y
X (3, 3)) = 3, but rank(HA,Y

X (4, 3)) = 4, which is maximal. Thus,

γ1 = 4 > 2 = dn/β1e. The block projection vector X has introduced zero vectors, forcing

γ1 to increase. FA,Y
X cannot be computed from only the first dn/β1e+ dn/β2e = 4 entries

of the block Wiedemann sequence {XTAiY }∞i=0. Instead, we need {XTAiY }5
i=0. This

time, we can use the FPHPS algorithm from Theorem 4.10 on page 117 with ν1 = 4

and ν2 = 2 to compute the minimal generating matrix polynomial FA,Y
X . In this case,

Theorem 4.10 gives the matrix

G =

 1 −λ2

−1
2
λ2 1



whose columns form a basis over F [λ] for GA,Y
X . Thus, the minimal generating matrix

polynomial is

FA,Y
X =

λ2 −2

−1 λ2

 = G

 0 −2

−1 0

 .
Example 4.4. Finally, let X = Y where the matrices A and Y are given by Example 4.3.

Again, γ2 = 2 = dn/β2e. In this case, the first four matrices in the block Wiedemann
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sequence are

XTY =

1 0

0 1

 , XTAY =

0 0

0 0

 ,

XTA2Y =

0 2

1 0

 , and XTA3Y =

0 0

0 0

 .

This means rank(HA,Y
X (2, 3)) = 4, which is maximal. Thus, γ1 = 2 = dn/β1e, and

Theorem 4.10 on page 117 with ν1 = ν2 = 2 once again returns the matrix

G =

 1 −λ2

−1
2
λ2 1



whose columns form a basis over F [λ] for GA,Y
X . Thus, the minimal generating matrix

polynomial is again

FA,Y
X =

λ2 −2

−1 λ2

 = G

 0 −2

−1 0

 .

4.4 Block Rank Algorithm

The Kaltofen-Saunders rank algorithm discussed in Section 1.1.3 is a Monte Carlo al-

gorithm to compute the rank of a matrix A from the minimal polynomial f Ã of the

preconditioned matrix Ã. The algorithm relies on preconditioning the matrix A so that



CHAPTER 4. BLOCK WIEDEMANN METHOD 134

the minimal polynomial f Ã of the preconditioned matrix Ã is, with high probability,

f Ã = λ g(λ) where rank(A) = deg(g) and g(0) 6= 0. The algorithm then returns

rank(A) = deg(f Ã)− 1 = deg(f Ã)− codeg(f Ã)

where the co-degree, codeg(g), of the polynomial g is the degree of the smallest term

with nonzero coefficient. In other words,

g(λ) =

deg(g)∑
i=codeg(g)

g[i]λi

where g[codeg(g)] 6= 0 and g[deg(g)] 6= 0.

To convert this algorithm to a block version, we must first know how the invariant

factors of the minimal generating matrix polynomial FA,Y
X of the block Wiedemann se-

quence {XTAiY }∞i=0 relate to the invariant factors of the characteristic matrix λI − A.

If β1 ≥ β2, the i-largest invariant factor of FA,Y
X divides the i-largest invariant factor

of λI − A (Kaltofen and Villard, 2001, Theorem 1). We want to know the probability

they are equal for random block projections X and Y . This probability can be found

by examining determinantal degree of FA,Y
X and the rank of the block Hankel matrix

HA,Y
X (ν1, ν2 + 1) for random block projections. Lemma 4.6 on page 96 gives the rank of

the block Hankel matrix HA,Y
X (ν1, ν2 + 1) as a lower bound for the determinantal degree

of the minimal generating matrix polynomial FA,Y
X . The divisibility of the i-th largest

invariant factor of the characteristic matrix λI −A by the i-th largest invariant factor of
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FA,Y
X given in Theorem 1 of Kaltofen and Villard (2001) gives an upper bound. Thus, the

determinantal degree deg(det(FA,Y
X )) of FA,Y

X is trapped between these two quantities,

and the deg(det(FA,Y
X )) can be found when these quantities are equal. Lemma 4.13 gives

the probability of this happening for random block projections X and Y .

Lemma 4.13. Let F be a field, S be a finite subset of F, A ∈ Fn×n, and 1 ≤ β2 ≤ β1 ≤ n.

Let N be the sum of the degrees of the β2 largest invariant factors of the characteristic

matrix λI − A,

N =

β2−1∑
i=0

deg(sn−i (λI − A)).

If X ∈ Sn×β1 and Y ∈ Sn×β2 are matrices whose entries are chosen uniformly and

independently from S, then the rank of the block Hankel matrix

HA,Y
X (ν1, ν2 + 1) =



XTY XTAY · · · XTAν2Y

XTAY XTA2Y · · · XTAν2+1Y

...
...

. . .
...

XTAν1−1Y XTAν1Y · · · XTAν1+ν2−1Y


where ν1 = dN/β1e and ν2 = dN/β2e is

rank(HA,Y
X (ν1, ν2 + 1)) = N,

with probability at least 1− 2N/ |S| ≥ 1− 2n/ |S|.

Proof. The proof follows from Villard (1997a, Corollary 1) and the Schwartz-Zippel
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Lemma.

Let X and Y be matrices whose entries are indeterminates ζi,j and ξi,k, respectively,

over F where 1 ≤ i ≤ n, 1 ≤ j ≤ β1, and 1 ≤ k ≤ β2. The lemma is true for a submatrix

of the block Hankel matrix

HA,Y
X (ν1, ν2 + 1) =



XTY XTAY · · · XTAν2Y

XTAY XTA2Y · · · XTAν2+1Y

...
...

. . .
...

XTAν1−1Y XTAν1Y · · · XTAν1+ν2−1Y


(Villard, 1997a, Corollary 1; 1997b, Corollary 6.4). Thus, there exists an N×N minor of

HA,Y
X (ν1, ν2+1) that is not identically zero, and all larger minors are zero. Let the nonzero

N×N minor of HA,Y
X (ν1, ν2 +1) be denoted det

((
HA,Y
X (ν1, ν2 + 1)

)[i1,...,iN ;j1,...,jN ]
)

. The

entries of the matrix HA,Y
X (ν1, ν2 +1) are polynomials in the indeterminates ζi,j and ξi,k of

degree at most two, so the minor det

((
HA,Y
X (ν1, ν2 + 1)

)[i1,...,iN ;j1,...,jN ]
)

is a polynomial

in the indeterminates of degree at most 2N . If X and Y are the matrices that result

from choosing values for ζi,j and ξi,k uniformly and independently from S, the minor

det

((
HA,Y
X (ν1, ν2 + 1)

)[i1,...,iN ;j1,...,jN ]
)

is a nonzero element of F with probability at least

1 − 2N/ |S| by the Schwartz-Zippel Lemma. In addition, because all larger minors of

HA,Y
X (ν1, ν2 + 1) are zero, the larger minors of HA,Y

X (ν1, ν2 + 1) must also be zero. Thus,

the rank of HA,Y
X (ν1, ν2 + 1) must be N .

We are now able to present the probability that the i-th largest invariant factor
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of the minimal generating matrix polynomial FA,Y
X of the block Wiedemann sequence

{XTAiY }∞i=0 is the i-th largest invariant factor of the characteristic matrix λI −A. This

is essentially a proof of the second half of Theorem 1 of Kaltofen and Villard (2001).

Theorem 4.13. Let F be a field, S be a finite subset of F, A ∈ Fn×n, and 1 ≤ β2 ≤ β1 ≤

n. Let N be the sum of the degrees of the β2 largest invariant factors of the characteristic

matrix λI − A,

N =

β2−1∑
i=0

deg(sn−i (λI − A)).

If X ∈ Sn×β1 and Y ∈ Sn×β2 are matrices whose entries are chosen uniformly and

independently from S, then γ1 ≤ dN/β1e ≤ dn/β1e, γ2 ≤ dN/β2e ≤ dn/β2e, and the i-th

largest invariant factor of the minimal generating matrix polynomial FA,Y
X of the block

Wiedemann sequence {XTAiY }∞i=0 is the i-th largest invariant factor of the characteristic

matrix λI − A,

sβ2−i

(
FA,Y
X

)
= sn−i (λI − A) , 0 ≤ i ≤ β2 − 1,

with probability at least 1− 2N/ |S| ≥ 1− 2n/ |S|.

Proof. By Theorem 4.11 on page 126 and Lemma 4.6 on page 96,

rank(HA,Y
X (ν1, ν2 + 1)) ≤ deg(det(FA,Y

X )) ≤ N
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for all ν1 ≥ 0 and ν2 ≥ 1. However, if ν1 = dN/β1e and ν2 = dN/β2e, then

rank(HA,Y
X (ν1, ν2 + 1)) = N

with probability at least 1− 2N/ |S| ≥ 1− 2n/ |S| by Lemma 4.13 on page 135.

The probability of the invariant factors being equal given by Theorem 4.13, along

with the rank preconditioner presented in Section 3.2, gives a block Monte Carlo method

to compute the rank of a singular matrix.

Lemma 4.14. Let F be a field, S be a finite subset of F, A ∈ Fn×n have rank r with

r ≤ n − 1 and a nonzero r × r principal minor, and let 1 ≤ β2 ≤ β1 ≤ n. Let N be the

sum of the degrees of the β2 largest invariant factors of the characteristic matrix λI −A,

N =

β2−1∑
i=0

deg(sn−i (λI − A)).

Let X ∈ Sn×β1 and Y ∈ Sn×β2 be matrices whose entries are chosen uniformly and

independently from S, and let D = diag(d1, . . . , dn) where d1, . . . , dn are chosen uniformly

and independently from S. Then, the rank of A is

r = deg(det(FAD,Y
X ))− codeg(det(FAD,Y

X ))

and FAD,Y
X can be computed from the first dN/β1e+ dN/β2e matrices in the block Wiede-

mann sequence {XTAiY }∞i=0 with probability at least 1 − (4N + r(r + 1))/(2 |S|) ≥
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1− n(n+ 3)/(2 |S|).

Proof. By Theorem 3.4 on page 60, the characteristic polynomial of the preconditioned

matrix AD is det(λI − AD) = λn−rg(λ) where g(0) 6= 0 and the minimal polynomial

of AD is fAD = λ g(λ) and has degree deg(fAD) = r + 1, all with probability at least

1− r(r + 1)/(2 |S|). Thus, the product of the β2 largest invariant factors of λI − AD is

β2−1∏
i=0

sn−i (λI − AD) = λkg(λ)

where 1 ≤ k ≤ n−r, g(0) 6= 0, and deg(g) = r with probability at least 1−r(r+1)/(2 |S|).

At the same time,

det(FAD,Y
X ) =

β2−1∏
i=0

sβ2−i

(
FAD,Y
X

)
=

β2−1∏
i=0

sn−i (λI − AD)

and FAD,Y
X can be computed from the first dN/β1e+dN/β2e matrices in the block Wiede-

mann sequence {XTAiY }∞i=0 with probability at least 1− 2N/ |S| ≥ 1− 2n/ |S| by The-

orem 4.13 on page 137. Thus, the rank r of A is

r = deg(g) = deg(det(FAD,Y
X ))− codeg(det(FAD,Y

X ))

with probability at least

(
1− 2N

|S|

)(
1− r(r + 1)

2 |S|

)
≥ 1− 4N + r(r + 1)

2 |S|
≥ 1− n(n+ 3)

2 |S|
.
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A similar argument will hold for DA and FDA,Y
X .

Lemma 4.14 gives a block Monte Carlo approach to computing the rank of a singular

matrix A. Along with Theorem 4.2 in Chen et al. (2002), it gives a block Monte Carlo

approach to computing the rank of any matrix A.

Theorem 4.14. Let F be a field, S be a finite subset of F \ {0}, A ∈ Fn×n have rank r

and a nonzero r × r principal minor, and let 1 ≤ β2 ≤ β1 ≤ n. Let N be the sum of the

degrees of the β2 largest invariant factors of the characteristic matrix λI − A,

N =

β2−1∑
i=0

deg(sn−i (λI − A)).

Let X ∈ Sn×β1 and Y ∈ Sn×β2 be matrices whose entries are chosen uniformly and

independently from S, and let D = diag(d1, . . . , dn) where d1, . . . , dn are chosen uniformly

and independently from S. Then, the rank of A is

r = deg(det(FAD,Y
X ))− codeg(det(FAD,Y

X ))

and FAD,Y
X can be computed from the first dN/β1e+ dN/β2e matrices in the block Wiede-

mann sequence {XTAiY }∞i=0 with probability at least 1− n(n+ 3)/(2 |S|).

Proof. When A is singular, the proof follows directly from Lemma 4.14 on page 138.

Otherwise, if A is nonsingular, det(AD) 6= 0 and r = n. Furthermore, the characteristic

and minimal polynomials of the preconditioned matrix AD are equal, det(λI − AD) =

fAD, with probability at least 1 − n(n − 1)/(2 |S|) by Chen et al. (2002, Theorem 4.2).
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This means codeg(fAD) = 0 and the rank of A is

r = deg(fAD) = deg(fAD)− codeg(fAD)

with probability at least 1− n(n− 1)/(2 |S|).

At the same time,

det(FAD,Y
X ) =

β2−1∏
i=0

sβ2−i

(
FAD,Y
X

)
=

β2−1∏
i=0

sn−i (λI − AD) = fAD

and FAD,Y
X can be computed from the first dN/β1e+dN/β2e matrices in the block Wiede-

mann sequence {XTAiY }∞i=0 with probability at least 1− 2N/ |S| ≥ 1− 2n/ |S| by The-

orem 4.13 on page 137. Thus, the rank r of A is

r = deg(det(FAD,Y
X ))− codeg(det(FAD,Y

X ))

with probability at least

(
1− 2N

|S|

)(
1− n(n− 1)

2 |S|

)
≥ 1− 4N + n(n− 1)

2 |S|
≥ 1− 4n+ n(n− 1)

2 |S|

≥ 1− n(n+ 3)

2 |S|
.

Again, a similar argument will hold for DA and FDA,Y
X .

We now have a complete block Monte Carlo algorithm to compute the rank of any

matrix A. First, precondition the matrix A so the preconditioned matrix Ã has a nonzero
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r×r principal minor. For example, pre- and post-multiply by butterfly network precondi-

tioners. Then, construct the minimal generating matrix polynomial F ÃD,Y
X and compute

the rank of A from Theorem 4.14 on page 140.

Input: A ∈ Fn×n, S a finite subset of F \ {0}, and 1 ≤ β2 ≤ β1 ≤ n

Output: r = rank(A)

1: B1, B2 ← butterfly network preconditioners with parameters chosen uniformly and

independently from S

2: D ← diag(d1, . . . , dn), d1, . . . , dn chosen uniformly and independently from S

3: Ã← B1
T AB2 D

4: Choose X ∈ Sn×β1 and Y ∈ Sn×β2 uniformly and independently

5: ν1 ← dn/β1e and ν2 ← dn/β2e

6: Compute F Ã,Y
X from {XTAiY }ν1+ν2−1

i=0 (E.g., via the FPHPS algorithm.)

7: r ← deg(det(F Ã,Y
X ))− codeg(det(F Ã,Y

X ))

This is a Monte Carlo method to compute the rank of a matrix A. There is currently

no certificate for the rank of a matrix over an arbitrary field. However, this Monte Carlo

method will always return a value that is no larger than the rank of the matrix.

Theorem 4.15. Let F be a field, A ∈ Fn×n have rank r, and 1 ≤ β2 ≤ β1 ≤ n. Let

X ∈ Fn×β1, Y ∈ Fn×β2, and D = diag(d1, . . . , dn) ∈ Fn×n. Then, the rank of A is bounded
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from below by

r ≥ deg(det(λI − AD))− codeg(det(λI − AD))

≥ deg(det(FAD,Y
X ))− codeg(det(FAD,Y

X )).

Proof. By Theorem 3.5 on page 63, λn−r divides the characteristic polynomial det(λI −

AD) of AD. Thus, codeg(det(λI − AD)) ≥ n− r and

deg(det(λI − AD))− codeg(det(λI − AD)) ≤ n− (n− r) = r.

The i-th largest invariant factor of FAD,Y
X divides the i-th largest invariant factor of

the characteristic matrix λI − AD (Kaltofen and Villard, 2001, Theorem 1; 2002), so

det(FAD,Y
X ) divides the characteristic polynomial det(λI − AD). Let

det(FAD,Y
X ) = λk1g1(λ) and det(λI − AD) = λk2g2(λ),

where g1(0) 6= 0 and g2(0) 6= 0. Then, g1 | g2, deg(g2) ≥ deg(g1),

deg(det(λI − AD))− codeg(det(λI − AD)) = deg(g2),

and

deg(det(FAD,Y
X ))− codeg(det(FAD,Y

X )) = deg(g1).

Theorem 4.15 means that the block Monte Carlo rank algorithm will always return a
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value that is no larger than the rank of the original matrix A.

This algorithm is similar to the one presented by Kaltofen and Saunders (1991, The-

orem 3). In this block version, if the butterfly network preconditioners B1 and B2 are

constructed using the generic exchange matrix of Chen et al. (2002, Section 6.2), then they

each use at most ndlog2(n)e/2 random elements from S (Chen et al., 2002, Theorem 6.2)

and are PreCondInd preconditioners with probability at least 1−rdlog2(n)e/ |S| (Chen

et al., 2002, Theorem 6.3). Thus, the leading r×r principal minor of B1
T AB2 is nonzero

with probability at least

(
1− rdlog2(n)e

|S|

)2

≥ 1− 2rdlog2(n)e
|S|

≥ 1− 2ndlog2(n)e
|S|

(Chen et al., 2002, Theorem 3.1). Thus, the complete algorithm uses a total of at most

2
ndlog2(n)e

2
+ n+ β1n+ β2n = n (β1 + β2 + 1 + dlog2(n)e)

random elements from S and returns the correct rank with probability at least

(
1− 2rdlog2(n)e

|S|

)(
1− n(n+ 3)

2 |S|

)
≥ 1− n(n+ 3) + 4rdlog2(n)e

2 |S|

≥ 1− n(n+ 3 + 4dlog2(n)e)
2 |S|

.

For comparison, the probability that the minimal polynomial fA,vu of the Wiedemann

sequence {uTAiv}∞i=0 is equal to the minimal polynomial f Ã of the matrix A is at least

1 − 2 deg(fA)/ |S| (Kaltofen and Pan, 1991, Lemma 2), which is the probability given



CHAPTER 4. BLOCK WIEDEMANN METHOD 145

by Theorem 4.13 on page 137 with blocking factors β1 = β2 = 1. Thus, the Kaltofen-

Saunders rank algorithm with the same preconditioner uses no more than

2
ndlog2(n)e

2
+ 3n = n (3 + dlog2(n)e)

random elements from S and returns the correct rank with probability at least

1− 4 deg(f Ã) + r(r + 1) + 4rdlog2(n)e)
2 |S|

≥ 1− n(n+ 3 + 4dlog2(n)e)
2 |S|

.

The block rank algorithm with a diagonal preconditioner and blocking factors β1 = β2 = 1

is the original Kaltofen-Saunders rank algorithm with the same preconditioner and that

increasing the blocking factors causes an increase in the number of random field elements

required and a decrease in the algorithms probability of success.

On the other hand, the block algorithm has two advantages over the non-blocked

form. One is that it is a parallel algorithm (Coppersmith, 1994; Kaltofen, 1995; Villard,

2000). The other is that it captures more than just the largest invariant factor of the

characteristic matrix λI−A. The rank preconditioner used in Theorem 4.14 on page 140

does not take advantage of this, but other preconditioners may exist that do.
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LinBox Design

The dominant goal of the LinBox project is to produce algorithms and software for

symbolic linear algebra, in particular black box linear algebra. The LinBox library is

“middleware”, focusing primarily on the algorithms and not implementing the underlying

field arithmetic or the final interface a user might encounter. It is designed to be plugged

into another package such as Maple or Mathematica. On the other end of the spectrum,

the library uses generic or reusable programming to access existing libraries to implement

the field arithmetic needed in the library’s algorithms, allowing the code to operate over

many coefficient domains and a variety of implementations for any given domain (Dumas

et al., 2002).

At the top level, the library provide algorithms for many standard problems in linear

algebra. As input, these algorithms accept black box matrices. Any object conforming

with the specification for a black box matrix can be plugged into these algorithms.

146
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At a lower level, our code must operate over many coefficient domains. A user must

even be able to easily change the implementation of a given coefficient domain. For

instance, one might plug any of several implementations of the integers modulo a prime

number into our code. We might want to use Victor Shoup’s Number Theory Library

(NTL) class ZZ_p, which implements the field using arbitrary length integers and residue

arithmetic [shoup.net], or we might want to use an implementation that performs the

field operations through Zech logarithm tables. We might also plug in a field of rational

functions. We might or even use floating point numbers, although the resulting methods

may not be numerically stable. We can capture many future improvements on field

arithmetic without rewriting our programs. At very, stage we have applied the principle

of generic or reusable programming.

Project LinBox implements generic programming through C++ templates and virtual

member functions. Using the template mechanism, we are able to write our code only

once (Stroustrup, 1997, Chapters 12 and 13). By providing the coefficient domain over

which it acts as a template parameter, the code may be instantiated for many different

domains. For example, the function foo is template-parameterized by the domain over

which it acts:

template <class Domain>

Domain foo(Domain a, Domain b) { return a + b; }

The function returns the sum of its two inputs, and it may be applied to any type

Domain that has the required + operator. One can then call the function foo(x,y),
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where x and y are the C++ types double, and the function foo(m,n) where m and n are

the C++ types int. In both cases, the function foo is automatically instantiated for the

type on which it acts. We may also call the instantiation explicitly using the function

calls foo<double>(x,y) and foo<int>(m,n).

The LinBox library follows Java’s naming convention for all classes and functions

internal to the library. This means names composed of multiple words are combined

with capital letters for each word. Also, the first letter of class names is capitalized,

while it is not for function names. For example, MyClass and myFunction are valid

names for a LinBox class and function, respectively.

5.1 Archetypes

The LinBox library provides archetype classes for fields and black box matrices. An

archetype serves three purposes: to define the common object interface, to supply one

instance of the library as distributable compiled code, and to control code bloat.

An archetype is an abstract class whose role is similar to that of a Java interface.

It specifies exactly what methods and members an explicitly designed class must have

to be a pluggable template parameter type. A programmer can use the archetype as a

template to create new fields or black box matrices that satisfy the interface. One does

not need to resort to printed documentation about the library.

One disadvantage of the C++ template mechanism is that the source code for tem-

plate functions and classes must be available to the programmer. Templatized libraries
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cannot be distributed as compiled code because compilation requires a concrete instance

for each templatized object.

An archetype provides a way to overcome this disadvantage and conceal the library

source code from a programmer. Through the use of pointers and virtual member func-

tions, the field archetype can hook into different LinBox fields. The templatized code

may be compiled and distributed using the archetype as the template parameter. One

can then access the template functions through the archetype mechanism.

Another disadvantage of the template mechanism is that compilation of a template-

parameterized function or class causes compiled code to be created for each instantiation

of the template. By compiling the code using the archetype as the template parameter,

less compiled code is created.

Sections 5.3 and 5.5 discuss the archetypes for LinBox fields and black box matrices,

respectively, in greater detail.

5.2 Integers

The LinBox library needs to be able to use matrices and vectors of very large dimensions.

To do this, the library has a type integer to index matrix and vector elements and for

any other function requiring an integer type. The LinBox type integer is a widening

of the C++ long type. Any type that implements arbitrarily long integers and has all

the operations of a C++ long may be used. This means, among other things, that the

operations +, -, *, /, and % must be defined for the type, along with their inplace coun-



CHAPTER 5. LINBOX DESIGN 150

terparts: +=, -=, *=, /=, and %=. The type must also have default and copy constructors.

LinBox uses GNU multiprecision integers for the type integer by default.

5.3 Fields, Elements, and Random Generators

The algorithms in the LinBox library are designed to operate with a variety of domains.

In particular, we are interested in the finite fields of integers modulo a prime number.

To perform the required arithmetic for these finite fields, algorithms must have access to

additional parameters. For the fields of integers modulo a prime number, the parameter

required is the prime modulus. To allow the code to be generic, the prime modulus

cannot be passed directly to the algorithms. Other fields may have different parameters.

Some fields, such as the field of rational numbers, have no parameters. Our code must

operate on all possible fields.

Instead of passing these parameters explicitly to the algorithms, we want to incorpo-

rate them into the objects that represent the field and its elements. There are several

ways to this. One way would be to explicitly store the required parameters in each field

element object, but this would require a copy of the parameters for each element. One

could store the parameters once and instead include pointers to them from each field

element, but this requires memory to store the pointers. With both of these options, the

parameters could easily be changed for each field element. The parameters would not

need to be the same for all elements. It is possible to reduce the storage requirement by

storing the parameters as global variables. This is the approach taken in Victor Shoup’s
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Number Theory Library (NTL), for example. There is no added storage for the param-

eters with each element, but it is then impossible to operate over more than one field at

the same time.

The LinBox library takes a different approach. Our design uses two separate objects:

a field object and an element object, where the element type is encapsulated within the

field type:

Field F;

Field :: Element x;

Here, Field is an user-defined or library type.

The element object contains only basic information about the element representation

and is oblivious to what field it belongs. It may be of type C++ long, for integers

modulo a word-size prime, or a more complicated data structure declared elsewhere in

the library. The field interface requires only that the data type support C++ assignment

and a copy constructor. (See Appendix B.1.)

The field object contains all of the methods requiring access to the field parameters.

A LinBox field type contains constructors, destructors, and assignment and equality

operators for field objects. (See Appendix B.2.)

Because elements by themselves do not have access to the field parameters, a LinBox

field contains an initialization method. Every LinBox element must be initialized by a

field before it is are used. For example, the function call F.init(x,5) initializes the

element x to have a value in the field F corresponding to the integer 5. What this
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corresponding value is depends on the field being used. This initialization is especially

important because pointers may be used in the field element implementation. In this

case, initialization ensures the pointers point to a valid object.

LinBox fields provide additional methods that may be used once the element ob-

jects have been initialized. For instance, all fields contain methods for assignment and

equality-testing of element objects. The function call F.areEqual(x,y) tests whether

the elements x and y are equal in the field F and returns a boolean true or false. Sim-

ilarly, the function calls F.isZero(x) and F.isOne(x) test whether the element x is the

zero or one of the field F.

LinBox fields also provide methods for arithmetic such as addition and subtraction

of element objects similar to the + and - operators for C++ types. For example, the

function call F.add(x,y,z) adds the elements y and z in the field F, stores the result in

the element x, and returns a reference to x. Similarly, a LinBox field contains the methods

F.sub(x,y,z), F.mul(x,y,z), and F.div(x,y,z) for subtraction, multiplication, and

division. Thus, the code

Field F;

Field :: Element x, y, z;

F.init(y,2);

F.init(z,3);

F.mul(x,y,z);

can be used to multiply 2 times 3 in the field F. A LinBox field also contains two methods
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to compute the additive and multiplicative inverses of a field element. The function call

F.neg(x,y) stores the additive inverse (negation) of y in the field F in the element x.

Similarly, F.inv(x,y) makes x the multiplicative inverse of y in the field F.

In addition to these arithmetic methods, LinBox fields contain methods for inplace

arithmetic such as is done by the C++ operators += and -=. For example, F.subin(x,y)

subtracts the element y from x in the field F and stores the result in the element x.

Similarly, the methods F.addin(x,y), F.mulin(x,y), F.divin(x,y), F.negin(x), and

F.invin(x) are provided for inplace addition, multiplication, division, negation, and

multiplicative inversion.

Because addition and multiplication and are often performed together, for example in

computing the inner product of two vectors, the function call F.axpy(z,a,x,y) multiplies

a with x and adds the product to y in the field F. The result is stored in the element z and

returned as a reference. Similarly, F.axpyin(y,a,x) is the inplace version of the method,

storing the result in the element y. These methods may result in some performance gain.

For example, in a field of integers modulo a prime number, the modular reduction may

be delayed until after both the addition and multiplication are performed.

Finally, LinBox fields contain methods for printing and reading field and element

objects to and from an IO stream such as cin and cout. Thus, the function call

F.write(cout,x) writes the element x to the output stream cout, and F.read(cin,x)

reads the element x from the input stream cin.

Any LinBox field must contain these basic methods; more methods may be created by
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using derived classes. Template-parameterized algorithms and objects may also be used

to add additional functionality. For example, the FieldAXPY object wraps the axpyin

method of a field.∗ It is template-parameterized by a LinBox field and stores the result

of the axpyin operation so that the FieldAXPY object contains the running sum of the

products. It is constructed from a field object, and it assigns the initial value of zero to

the sum. Thus, the code

FieldAXPY Y(F);

Y.accumulate(a,d);

Y.accumulate(b,e);

Y.accumulate(c,f);

y = Y.get();

computes the value y = a*d + b*e + c*f. The function call Y.assign(x) may also be

used to assign the value of the field element x to the stored value of Y. The FieldAXPY

object may be used to compute the inner product of two vectors, and template special-

izations allow a programmer to gain performance. For instance, the modular reduction

may be delayed even further in a field of integers modulo a prime.

For each field type Field, there exists an encapsulated class Field::RandIter that

uniformly generates random elements of the field or an unspecified subset of a given

cardinality. (See Appendix B.3.) Many of the algorithms in the LinBox library depend

on the availability of such random field elements. (See, for example, the Wiedemann

∗Much of the work of the current FieldAXPY was implemented by Bradford Hovinen.
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nonsingular system solver discussed in Section 1.1.1 and the Kaltofen-Saunders rank

algorithm discussed in Section 1.1.3.)

Every field, whether or not it requires parameters such as a prime modulus, to perform

arithmetic, has the same interface. Because there is no distinction between parametric

and unparametric fields, and because a default constructor does not make sense for a

parametric field, we cannot require a LinBox field to have a default constructor. This

means LinBox algorithms cannot employ a default constructor for an abstract field. The

algorithms can, however, use a copy constructor. Every field must be created explicitly

and passed to the algorithm.

The LinBox library provides a template wrapper class for wrapping a C++ data type

into an unparametric field meeting the LinBox interface. For example, the LinBox field

UnparametricField<double> F wraps the C++ double type into an object F meet-

ing the interface of a LinBox field. The LinBox field F acts on elements of the type

UnparametricField<double>::Element, which is exactly the type double. The wrap-

per can be used on any type or class that supports the standard assignment, arithmetic,

and equality operations: =, +, -, *, ==, etc. If a type implements a method in a different

manner, one can use a partial template specialization to define the corresponding field

method. For example, the class ZZ_p of Victor Shoup’s NTL implements most of the

standard operations, and the following example adjusts the inv function to the signature

of LinBox’s inv method.

template <> NTL::ZZ_p&

UnparametricField<NTL::ZZ_p >::inv(
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NTL::ZZ_p& x, const NTL::ZZ_p& y

) const

{ return x = NTL::inv(y); }

This allows us to easily adapt fields from other libraries to LinBox. The added level of

indirection created by the template wrapper class is relatively small because the compiler

will remove most of it during compilation (Stroustrup, 1997, Section 2.7.1). Thus, we

are able to use the compiler to ease the job of the programmer.

The performance lost by wrapping a field with this wrapper varies from field to field

and even among the methods of a given field. For example, Table 5.1 on the following page

shows the time needed to compute a given number of additions and multiplications using

NTL::zz_p. This test, which was inspired by Dumas et al. (2002, Section 2), initializes

a field element to the zero value and then runs a loop the indicated number of times.

This loop first adds a = 3 to the value and then multiplies it by b = 1100. The test was

run on a dual-processor 750 MHz Pentium III machine with 1 GB of memory running

Red Hat 7.1. The test was compiled with the GNU Project’s open-source g++-2.96 C++

compiler distributed with Red Hat 7.1 using the -O3 optimization flag, which turns on all

optimization except unrolling loops and strict aliasing. In particular, all simple functions

are integrated into their callers.

The first two rows of the table show the time used when calling NTL::zz_p directly

and as the LinBox field UnparametricField<NTL::zz_p>. The third row of the table

shows the corresponding time when elements are initialized at each step. We see there is
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Table 5.1: Time in seconds to compute the N additions and multiplications using NTL::

zz_p directly and as the LinBox field UnparametricField<NTL::zz_p> using the prime
32749.

N 107 2× 107 3× 107 4× 107 5× 107 6× 107

Directly 1.38 2.75 4.15 5.51 6.92 8.34
LinBox field 1.34 2.73 4.07 5.39 6.79 8.14
LinBox field with init 9.83 19.60 29.42 39.20 49.02 59.05

no increase in running time when using the field wrapper if when no new field elements

are initialized, but the initialization is very costly.

A user can also supply a new field to LinBox code. This user-supplied field may

perform better than a wrapped field. For example, the LinBox library contains the field

Modular of integers modulo a prime number. This field is template-parameterized by

an integer type representation for the field elements. Table 5.2 shows the time needed

to compute the same number of additions and multiplications using the LinBox field

Modular<long>. We see the running time is less than that of even using NTL::zz_p

directly, partly because the NTL::zz_p has additional overhead to allow word-sized primes

to be used. Modular<long> does not ensure the arithmetic operations do not overflow

the memory allocated to the representation. This makes this field faster, but it also limits

the size of the prime the field may use.

Table 5.2: Time in seconds to compute the N additions and multiplications using
Modular<long> using the prime 32749.

N 107 2× 107 3× 107 4× 107 5× 107 6× 107

LinBox field 1.25 2.50 3.77 5.06 6.39 7.57
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The field archetype defines the interface that all field implementations must satisfy.

Any class that meets that interface can be hooked into a generic algorithm. The archetype

FieldArchetype points to an abstract base class FieldAbstract that introduces a vir-

tual copy method (“clone”). (See Figure 5.1.) This added level of indirection allows the

archetype to have an STL-compliant copy constructor, thus allowing the library to use

the default allocator in the Standard Template Library.

Abstract Base ClassField Archetype

Concrete Field

virtual functions

pointers

Figure 5.1: LinBox field archetype

To aid in hooking any archetype-compliant field type onto this abstract class, LinBox

provides a template class called FieldEnvelope. For example, we saw earlier that the

field UnparametricField<double> F complies with the LinBox field interface. Then, the

envelope object FieldEnvelope< UnparametricField<double> > E(F) is of a class de-

rived from the abstract field type FieldAbstract and can be used by the field archetype.

A LinBox field archetype object may be constructed from a pointer to any field that com-

plies with the LinBox field interface by way of a FieldEnvelope object. Thus, the field

archetype object FieldArchetype A(&F) contains a pointer to the FieldEnvelope ob-
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ject created by wrapping the field F in the FieldEnvelope template class.†

A generic algorithm can also be instantiated with the archetype and compiled sepa-

rately. Code making use of this algorithm can supply a field inherited from the abstract

field type and link this field against the compiled code. This will cause a modest perfor-

mance loss resulting from the inability to inline field operations and from the additional

memory indirection.

This performance loss can be seen by comparing the running times for library code

using both the LinBox field itself and the field archetype. For example, Table 5.3 on the

next page shows the running time in seconds to compute the minimal polynomial fA of

an n×n Trefethen matrix for several dimensions n using Wiedemann’s method and three

LinBox fields of integers modulo a prime number. (See Section 5.6 for a description of

the Trefethen matrix.) As in the previous test, this test is run using the LinBox field

Modular<long> and the wrapped field UnparametricField<NTL::zz_p> of NTL::zz_p

elements. As before, the test was run on a dual-processor 750 MHz Pentium III machine

with 1 GB of memory running Red Hat 7.1 and was compiled with the g++-2.96 C++

compiler using the -O3 optimization flag.

Table 5.4 on the following page shows the corresponding running times using the

field archetype. The code using the field archetype takes longer than the code without

the archetype. In this example, we see the additional running time in using the field

archetype is approximately the same for both fields and a given dimension n. This is

†The FieldEnvelope template class and the FieldArchetype A(&F) constructor were suggested and
implemented by Jean-Guillaume Dumas.
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Table 5.3: Time in seconds to compute the minimal polynomial of a n×n Trefethen matrix
using the LinBox fields Field1=Modular<long> and Field2=UnparametricField<NTL::

zz_p> of integers modulo the prime 32749.

n 1000 2000 3000 4000 5000 6000 7000 8000
Field1 0.83 3.51 8.14 14.73 23.43 34.07 46.88 61.61
Field2 1.19 4.89 11.26 20.47 32.08 46.63 63.87 83.85

to be expected since the additional time results from dereferencing pointers and the

number of pointers to be dereferenced should depend on the size of the problem and not

the field being used. As before, the wrapped NTL field has longer running times than

Modular<long> because of the overhead involved in ensuring the representation will not

overflow its storage, but this is somewhat balanced by the limitations on the prime that

can be used.

Table 5.4: Time in seconds to compute the minimal polynomial of a n × n Tre-
fethen matrix using FieldArchetype and the LinBox fields Field1=Modular<long> and
Field2=UnparametricField<NTL::zz_p> of integers modulo the prime 32749.

n 1000 2000 3000 4000 5000 6000 7000 8000
Field1 2.73 11.32 25.90 60.07 117.1 160.23 266.68 360.75
Field2 3.02 15.23 29.42 54.15 101.29 191.50 276.27 395.42

5.4 Vectors

LinBox has both dense and sparse vectors. Dense vectors store every entry of the vector,

making no distinction between zero and nonzero field elements. To implement dense
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vectors in the LinBox library, we decided to incorporate the C++ Standard Template

Library (STL) vector of field elements. However, we disallow any vector methods that

would invalidate any iterators. This means a LinBox algorithm is not allowed to perform

any operation that may change the size of a dense vector that is passed as an argument

to the code. These operations include the assignment operator = and the vector methods

assign, push_back, pop_back, insert, erase, resize and reserve (Musser and Saini,

1996, Section 6.1).

Sparse vectors, on the other hand, store only the nonzero entries of the vector. There

are two types of LinBox sparse vectors: sparse sequence vectors and sparse associative

vectors. Sparse sequence vectors are implemented like an STL sequence of pairs of the

LinBox integer indices of the nonzero elements and the corresponding field elements.

For example, an STL list std::list< std::pair< integer, Element > > or an STL

vector std::vector< std::pair< integer, Element > >. This implementation is ef-

ficient for iterating through the nonzero entries. However, given an index, finding the

vector entry must be implemented as a linear search of the STL sequence container.

Sparse associative vectors provide a better implementation to access a vector entry by

index. They have the interface of an STL unique and associative container of the LinBox

integer index values and the corresponding field elements. In other words, they may be

implemented via an STL map std::map<integer, Element>. However, the C++ map

operator operator[] is disallowed to avoid storing zero values in the sparse associative

vector. Due to its data structure, a map entry access is logarithmic time (Musser and
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Saini, 1996, Section 7.2).

5.4.1 Traits

To aid in writing code for the various vector types, the LinBox library uses the trait

technique introduced by Myers (1995). Vector traits can include data members to be

used as tags for the type of vector and aid code in distinguishing which algorithm should

be applied to a given vector.

To accomplish this, the library contains a structure VectorCategories that contains

tags for each of the three vector types:

struct VectorCategories

{

template <class T> struct DenseVectorTag

{ typedef T Trait ; };

template <class T> struct SparseSequenceVectorTag

{ typedef T Trait ; };

template <class T> struct SparseAssociativeVectorTag

{ typedef T Trait ; };

};

To allow easy access to the trait class, the tag structures are template-parameterized by

the trait class T.‡ Such access can be useful to further specialize code that has already

‡Thank you to Dmitri@i Morozov (Dmitriy Morozov) for suggesting and implementing the template
parameterization in the vector trait classes.
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been specialized by the vector category tag.

The vector trait class is template-parameterized by the vector class to which it refers

and contains two types. The type VectorType is the vector to which the trait class

refers. The other, VectorCategory, is the vector category tag type. For example, the

specialization for the STL vector of field elements is the following:

template <class Element>

struct VectorTraits < std:: vector<Element > >

{

typedef std:: vector<Element > VectorType;

typedef typename

VectorCategories :: DenseVectorTag<

VectorTraits<VectorType>

> VectorCategory;

};

In addition to this basic tagging feature, traits can be used to provide additional

functionality for the vectors. For example, the trait classes for the sparse sequence

vector types might provide a sort function to sort the pairs of indices and field elements

in ascending ordering of the indices. This sorting must be implemented differently for

random access sequence containers such as the STL vector than for forward iterator

containers such as the STL list. The trait class allows the library to provide a uniform

calling mechanism.
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5.4.2 Subvectors

It may be useful at times to pass only part of a vector to a LinBox function. For example,

a block algorithm, such as discussed in Chapter 4, may store matrices internal to the

algorithm as an STL vector of field elements. The rows and columns of the matrices can

then be thought of as subvectors of this LinBox dense vector.

At access these subvectors, the LinBox library provides a subvector wrapper class

Subvector<Vector> that wraps any dense vector type. A Subvector<Vector> object is

constructed from a dense vector and three integers.

Subvector(v, start, stride , length ) s;

One integer, start, determines where the subvector starts in relation to the parent

vector. Another, length, designates the length of the subvector. The third, stride,

indicates how far apart the entries of the subvector are on the parent vector. Thus, a

m × n matrix A is stored as a dense vector v such that the (i, j)-th entry of A is the

(m(i − 1) + j)-th entry of v, A[i,j] = v[m(i−1)+j], the i-th row of A can be accessed with

start = im, length = n, and stride = 1; and the j-th column of A can be accessed

with start = j, length = m, and stride = n.

Example 5.1. The matrix

A =

3 1 4 6

3 2 1 3


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can be stored as the dense vector

v =

[
3 1 4 6 3 2 1 3

]T

.

The i-th row of A can be accessed as a subvector of v with start = 2i, length = 4, and

stride = 1. Similarly, the j-th column of A can be accessed as a subvector of v with

start = j, length = 2, and stride = 4. Indexing always starts at zero, not one.

5.5 Black Box Matrices

The LinBox black box matrix archetype is simpler than the field archetype because the

design constraints are less stringent. As with the field type, we need a common object

interface to describe how algorithms are to access black box matrices, but it only requires

functions to access the matrix’s dimensions and to apply the matrix or its transpose to

a vector. (See Appendix B.4.) In particular, the black box matrix archetype does not

need to have a copy constructor like the field archetype does. Instead, the function call

B.clone() returns a pointer to a new black box matrix archetype object that is a copy

of the black box matrix archetype object B. Thus, our black box matrix archetype is

simply an abstract class. (See Figure 5.2 on the next page.) In addition, the overhead

involved with the inheritance and virtual methods is negligible in comparison with the

execution time of the methods. This was not the case for the field and element types.

This relatively small overhead allows us to use the black box archetype directly in LinBox
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library algorithms. Thus, we do not template-parameterize our algorithms with a black

box type. The user provides a specific derived class of the black box archetype to the

algorithm.

Black Box Matrix Archetype

virtual functions

Concrete Black Box Matrix

Figure 5.2: LinBox black box matrix archetype

The black box matrix archetype contains methods to access the matrix’s dimensions.

The function calls B.coldim() and B.rowdim() return integers representing the column

and row dimensions, respectively, of the matrix B. These are not true dimensions, but

rather an upper bound on the dimensions of the nonzero entries of the matrix.

The LinBox black box matrix archetype also contains methods to apply the matrix

to a vector. For example, the function call B.apply(x,y) computes the matrix-vector

product of the matrix B and the vector y, stores the result in the vector x, and re-

turns a reference to x. Similarly, the function call B.applyTranspose(x,y) computes

the matrix-vector product of the transpose of the matrix B and the vector y, stores the

result in the vector x, and returns a reference to x. The function calls B.apply(x) and

B.applyTranspose(x) return references to the respective matrix-vector products with-

out storing the result, and the function calls B.applyIn(x) and B.applyTransposeIn(x)
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are inplace methods to place the results of the matrix-vector products in the same memory

as the input vectors. For convenience, some of these methods have default implementa-

tions in the archetype. For example, apply and applyTranspose each have three variants

that handle allocation of the input and output vectors differently. Only the first variant

of each, B.apply(x,y) and B.applyTranspose(x,y), must be implemented by a derived

black box matrix class. The archetype base class provides default implementations of the

other variants, but a derived class can override them.

The black box matrix archetype is template-parameterized by the vector type upon

which the apply methods act, but not by the field in which the arithmetic is done. We saw

no reason to template-parameterize the matrix archetype by the field since the derived

matrix class may still incorporate the arithmetic field without the archetype base class

needing to access it. This may even be implemented as a template parameter, but such

genericity may not be required. The LinBox library contains several black box matrix

classes that are not templatized by a field type. For example, the black box matrix type

Permutation creates a permutation matrix that permutes the values of an input vector.

The library also contains black box matrices Transpose to transpose a black box matrix

and Compose to compose two matrices. In other words, if the black box matrix C is the

composition of the black box matrices A and B, the function call C.applyin(x) yields

the same result as first calling the function B.applyin(x) and then A.applyin(x).

The LinBox library also contains several black box matrix types that are template-

parameterized by a field type. The class Diagonal contains a diagonal black box matrix,
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and the class Hilbert contains a Hilbert matrix. The library also contains two sparse

matrix types, SparseMatrix0 and SparseMatrix1. These sparse matrix classes both

store each row of the matrix as a LinBox sparse vector.

The field is also always available as an argument to black box algorithms, which may

perform additional coefficient field operations and need access to the field themselves. In

addition, variants of the apply and applyTranspose methods are provided through which

a user could pass additional information, including the field over which to operate. This

might be useful in an algorithm such as the Kaltofen’s baby steps/giant steps determinant

algorithm for a dense integer matrix where several fields are used with the same matrix.

As discussed in Section 5.4, LinBox algorithms cannot invalidate iterators to the vec-

tor arguments. This means that the black box matrix apply methods for dense vectors

cannot perform any operations that may change the size of the vectors passed as argu-

ments to the method. It is the responsibility of the library user to ensure the vector

arguments are of the correct size.

5.6 Trefethen’s Challenge

Recently, Nick Trefethen issued a challenge to numerical analysts to solve ten problems,

each to ten digits of accuracy (Trefethen, 2002). The problems, all numerically difficult,

ranged across numerical analysis. One problem, number seven, is the computation of the

(1, 1) entry of the inverse A−1 of the 20000× 20000 matrix A whose entries are all zero

except for the first 20,000 primes, 2, 3, 5, 7, . . . , 224737, along the main diagonal and the
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number 1 on the diagonals whose distance from the main diagonal is a power of two. In

other words, the number 1 is in all positions (i, j) such that |i− j| = 2k for 0 ≤ k ≤ 14,

A[i,j] = 1 if |i− j| = 1, 2, 4, 8, . . . , 16384.

The LinBox project took this as a challenge to compute the exact solution to the prob-

lem, which is a rational number with approximately 100,000 digits in each the numerator

and denominator. This computation is far beyond the capability of Maple, Mathemat-

ica, and any other commercial computer algebra software system using current processors

and memories (Dumas et al., 2002, Section 4). Project members responded by using not

one, but three different approaches. All three methods, however, attempted to solve the

problem by finding the solution to the linear equation

Ax = e1 =

[
1 0 0 · · · 0

]T

.

The first entry of x is the (1, 1) entry of A−1.

Jean-Guillaume Dumas attacked the problem by using Cramer’s rule, which says that

the i-th component of the solution to the linear equation Ax = b is the quotient of the

determinant of the matrix formed by replacing the i-th column of A with the vector b

and the determinant of the original matrix A,

x[i] =
det(A←−

i
b)

det(A)
=

det(A←−
i
e1)

det(A)
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(Horn and Johnson, 1985, Section 0.8.3). Thus, the solution to the problem can be found

by taking the quotient of two determinants,

(A−1)
[1,1]

=
det(A←−

1
e1)

det(A)
. (5.1)

Because the only nonzero entry of the unit vector e1 is the one in the first position,

minor expansion says the numerator is the trailing 19, 999 × 19, 999 principal minor

det
(
A[2,...,20000;2,...,20000]

)
of A resulting from deleting the first row and column. Each de-

terminant can be bounded either directly by Hadamard’s inequality as in Section 1.1.5 or

by using Geršgorin discs to bound the eigenvalues (Horn and Johnson, 1985, Section 6.1).

The computation then involves computing the two determinants modulo multiple primes

using the method described in Section 1.1.4. Finally, Chinese remaindering is used to

construct the integer determinants. The total computation took approximately four days

on 186 processors for a total of about two years’ computation time, or about 1.7 seconds

per digit, and used 11,946 primes for the numerator and 12,863 for the denominator.

We took a different approach. Instead of finding the numerator and denominator

separately, we used one word-sized prime p and Hensel lifting instead of Chinese remain-

dering in a method first proposed by Moenck and Carter (1979) and then by Dixon

(1982). The idea is to compute a solution modulo a large enough modulus q and recover

the answer with continued fractions. The modulus q can be found by using Hadamard’s

inequality and Cramer’s rule (5.1) to find a bound for the solution.
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The method begins by initializing the vectors

b0 = b = e1 and x0 = x0 = A−1b0 mod p.

Then, for j ≥ 1,

bj =
b0 − Axj−1

pj
, xj = A−1bj mod p, and xj = xj−1 + pjxj.

Here, xj ≡ x (mod pj+1), so we are really trying to compute the first entry of xk−1 for k

such that pk−1 < q ≤ pk. However,

b0 − Axj−1 = b0 − Axj−2 − pj−1xj−1

= pj−1 (bj−1 − xj−1) ,

so the update for bj becomes

bj =
bj−1 − Axj−1

p
,

and only the first entry of xj must be stored.

The algorithm requires two matrix-vector products. One, Axj−1, must be done ex-

actly, but it is easily done with a black box matrix since A is very sparse. The other

A−1bj need only be done modulo p, but involves a dense matrix. We can use Wiedemann’s

nonsingular linear system solver presented in Section 1.1.1 to compute xj without storing

the entire dense matrix A−1 mod p. This modification, which was first seen in Kaltofen
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and Saunders (1991, Section 3), may cause an increased running time but lower memory

requirements since we can store the coefficients of the minimal polynomial fA mod p in

less space than the inverse matrix. (See Appendix C for the entire algorithm.)

We did not run this computation to completion, but we observed that if we use a

30-bit prime, the minimal polynomial fA is computed in approximately 15 minutes, and

another 17 minutes is required for each Hensel lift. Thus, calculating the solution modulo

q would take approximately 225 days on a single machine. It is possible to compute the

solution modulo several relatively prime moduli qi simultaneously on different processors

and use Chinese remaindering to combine the result.

Finally, Zhendong Wan ran a version of Dixon’s algorithm that used the explicit

inverse of the matrix A. Using A−1 explicitly results in faster lifting steps than using

the minimal polynomial to solve the system, but it requires much more memory. Using

a machine with adequate memory resulted in computing the answer in twelve and a half

days, or about 5.4 seconds per digit.

5.7 DOC++ Documentation

Documentation for a computer system usually comes in two forms. Programmers often

document their code with comments in the source code itself. By keeping the documen-

tation within the source code, the programmer finds keeping the documentation up to

date with the source code much easier. However, this documentation is difficult to read,

especially for a user who may not be familiar, or want to be familiar, with the actual
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C++ code.

The user of the software often turns to a manual or some other source separate from

the source code to understand the software’s application program interface (API). This

separation between documentation and code makes the documentation easier for the user

to read, but it is more difficult to maintain for the same reason.

The LinBox library uses the DOC++ documentation system to document the li-

brary’s application program interface (API). DOC++ documentation is inserted in the

source code by the programmer using the same comment style as that of the better-

known JavaDoc tool from Sun Microsystems. The DOC++ software can extract this

information and create both HTML and LATEX output that is easy for a user to read. By

keeping the documentation within the source code, it is much easier for a programmer to

keep the documentation up to date with the source code. At the same time, the JavaDoc

comment style allows the programmer to include both comments to be used in the user’s

documentation and also comments that explain the details of the code to another pro-

grammer, which allows DOC++ to access only the information in which a user would be

interested.

DOC++ documentation is hierarchically structured. This structure is reflected in the

section structure of the LATEX document and in the HTML page hierarchies. For both

methods, DOC++ also generates an alphabetical index. DOC++ uses this hierarchical

structuring to reflect the methods and members of a class, as well as the class derivation

hierarchies. These class derivation hierarchies are also represented as graphs. Java applets
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are used for graphs in the HTML output. The user can then click on a class to view its

documentation.



Chapter 6

Summary and Future Work

The black box approach to linear algebra is known to both numerical analysis and sym-

bolic computations, although the requirements of the two fields mean that methods in one

may not be appropriate to the other. While numerical analysis uses floating point num-

bers to find approximations to the solution to an linear system, symbolic computation

uses exact arithmetic and random values to find an exact but probabilistic answer.

The Wiedemann method in symbolic computation uses the minimal polynomial of

the Krylov sequences and the bilinear projection sequences of a matrix. Using random

projection vectors, these minimal polynomials can be used to solve many common prob-

lems in linear algebra. To do so, the matrix may need to be preconditioned through a

combination of matrix pre- and post-multiplication.

Chapter 2 discussed preconditioners for the rank and singular system solving prob-

lems that are based on Beneš networks. Theorem 2.1 on page 25 generalized the butterfly
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networks of Parker (1995) to arbitrary dimension n, and Theorem 2.2 on page 35 gener-

alized these networks further to arbitrary radix switches. Sections 2.2 and 2.4 discussed

how to obtain preconditioners to localize linear independence from these switching net-

works and generic exchange matrices. Further work should investigate how to implement

generic exchange matrices for arbitrary radix switches more efficiently and thus improve

the result of Theorem 2.3 on page 38.

Chapter 3 introduced a technique for using the determinantal divisors of a character-

istic matrix to obtain preconditioners to ensure the cyclicity of the nonzero eigenvalues

of the matrix. Theorem 3.2 on page 51, Corollary 3.1 on page 53, and Corollary 3.2 on

page 54 used this technique to introduce a new determinant-preserving preconditioners

for computing the determinant of a dense integer matrix through Kaltofen’s baby steps/

giant steps algorithm. Then, Theorem 3.4 on page 60 slightly relaxed the condition of

putting the matrix into a generic rank profile for the Kaltofen-Saunders rank algorithm.

Future work needs to investigate preconditioners to take advantage of this relaxation.

Chapter 4 investigated the block Wiedemann approach, which uses blocks of vectors

for projections, and the right minimal generating matrix polynomial for the block se-

quence. Section 4.1 discussed linearly generated matrix sequences and right generating

matrix polynomials, and Definition 4.5 on page 78 defined the minimal generating matrix

polynomial for a linearly generated matrix sequence. Section 4.2 discussed Beckermann

and Labahn’s Fast Power Hermite-Padé Solver (FPHPS) algorithm and how it can be

used to compute the minimal generating matrix polynomial of a linearly generated matrix
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sequence. Section 4.3 then considered the block Wiedemann and Krylov sequences for a

matrix and showed how to compute the minimal generating matrix polynomial for the

the two block sequences. Finally, Section 4.4 and Theorem 4.14 on page 140 introduced a

block method for computing the rank of a matrix. Additional preconditioners that take

advantage of the multiple invariant factors captured by the block Wiedemann method

should also be investigated, as well as the relationship between various algorithms for

computing the minimal generating matrix polynomial, including the FPHPS algorithm,

Dickinson et al. and Coppersmith’s block Berlekamp-Massey algorithms, and the original

Berlekamp-Massey algorithm.

Finally, Chapter 5 discussed the design of the LinBox library, some issues involved in

its creation and documentation, and generic programming with the C++ template mech-

anism. Section 5.1 introduced the concept of an archetype, and Section 5.2 examined

the integer type used by the library. Sections 5.3, 5.4, and 5.5 presented the common

object interfaces for fields, elements, vectors, and matrices. Section 5.4.1 examined the

use of traits in LinBox, Section 5.6 discussed the exact solution of one of the problems

proposed in Nick Trefethen’s challenge, and Section 5.7 discussed the DOC++ documen-

tation system used by the library. Work still needs to be done to implement additional

fields and algorithms, including block Wiedemann methods and garbage-collected fields

like those of SacLib.
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Appendix A

Fast Power Hermite-Padé Solver

Input: m ≥ 2, s ∈ Z≥0, F = (F [1], . . . ,F [m]), multiiindex N = (N [1], . . . ,N [m]) ∗

Output: {Pi,σ}mi=1 and {dct(Pi,σ) = di,σ + 1}mi=1 such that any solution P to the

power Hermite-Padé approximant problem can be written as P =
∑m

i=1 giPi,σ where

deg(gi) < dct(Pi).

1: for 1 ≤ l ≤ m do

2: dl,0 ← N [l]

3: Pl,0 ← el /* l-th unit vector */

4: end for

5: for 0 ≤ k ≤ σ − 1 do

6: for 1 ≤ l ≤ m do

7: cl,k ← λ−kPl,k(λ
s) ·F (λ)

∣∣
λ=0

∗This algorithm is the variation of the FPHPS algorithm described by Beckermann and Labahn (1994,
Section 3) that is used in Section 4.2 and chooses π to have the smallest possible value whenever there
is a choice in its value.
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8: end for

9: Λk ← {l | cl,k 6= 0}

10: if Λk = {} then

11: for 1 ≤ l ≤ m do

12: Pl,k+1 ←Pk,l

13: dl,k+1 ← dl,k

14: end for

15: else

16: dk ← max{dl,k | l ∈ Λk}

17: π ← πk ← min{j | dj,k = dk}

18: for 1 ≤ l ≤ m do

19: if l 6∈ Λk then

20: Pl,k+1 ←Pl,k

21: dl,k+1 ← dl,k

22: else if l = π then /* l ∈ Λk */

23: Pl,k+1 ← λPl,k

24: dl,k+1 ← dl,k − 1

25: else /* l ∈ Λk, l 6= π */

26: Pl,k+1 ←Pl,k − cl,k
cπ,k

Pπ,k

27: dl,k+1 ← dl,k

28: end if



APPENDIX A. FAST POWER HERMITE-PADÉ SOLVER 187

29: end for

30: end if

31: end for



Appendix B

LinBox Common Object Interface

B.1 Elements

Element(void ); // Default constructor

Element(const Element & a);

// Copy constructor

~Element (); // Destructor

Element & operator =(const Element & a);

//Assignment

B.2 Fields

// Object Management

Field (const Field & F);

// Copy Constructor

~Field ();

// Destructor

Field & operator =(const Field & F);

// Assignment

Element & init(Element & x, const integer & y=0) const;
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// Element initialization from integer

integer & convert(integer & x, const Element & y) const;

// Element conversion to integer

Element & assign(Element & x, const Element & y) const;

// Assignment

integer & cardinality(integer & c) const;

// Field cardinality

integer & characteristic(integer & c) const;

// Field characteristic

// Arithmetic Operations

bool areEqual(const Element & x,

const Element & y) const;

// Equality

Element & add(Element & x,

const Element & y,

const Element & z) const;

// Addition: x = y + z

Element & sub(Element & x,

const Element & y,

const Element & z) const;

// Subtraction: x = y - z

Element & mul(Element & x,

const Element & y,

const Element & z) const;

// Multiplication: x = y * z

Element & div(Element & x,

const Element & y,

const Element & z) const;

// Division: x = y / z

Element & neg(Element & x, const Element & y) const;

// Negation: x = - y

Element & inv(Element & x, const Element & y) const;

// Multiplicative inverse: x = 1/y

Element & axpy(Element & r,

const Element & a,

const Element & x,

const Element & y) const;

// r = a*x + y

// Inplace Arithmetic Operations
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bool isZero(const Element & x) const;

// Addition: x = y + z

bool isOne(const Element & x) const;

Element & addin(Element & x, const Element & y) const;

// Addition: x += y

Element & subin(Element & x, const Element & y) const;

// Subtraction: x -= y

Element & mulin(Element & x, const Element & y) const;

// Multiplication: x *= y

Element & divin(Element & x, const Element & y) const;

// Division: x /= y

Element & negin(Element & x) const;

// Negation: x = - x

Element & invin(Element & x) const;

// Multiplicative inverse: x = 1/x

Element & axpyin(Element & r,

const Element & a,

const Element & x) const;

// r += a*x

// Input/Output Operations

ostream & write(ostream & os) const; // Print field

istream & read(istream & is) const; // Read field

ostream & write(ostream & os, const Element & x) const;

// Print Element

istream & read(istream & is, Element & x) const;

// Read Element

B.3 Random Element Generators

RandIter(const Field & F,

const integer & size = 0,

const integer & seed = 0);

// Constructor from field, size of set, and seed

RandIter(const RandIter & R);

// Copy constructor

~RandIter (); // Destructor

RandIter & operator =(const RandIter & R);
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// Assignment operator

Element & random(Element & x); // Random Element creator

B.4 Black Box Matrices

Blackbox_archetype * clone () const;

// Virtual constructor.

Vector& apply (const Vector& x) const;

// Application of black box matrix. Not required.

Vector& apply (Vector& y, const Vector& x) const;

// Application of black box matrix.

Vector &apply (Vector &y,

const Vector &x,

void * handle ) const;

// Application of black box matrix.

Vector& applyIn (Vector &x) const;

// In-place application of black box matrix.

// Not required.

Vector& applyTranspose (const Vector &x) const;

// Application of black box matrix. Not required.

Vector& applyTranspose (Vector& y, const Vector& x) const;

// Application of black box matrix transpose.

Vector& applyTranspose (Vector& y,

const Vector& x,

void* handle ) const;

// Application of black box matrix transpose.

Vector& applyTransposeIn (Vector &x) const;

// In-place application of black box matrix tranpose.

// Not required.

integer rowdim (void) const;

// Retreive row dimensions of black box matrix.

integer coldim (void) const;

// Retreive column dimensions of black box matrix.



Appendix C

Algorithm for Trefethen’s Challenge

Input: n > 0 and matrix A ∈ Zn×n

Output: x[1] = (A−1)
[1,1]

1: q ← 2
∏n

i=1 A
[i] where A[i] is the i-th column of A. /* Hadamard’s inequality */

2: k ← dlogp(k)e

3: g(λ) =
∑d

i=0 g[i]λiλi ← fA

4: g(λ)← −g/g[0] /* Normalize so g(0) = −1 */

5: b0 ← e1

6: x0 ←
∑d

i=1 g[i]Ai−1b0 mod p

7: x0
[1] ← x0

[1]

8: for j = 1, 2, . . . , k − 1 do

9: bj ← (bj−1 − Axj−1)/p

10: xj ←
∑d

i=1 g[i]Ai−1bj mod p
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11: xj
[1] ← xj−1

[1] + pjxj
[1]

12: end for

13: Recover x[1] from x[1] ≡ xk−1
[1] mod pk by continued fractions


