
The Microarchitecture of a Real-Time Robot
Motion Planning Accelerator

Sean Murray, William Floyd-Jones, Ying Qi, George Konidaris, and Daniel J. Sorin
Departments of Computer Science and Electrical & Computer Engineering

Duke University

Abstract—We have developed a hardware accelerator for
motion planning, a critical operation in robotics. In this paper, we
present the microarchitecture of our accelerator and describe a
prototype implementation on an FPGA. We experimentally show
that the accelerator improves performance by three orders of
magnitude and improves power consumption by more than one
order of magnitude. These gains are achieved through careful
hardware/software co-design. We modify conventional motion
planning algorithms to aggressively precompute collision data,
as well as implement a microarchitecture that leverages the
parallelism present in the problem.

I. INTRODUCTION

For important applications, it is well known that specialized
hardware accelerators can provide better performance and
power-efficiency than running software on general purpose
processors. The use of specialized hardware is even more at-
tractive now that power is a primary constraint in chip design.
Recent work has developed accelerators for applications such
as web search [1], neuromorphic computing [2], radix sort [3],
and molecular dynamics [4]. The specialized hardware can be
a stand-alone processor (e.g., like a GPU), a co-processor, or
even a special functional unit.

In this paper, we present and evaluate the microarchitecture
of a specialized processor for accelerating an application that
is critical to robotics: motion planning. Motion planning, de-
scribed in more detail in Section II, is the process of computing
a path that a robot can take to reach a goal without colliding
with any obstacles in its environment. This path is often in
a high-dimensional space, as it must specify trajectories for
all degrees of freedom present on the robot. Motion planning
is vitally important for robots, yet current implementations
are too slow to be used in real-time applications. Moreover,
while speed is obviously critical for real-time motion plan-
ning, power is also a major concern for untethered robots or
environments with many robots.

At first glance, real-time motion planning may seem like a
simple problem. Many people are familiar with robots that
perform real-time motion planning in 2D (e.g., warehouse
robots moving pallets around) and even 3D (airplane autopi-
lots), but these low-dimension problems are vastly simpler
than the motion planning required for high degree-of-freedom
robotic arms. Many interesting robots have upwards of 6-10
degrees of freedom in a single arm, and finding paths in these
high-dimensional spaces is far more difficult. The current state

of the art uses high-performance GPUs with highly tuned
software to achieve motion plans on the order of hundreds
of milliseconds [5][6] at a power cost of hundreds of watts.
This performance is insufficient for real-time planning, and
the power consumption is both infeasible for untethered robots
and overly expensive for applications with many robots (e.g.,
facilities with tens of thousands of robots).

The primary challenge in motion planning is collision
detection. Given a description of the robot’s environment (e.g.,
obstacles near the robot), collision detection is the process of
determining whether a robot motion collides with obstacles.
Because a robotic arm moves in a high-dimensional space,
collision detection involves a vast amount of computation
when done using traditional approaches from computational
geometry. Although GPUs can accelerate these calculations,
they still cannot provide the needed speed or power-efficiency.
Currently, the collision detection bottleneck often comprises
99% of the time required for motion planning [7].

We introduced the concept of a motion planning processor
and showed its effectiveness for planning in prior work [8].
Our contribution in this paper is the microarchitecture of the
processor and a description of how it performs real-time, low-
power collision detection. Section II gives a brief background
of motion planning and an overview of a probabilistic algo-
rithm that is widely used to create plans. In Section III we
go through the process of designing an accelerator for the
problem, evaluating several distinct strategies. Although we
initially considered a design that straightforwardly accelerates
current algorithms from computational geometry, we found
that we could achieve far better results by designing the accel-
erator from scratch and co-designing the algorithm to be more
amenable to hardware acceleration. As described in Section IV,
we have implemented our design on an FPGA and interfaced
the processor to a Jaco2 robotic arm in our laboratory (seen
in Figure 5). We demonstrate real-time motion planning in
which the robotic arm performs pick-and-place tasks using
motion plans computed by our processor. Section V gives
performance and power results, as well as a comparison to
other solutions. Results on the robot in our lab show that we
can perform collision detection in less than 20 microseconds
drawing less than 15 watts. At this speed, which is three orders
of magnitude faster than the state of the art, motion planning
is truly real-time. At this power, which is more than an order
of magnitude less than the state of the art, a robot could
be untethered for longer periods of time, and energy savings978-1-5090-3508-3/16/$31.00 c©2016 IEEE

would be significant when working with a large number of
robots.

II. BACKGROUND

A. Motion Planning

Motion planning is a fundamental problem in robotics; it
is how the controller of a robot finds a safe (collision-free)
path from its current position to a goal position. An analogy
can be made to how a human decides how to best reach
under a desk to unplug something. This is a challenging
problem, because all joints must be coordinated, and care
must be taken that no extremities (arms, legs, head) collide
with the desk (or with other extremities). Planning is done
in “configuration space,” which has as many dimensions as
the robot has degrees of freedom [9]. The most popular
family of motion planning algorithms constructs a graph-based
discretization of configuration space. The typical graph theory
abstractions are used to describe navigation in this space. A
node in configuration space completely defines a specific pose
of the robot, and an edge in configuration space represents a
movement between two poses. A graph of robot poses and
movements is termed a “roadmap.” Motion planning in this
paradigm thus involves constructing and finding a path through
a roadmap that does not collide with any obstacles. Even in
the absence of obstacles, care must be taken so that a path
does not result in the robot colliding with itself. An example
roadmap is shown in Figure 1.

The problem becomes quite difficult when working with
robots with many degrees of freedom (DOF), as it suffers
from the same state space explosion problem present in many
other fields. Indeed, we have reached a point where robots
are capable of extremely complex, precise, and dexterous
movements, but we lack the algorithms to efficiently utilize
them in real-time applications. This disconnect between the
mechanical capabilities of robots and our ability to use them is
a major barrier to expanding the influence of robotics to new
spaces such as manufacturing in unstructured environments,
disaster response, or personal assistance (or any application
requiring humans and robots to be co-located). The only
deployed systems doing real-time planning are low-DOF ma-
chines; currently, virtually all industrial high-DOF robots work
in tightly controlled environments that depend on objects being
in exactly the same spot every time, eliminating the need to
plan motions at runtime.

B. Probabilistic Roadmaps

The problem of creating plans for robots with many degrees
of freedom has been extensively studied. Most modern solu-
tions rely on probabilistic techniques to make the problem
more tractable. In their 1996 work, Overmars and Kavraki
[10] detail a process for constructing probabilistic roadmaps
(PRMs) from which queries could produce motion plans. The
use of random sampling enables this method to find solutions
in high-dimensional spaces with far fewer samples than would
have been required with uniform coverage. This paper is a
seminal work in motion planning; many developments in the

Fig. 1: Roadmap showing how a path could be found from
a starting configuration (red square node) to the goal region
(green oval) by sampling in configuration space and avoiding
obstacles (amorphous blue regions). This example illustrates
planning in 2D, while planning for most robotic arms takes
place in a higher dimensional space.

field over the past two decades draw on their basic strategy.
We use this paradigm as a baseline for our study.

The PRM workflow has two phases. The computationally
expensive learning phase involves the creation of a roadmap
consisting of several possibly unconnected graph components.
The fast and inexpensive query phase is where a path is (hope-
fully) found through the map to a specified goal configuration.
As long as the environment is unchanged, several of these
lightweight query calls can be made on the same roadmap. One
of the reasons PRM and similar algorithms have been adopted
so widely is that they provide asymptotic completeness. As
the number of random samples drawn in the learning phase
approaches infinity, the likelihood of not finding a safe path,
if one exists, approaches zero.

1) Learning Phase: The learning phase follows an iterative
process. In each iteration, a random configuration Cnew is
chosen by sampling values for all the independent degrees
of freedom in the robot’s configuration space. The first test
done is to check whether the obtained configuration is itself
collision-free; if so, the node is added to the graph, otherwise
it is discarded and the next iteration begins. A list of potential
neighbor nodes is assembled by choosing some distance
function D(a, b) and associated threshold T; all nodes n
with D(n,Cnew) < T are added to the list. Working from
the closest node in the list to the furthest, each node n is
tested with a “local planner” and collision-checker to see if
the path from Cnew to n is collision-free. The properties of
the local planner are simply that it must deterministically
define a motion between two nodes, because only this path
will be verified to be collision-free. Depending on the desired

connectivity of the graph, one can add edges from Cnew to
a variable number of nodes from the potential neighbor list
that are determined to have collision-free connections. Ending
conditions for the construction step can also be tailored to fit
specific application needs and could be a desired number of
configurations within a goal region or something as simple as
a maximum number of total iterations.

The collision detection involved in the learning phase is
the most computationally expensive part of the PRM process.
Each edge in the roadmap represents a movement between
two configurations. This movement creates a “swept volume”
in 3D space that must be checked to ensure it does not collide
with any obstacles. The swept volume (i.e., the region of space
with which a motion intersects) is typically approximated
as a mesh of polygons; triangles are normally used to take
advantage of their (relatively) simple properties. The obstacles
in the environment can also be represented as a mesh of
triangles. Collision detection is then simply checking for inter-
sections between the triangles in the swept volume and those
in the obstacle representations. Each representation consists of
hundreds of triangles, so many thousands or even millions of
triangle intersection tests may be necessary. Collision detection
has been found to consume up to 99% of the compute time
in motion planning [7].

2) Query Phase: The query phase is much simpler. It
simply involves finding paths between given start and end
configurations in the graph. Any graph search or shortest path
algorithm suffices. The same local planner is used to create the
paths between configurations as was used during the learning
phase. It can be run much faster this time, however, because
collision checking is not required during the query phase; paths
generated by the local planner are already guaranteed to be
collision-free since they were verified in the learning phase.

C. Remaining Challenges

It may seem like PRM is quite sufficient as a solution.
Computation can be done up front in a slow learning phase,
and then lightweight calls can be made at runtime in the
query phase. However, the roadmap is guaranteed to be safe
only as long as the environment remains unchanged. Any
change requires the connectivity (safeness) of the roadmap
to be recomputed. There are variants of the PRM algorithm
that try to minimize this cost, but recomputation is still quite
expensive. Since collision detection consumes 99% of the time
of building the roadmap, re-verifying safeness requires almost
as much computation as building the roadmap from scratch.
This limitation is acceptable in tightly controlled car assembly
lines, but is not reasonable for robots that must quickly plan
in dynamic environments. This challenge is what our work
hopes to tackle; we aim to design a solution that will enable
planning to occur in real time for dynamic environments.

III. DESIGNING AN ACCELERATOR

The first step in designing an accelerator is to determine its
architecture. In other words, the accelerator needs a definition
of what task will be done, and the designer must consider

Fig. 2: A line segment vs triangle test involves determining
whether the point R at which line PQ intersects the plane
defined by ABC lies within the triangle ABC.

what interface will be presented to the rest of the system. We
present a sequence of designs in Sections III.A and III.B as we
first explore ways to accelerate the PRM algorithm directly,
but then transition to a modified algorithm more amenable to
acceleration. Section III.C will discuss general architectural
issues in accelerator design.

A. Direct Acceleration of Existing Algorithm

Our first strategy was to design a triangle-triangle inter-
section test accelerator. This was the logical place to start;
collision detection had been proven to be the bottleneck
in motion planning, collision detection involves performing
possibly millions of triangle-triangle intersection tests, and
there is a huge amount of parallelism in these tests to exploit
[11].

Although there are several clever ways to reduce the amount
of computation involved, the simplest method of determining
if two triangles ABC and DEF intersect in 3D space is to test
if any of the line segments (AB, AC, or BC) intersect with the
triangle DEF and the same for the segments of DEF against
triangle ABC. Thus, a single triangle-triangle intersection test
can be decomposed into the logical disjunction of six line
segment-triangle intersection tests (which can conveniently be
performed in parallel) [12].

A line segment-triangle test is performed by taking the line
segment and checking at what point the line that extends
the segment intersects with the plane of the triangle. For the
example shown in Figure 2, the equation to check at what point
the line extending PQ intersects with the plane specified by
ABC is:

A + x(B-A) + y(C-A) = P + t(Q-P).

The variables t, x, and y can be calculated through the follow-
ing equations (terms in bold typeface can be precomputed, as
will be explained later):

t =
(P −A) • [(B −A)××× (C −A)][(B −A)××× (C −A)][(B −A)××× (C −A)]

(P −Q) • [(B −A)××× (C −A)][(B −A)××× (C −A)][(B −A)××× (C −A)]
,

x =
(C −A)(C −A)(C −A) • [(P −Q)××× (P −A)]

[(B −A)××× (C −A)][(B −A)××× (C −A)][(B −A)××× (C −A)] • (P −Q)
,

y =
(A−B)(A−B)(A−B) • [(P −Q)××× (P −A)]

[(B −A)××× (C −A)][(B −A)××× (C −A)][(B −A)××× (C −A)] • (P −Q)
.

If t is found to be less than zero or greater than one (the
division can be avoided by simply comparing the size of
the numerator to the size of the denominator), then the line
segment PQ does not even intersect the plane of the triangle.
If t does fall between 0 and 1 and the following inequalities
hold:

0 ≤ x, y ≤ 1,

x+ y ≤ 1,

then the line segment-triangle test returns true. A potential
architecture to accelerate this process is given in Figure 3.
The interface accepts a stream of triangles representing swept
volumes and a stream of triangles representing obstacles.
A single bit for each swept volume is output, representing
whether or not that swept volume is in collision. Internally,
the accelerator could contain many triangle-triangle functional
units to conduct pairwise checks in parallel, with each func-
tional unit performing the six required line segment versus
triangle tests in parallel.

Hardware space limitations quickly became apparent when
pursuing this strategy, so we made several assumptions to
reduce the complexity of the specialized functional units. The
first was to use fixed point arithmetic to avoid expensive
floating point operations, as well as to use 9-bit numbers
for the coordinates instead of 32. Second, we decided that in
order to reduce the amount of online computation needed, we
would create a roadmap ahead of time, which would allow the
precomputation of many of the terms for the robot triangles.

In the equations for t, x, and y above, the clauses in bold
could be calculated ahead of time, assuming ABC represents
a robot triangle and PQ is a line segment from an obstacle.

Even with both these simplifications, the complete paral-
lelization of the triangle-triangle test requires 24 dot products
and 7 cross products (the odd number of cross products arises
from a corner case that must be checked). This is equivalent
to 114 multiplications, 48 additions, and 21 subtractions. The
high hardware cost to parallelize a single test was concerning.
Indeed, we implemented our design and found that only a few
tens (at most) of triangle-triangle functional units would fit on
our prototype FPGA board, which was unacceptable for the
throughput we desired.

B. Acceleration of Hardware-Friendly Algorithm

From the first design, we learned that what was needed
was a co-designed algorithm to go with custom hardware.
Existing algorithms simply did not match well to hardware
acceleration. The next route we considered was to aggressively
precompute not just some amount of robot geometry, but a
whole suite of collision data, and to memoize this data on
hardware for fast later access. We accomplish this by taking
advantage of the way robotic perception data is structured.
Perception sensors typically create an “occupancy grid” at
some resolution, indicating the presence or absence of an
obstacle at a given location in 3D space. Instead of creating
triangle meshes from this data at runtime, we leverage the
fact that a given resolution implies a finite number of possible
obstacles. Expensive collision detection can be done for all
edges in advance to calculate which regions in space each
movement collides with. The precomputed data can be used
to create a data structure for each edge that can be queried
for membership of a given obstacle point (from here on called
a “voxel”). This strategy represents a fundamental change to
the PRM algorithm, which typically builds a roadmap for the
specific environment at hand.

Our algorithm is similar to an approach by Leven and
Hutchinson [13], except they went the opposite direction,
creating data structures for each voxel that represented the
edges that should be invalidated if present. In effect we are
trading a much larger amount of up-front computation for
a smaller amount of runtime work. Instead of having to
build/reconnect a roadmap each time the environment changes,
we build a roadmap in an obstacle-free environment and
perform exhaustive collision detection once at design time.
Then at runtime we simply access the precomputed data to
see how the obstacles in a given environment affect the edges
in the roadmap.

Because our goal is to achieve the highest degree of
parallelism possible, we avoid storing and accessing the
precomputed data in memory elements in software. Instead,
we encode a binary representation for each discretized voxel
and create logical circuits representing the collision data for
each edge. Having a logical circuit representation made for
an intuitive mapping to hardware descriptive languages. The

Fig. 4: The interface of a collision detection accelerator using
precomputed data (left). Each collision detection circuit (CDC)
contains the logic for an edge, an OR gate, and a flop (right).
The variables A through O in the expanded Edge Logic block
represent binary voxel ID representations, as will be explained
in Section IV.

binary representation for any voxel is streamed over this logic,
and if that point is in collision, the circuit outputs true.

We augment the collision logic for each edge with additional
circuitry to maintain a limited amount of state regarding the
task at hand. A given environment contains many obstacle
voxels. If even a single voxel is in collision with a swept
volume, the edge represented by that swept volume must be
removed from consideration for use in a path. To achieve this,
the output of the logic function can be stored in a flip-flop
after being OR’ed with the flop’s currently stored value, thus
allowing many voxels to be streamed through, saving any
positive result since the last RESET. The basic structure of
this collision detection circuit (CDC) can be seen in Figure 4
along with the interface presented to the system. To interface
with the accelerator, the host processor can send a RESET
signal to instruct the accelerator to clear all flops, followed
by a stream of obstacle voxel data (encoded in a fixed-length
format), and finally a DONE signal, which initiates transfer of
flop data back to the host.

Within our strategy of precomputing collision data there
are several additional orthogonal design choices. For example,
this strategy is agnostic to the configuration sampling method.
Precomputed roadmaps by definition sacrifice asymptotic com-
pleteness for the sake of speed, so there is no need for
sampling to be probabilistic. Indeed, any a priori knowledge
about probable obstacle or goal regions can (and should) be
leveraged to select more useful edges. In addition, the method
of discretizing space can be adjusted to the case at hand to
create the most useful representation in its most compact form
possible.

We now summarize the steps in our workflow:

Preprocessing Steps (done once, at design time):

1. Build the roadmap. For this stage, no collision checking
is done except for self-collisions and collisions with permanent
features in the environment (e.g., the floor, ceiling, or a table

that is always present). The goal of this step is to create
a roadmap with sufficient coverage for solving the expected
motion planning problems at an acceptable rate.

2. Discretize the working space of interest and collision
check all edges of the roadmap, creating sets of the voxels
that each edge collides with.

3. Encode the voxels in a binary representation and formu-
late logic functions for each edge. Use these logic functions
to create RTL-synthesizable descriptions of the circuits in
Verilog/VHDL.

Online Query Steps (done each time a plan is needed):
1. Use data from perception sensors to populate an occu-

pancy grid at the same level of discretization at which the
roadmap was collision checked.

2. Send all the voxels present in the occupancy grid to
the accelerator and collect the results (a bitmask representing
which edges are in collision). Use the results to modify the
roadmap, setting the edges in collision to a cost of infinity.

3. Perform a graph search through the modified roadmap.
A shortest path algorithm such as Dijkstra’s can be used to
find the shortest path through the map.

4. If a path is found, use the same local planner as in Design
Step Two to guide the robot along a safe path to the goal.

C. Architectural Interface

As with any accelerator, the primary architectural issue is
how the accelerator interfaces to the CPU cores. At the most
extreme degree of integration, an accelerator is a glorified
functional unit; a floating point unit (FPU) falls into this cate-
gory. At the least extreme degree of integration, an accelerator
is an I/O device like a GPU that communicates over a bus
protocol like PCIe. We chose this latter option for our current
implementation, largely due to the simplicity of prototyping
the accelerator in this fashion. We have implemented the ac-
celerator on an FPGA prototyping board with a PCIe interface
for communication with a host computer.

In the future, we could imagine an architecture that is
between these extremes of integration. Specifically, we are
intrigued by the recent integration of FPGA logic with CPU
cores, such as IBM’s Coherent Accelerator Processor Interface
(CAPI) [14] and Intel’s integration of FPGA logic on the same
die as a Xeon. The tighter integration of the FPGA with the
CPU cores would lead to faster communication. The cache-
coherent shared memory could also enable accelerator mi-
croarchitectures to elide some communication that is currently
necessary.

IV. IMPLEMENTATION

We have implemented our accelerator to solve problems for
a high-DOF robotic arm. We use an Altera Stratix V FPGA on
Terasic’s DE5 prototyping board. The FPGA interfaces over
PCIe to an Intel Xeon 3.5 GHz 4-core processor with 16 GB
of RAM.

The arm we use is the Kinova Jaco2, chosen for its many
degrees of freedom. The Jaco arm has one shoulder, two

Fig. 5: Physical setup of the pick-and-place experiment. The
work table, four Microsoft Kinects, and the base of the arm
are all attached to the wooden frame.

elbows, three wrists, and three fingers. The shoulder and wrists
have an infinite range of rotation, while the first and second
elbows have ranges of 275 and 325 degrees, respectively. The
numerous wrists give the arm great dexterity.

We demonstrate on the pick-and-place use case since this
problem is ubiquitous in robotics applications. We placed the
robotic arm in front of a table, and each scenario challenged
the robot to reach out to grab a toy block while avoiding
obstacles and return it to one of two bins on either side of its
base, seen in Figure 5. Cardboard boxes, ranging from 5-30
cm in each dimension, acted as obstacles.

In the remainder of this section, we discuss the implemen-
tation of each stage of the workflow and the implications for
the microarchitecture.

A. Design Time

Design Step One: Building the Roadmap
As we knew hardware constraints would be a limitation,

great care had to be taken to create useful roadmaps of small
size. To accomplish this, we made extensive use of the Klampt
robot modeling package [15]. We wanted a high rate of success
for working environments, so we followed a heuristic approach
combined with probabilistic sampling. First, we created a
very large (100,000 edge) roadmap using the PRM algorithm.
Planning was done in an environment with only permanent
obstacles present.

Because the goals (toy blocks) would always be sitting on
the table, we needed thorough coverage of the space 4-8 inches
above the table. To achieve this, we augmented the resultant
graph with a set of configurations just above the surface of
the table. We also added shortcut edges from the starting
configurations to various spots over the table. These shortcut
edges both add useful cycles to the roadmap and also often
provide very direct paths in the absence of certain obstacles
[16].

We then profiled this very large and augmented PRM over
10,000 scenarios. These test cases were generated randomly
in Klampt by parameterizing details about the world, such as

size/number/placement of obstacles and the placement of the
goal. For each environment, the PRM was challenged to find
a collision-free path to the goal, and if it could, the edges
used in the path were saved in a data structure. After testing
on the 10,000 scenarios we then had an array showing which
edges were being used in paths frequently, which were being
used some of the time, and which edges were never used.
This enabled us to prune the roadmap by deleting the edges
that were never used or used infrequently. The safeness of
the pruning was tested by then profiling the reduced set of
edges against a new set of random scenarios and verifying
the success rate had not been significantly compromised. This
process can be done iteratively, profiling and pruning until the
desired size is reached. We found that as few as 1024 edges
is sufficient to maintain a very high success rate (>98%) for
this pick-and-place task.

Design Step Two: Discretizing the Workspace and Collision
Checking

For the pick-and-place scenarios, the workspace was defined
to be the area directly over the table, extending 80 cm high.
Once the area of interest is established, the next decision
is how exactly to discretize. For simplicity, we employed a
simple uniform grid. We examined a few different resolutions
ranging from 4 bits to 10 bits in each dimension. The two com-
peting concerns are the desire to have enough resolution such
that the occupancy grid is an accurate representation of the
actual environment, and the fact that as resolution increases,
the logic function for each edge consumes more hardware. The
logic element usage for several levels of resolution is shown
in Table I. We chose five bits for each dimension as a good
middle ground that provided sufficient precision and also took
up a reasonable amount of FPGA resources. The table used in
our experiments is 121 centimeters long and 60 centimeters
deep, so with a 5 bit resolution/dimension, each block in the
occupancy grid is 3.75 × 1.875 × 2.5 cm. Figure 6a shows
the discretized workspace. Figure 6b shows a non-uniform,
more sophisticated way that one could discretize. By using
knowledge about expected hard or easy/less-important regions,
one can selectively increase or decrease resolution to maintain
performance while saving space in the logic functions. For the
same roadmap, the discretization strategy in Figure 6b takes
up 27% less space on the FPGA, at the cost of slightly higher
design effort.

Each edge in the roadmap constructed in Design Step
One is then collision checked in Klampt in the environment
containing the full occupancy grid of discretized space. For

Bits Per Dimension 4 5 6

Logic Elements/Edge 45 160 700
Voxels Colliding/Edge 75 278 1100

TABLE I: Effect of changing resolution on logic element
usage. The logic element usage correlates roughly to the
number of voxels with which each edge collides.

(a)

(b)
Fig. 6: a) The workspace shown as uniformly discretized. b)
A more sophisticated approach can achieve space savings by
selectively choosing critical regions to have high resolution
and allowing less important regions to be more coarse.

each edge we create a set of the voxels in collision with that
movement. If an edge intersects any part of a voxel, that voxel
is included in the set.

Design Step Three: Implementing Logic Functions on FPGA

At the end of Design Step Two, there is a set for each
edge containing all the voxels with which that edge collides.
A binary representation for each voxel is easily derived since
we used a uniform grid in the discretization. We used these
binary representations to create a logic function for each edge.
For example, if edge 147 collides with the voxels (1,3,5) and
(1,3,6), then the voxels are represented by:

00001 00011 00101
00001 00011 00110

The logic functions are then created by simply assigning a
variable to each voxel bit (A through O) and combining the

two in disjunctive normal form. For this example, the result
would be:

Edge147 = (!A&!B&!C&!D&E&!F&!G&!H&I&

J&!K&!L&M&!N&O)||(!A&!B&!C&!D&E&!F

&!G&!H&I&J&!K&!L&M&N&!O).

In this simplistic example, the edge collides with only two
obstacle voxels; each edge in the actual roadmap collides with
200-500 voxels, so the logic functions can become quite large
and take up the bulk of the area of the hardware design.
Luckily, there is a significant amount of redundancy in these
equations, which Leven and Hutchinson refer to as “spatial
coherence” [13]. For example, the above equation can be
simplified to:

Edge147 = (!A&!B&!C&!D&E&!F&!G&!H&I&

J&!K&!L&M)&[(!N&O)||(N&!O)].

We took several actions to reduce the amount of hardware each
edge consumes. Logic minimization is a well-studied problem
due to its usage in EDA tools. We used a version of the
popular espresso heuristic logic minimizer [17][18]. Espresso
can accept as input a set of truth tables, so the sets created
in the previous step were converted to truth tables by simply
using the binary encoding of each voxel. We ran these truth
tables through espresso in groups of 16 to allow the tool to
minimize the logic across edges as well. We then converted
the output to equivalent Verilog expressions; using espresso
before converting to Verilog enabled greater than 25% savings
in logic utilization on the FPGA, even though all CAD tools
(Quartus in this case) do logic minimization of their own. It
is likely even more benefit could be realized by “smartly”
grouping together edges that shared more in common with
each other. Selecting the best edges to group together is a
challenging problem (“N choose 16” is quite large when N is
in the thousands) that will be the subject of future work.

Another important design issue is how to distribute the
voxels to the CDCs. The board communicates with the host
computer over PCIe; as voxels are streamed over the bus to
the FPGA they are put into a dual-clocked FIFO, filling up
at the bus frequency and draining at the logic frequency. The
initial design is in Figure 7a. The fifteen bits of each voxel
(five bits for each dimension, as discussed above) fan out from
the FIFO to the logic for each edge. Each edge’s logic function
has an associated flip-flop. The input to the flop is the OR of
the edge logic output with the current value (seen in Figure
4). After the input FIFO is drained, the results are fed into an
output FIFO which transmits the collision results back to the
host computer.

This design is simple, but it is difficult for the FPGA to
route in time due to the high fan-out of the input signals. Each
input bit must fan out to thousands of CDCs, each of which
has several hundred clauses in its logic function. Even clocking
the FPGA at 31.25 MHz (1/4 the frequency of the PCIe bus),
only 1024 edges could fit on the FPGA. To alleviate this, we

(a)

(b)

(c)

Fig. 7: a) The design unbuffered with high fan-out. b) Individ-
ual buffers for each CDC. c) Multiple CDCs sharing a buffer.
Note that in b) and c), the flops need an enable port to latch
only when the buffers contain full values.

investigated a slightly different design. Instead of fanning out
the 15 bits of voxel data to all CDCs, only five wires fan out.
These five wires are multiplexed over three cycles to send the
full 15 bits of voxel data, accumulating the data in a shift
register at each CDC. The flops latching the results of the
edge logic now need a signal to enable storage only every 3
cycles when input data is valid. This design is in Figure 7b.
Routing significantly improved with this design, but at the cost
of greatly increased logic utilization (an 83% increase). FPGA
CAD tools are somewhat opaque, but we believe the increase
comes primarily from fewer opportunities for the CAD tools to
optimize/re-use logic clauses now that the CDCs compute on
unique sets of inputs, rather than from the additional structures
introduced.

We found a middle ground between these design points
that balances routing difficulty and logic utilization. Instead
of allocating a buffer for each CDC, buffers are shared in
a hierarchical fashion between groups of CDCs. Figure 7c
shows an example of this design. Table II shows the difference
in logic utilization/edge for the original case, the case of
each CDC having its own buffer, and of 16, 32, and 64
CDCs sharing a single buffer. These adjusted strategies did
not recover all of the logic savings of the unbuffered design,
but they were able to be compiled and routed much easier.
The 32 edge/buffer design allowed 2500 edges to fit on the
FPGA, which is more than sufficient for this prototype.

One potential concern about using this buffering technique
is that it now takes three cycles to process a point, instead
of a single cycle. However, the decreased routing demands of
the strategy in Figure 7c allow it to be clocked at the same
clock frequency as the PCIe bus (125 MHz), compared to
the unbuffered design at 1/4 the frequency. The total effect
of the more complex micro-architecture is thus both larger
logic utilization and modestly higher throughput at the same
roadmap size.

B. Runtime

Runtime Step One: Create Occupancy Grid
Perception is done in our experiment with several Microsoft

Kinects. These supply sufficient accuracy for our purposes, are
relatively cheap, and produce data in a convenient format. To
get a complete view of the workspace, we used four Kinects,
one on each side of a wooden frame built around the table.

Design Choice Logic Element Usage

Unbuffered 1
Unbuffered/Non-uniform 0.73

Individual Buffers 1.83
Buffers Shared(16) 1.31
Buffers Shared(32) 1.26
Buffers Shared(64) 1.23

TABLE II: Effect of changing hardware design on logic ele-
ment usage, normalized to the unbuffered design. All designs
were uniformly discretized except the one mentioned.

Fig. 8: A real example scenario (left), and the discretized occupancy grid (right).

We secured the Kinects on 3D printed mounts to avoid having
to frequently recalibrate the cameras (seen in Figure 5). The
output streams from the four Kinects are merged with an
iterative closest point (ICP) algorithm to create a unified view
of the environment [19][20]. An example of a discretized
occupancy grid is shown in Figure 8. The Kinects also identify
the location and color of the goal(s) present on the table, to
be used in the graph search routine.

Runtime Step Two: Collision Check on FPGA
The occupancy grid is then sent over PCIe to the FPGA and

the resulting collision bitmask is collected. The data coming
back from the FPGA represents a vector of which edges are in
collision. For each edge in collision, the cost in the roadmap
is set to infinity to ensure this path will not be taken during a
query. Adjusting the cost is faster than actually removing the
edge from the data structure.

Runtime Step Three: Graph Search
For each pick-and-place scenario presented to the robot, the

objective is to find a path to a spot 10 cm above the goal
with the hand pointed down, grasp the object, and return to
one of the two bins on either side of the arm depending on
the color. The location of the goal is used to select suitable
goal configurations in the roadmap. We accelerate the selection
process by precomputing forward-kinematic transforms for
all n configurations in the roadmap. This data is stored in
a k-d tree that can be very quickly accessed to find which
configurations (if any) can be used as a suitable destination
for this problem scenario. This structure scales well, with
searching the tree taking only log(n) time.

A path can now be found using any graph search algorithm
on the modified roadmap, using the arm’s current configuration
as the starting node. We used an unoptimized Dijkstra’s
shortest path algorithm with a heap implementation; faster
techniques certainly exist. Edge costs were calculated back
in Design Step One and stored for rapid access. Various
metrics could be used for edge cost. Swept volume, distance
traveled by the end-effector, or the time required to execute
a movement are all metrics that make sense. Swept volume
yielded the smoothest paths, so we use an approximation
of swept volume for this experiment. The approximation is
simply a weighted sum of joint angle differences. If no non-
infinite cost path is found to the goal configuration, then the

graph has been bisected by obstacles and there is no collision-
free path through the precomputed roadmap. In this (unlikely)
case, one could fall back onto a conventional software planning
routine that has asymptotic completeness. In this way, the
common case could be made fast, and the uncommon case
would still find a solution (if one exists).

V. EXPERIMENTAL RESULTS

In this section we evaluate the performance, power, and
efficacy of our FPGA prototype of the motion planning chip
design. In addition, we deconstruct how much of the perfor-
mance improvements are due to the hardware implementation
versus the aggressive precomputation in our algorithm. To
determine the source of the speedup, we wrote and evaluated
a software version of the same strategy. This implementation
used the collision data collected in Design Step Two above
to create hashsets of the points in collision with each edge.
Collision detection in this implementation simply consists of
querying obstacle voxels for membership in all of the hashsets.
The results of this test can be used to eliminate edges from
the roadmap in exactly the same fashion as described above.
The code was instrumented with OpenMP directives to enable
the CPU to take advantage of the inherent parallelism in the
strategy.

Given the simple and highly parallel nature of this algo-
rithm, it also warranted testing on a GPU. We implemented
the same hash set strategy in CUDA and tested on an NVIDIA
Tesla K20 (which contains 2496 CUDA cores). Both the CPU
and GPU implementations were highly tuned for performance
to enable fair comparisons.

A. Performance

This section compares the performance of the hardware
design to several alternative solutions. The motion planning
process consists of several tasks, so we provide a comparison
of collision detection in isolation, as well as a comparison of
the entire planning process as a whole. To reliably time the
speed of the various components of the now-heterogeneous
system controlling the robot, we fed 10,000 occupancy grids
into the planner and took measurements.

With our processor, the total time between obstacle data
being sent, and having a motion plan to execute, is less than
650 microseconds (of which only 16 is collision detection).
Previously, collision detection has always been the bottleneck

Custom Hardware Precomputed Hashsets

FPGA CPU GPU

16 9,550 1,100

TABLE III: The time (in microseconds) required to perform
collision detection using the FPGA as a collision detection
accelerator compared to using the same aggressive precom-
putation to create hashsets for fast query on a CPU or GPU.
Results here are for roadmaps containing 2,500 edges.

in planning algorithms, but in this approach it is actually
one of the fastest components. The vast majority of the 650
microseconds to produce a plan is spent on operating system
delays and in the graph search phase. Most occupancy grids for
the example scenarios contain <500 points and, at the clock
speed of 125 MHz, are processed by the FPGA in less than 16
microseconds. Traversing the k-d tree to find suitable destina-
tion configurations takes 10-20 microseconds. Modifying the
roadmap with collision data to assign infinite cost to colliding
edges requires 50 microseconds. This leaves the latency for
communication and graph search. Subtracting the computation
time from the round trip latency across the FPGA yields
150 microseconds for communication. Unsophisticated drivers
were used to interface with the FPGA over PCIe, and this
latency could be reduced. Communicating the same data over
PCIe with mature GPU drivers takes around 15 microseconds
each way, so the I/O is a feasible target for optimization. The
longest step by far is Dijkstra’s shortest path algorithm, which
requires 425 microseconds in our implementation. It is likely
that at a relatively small roadmap size there are faster ways
than Dijkstra’s to find a short path, but this is not the focus
of our work.

The design-time steps are very slow compared to what is
executed at runtime. The computationally expensive collision
detection required to build the logic functions takes on the
order of 45 minutes, and heuristic roadmap pruning can take
several hours. Both these steps happen only once at design
time, however, and thus are not a concern.

Table III shows data comparing the different methods of ac-
celerating collision detection. When running with 16 threads,
the software hashset implementation takes less than 10 mil-
liseconds to produce the collision data on the same roadmap

Fig. 9: Both CPU and GPU solutions scale linearly with
respect to the number of edges in the roadmap. The FPGA-
architecture described in this paper, however, executes com-
pletely in parallel, and thus has a latency independent of
roadmap size. All results reflect the latency to process oc-
cupancy grids of the same size.

used in the experiments on the FPGA. When fully parallelized,
the GPU hashset kernel spawns more than 500,000 threads
and completes queries in less than 1.1 milliseconds for the
same roadmap. NVIDIA’s profiling tool nvprof was used to
evaluate the memory transfer times. For the runtime query
transfers (transferring obstacle voxel data to GPU, and result
data back to host), communication happened in less than 15
microseconds each way. Transferring the actual hashsets takes
much longer, at 8 milliseconds, but this only needs to happen
a single time, after which many queries can be made.

These results demonstrate that significant benefit is gained
by attacking the problem from both sides. Our speedup comes
from both the improved algorithm to reduce problem com-
plexity and a hardware implementation that can exploit more
parallelism. Even though the software hashset implementations
achieve a large speedup compared to conventional solutions,
they do not scale as well as the custom hardware solution.
Any given CPU/GPU with a fixed number of hardware threads
will experience a linear increase in compute time as the
number of edges grows in the roadmap. This effect can be

Custom Hardware Precomputed Hashsets Conventional Software Approaches (CPU)

FPGA CPU GPU PRM RRT

650 10,000 1,600 815,000 756,000

TABLE IV: The time (in microseconds) required to produce motion plans using the FPGA as a collision detection accelerator
compared to using hashsets on either a CPU or GPU, or conventional software approaches (run on a CPU). RRT is a single-
query probabilistic algorithm very similar to PRM, used more commonly when speed is a concern rather than data-reuse.
These numbers include time to perform a path search and the latency to transmit data to and from the remote devices for the
FPGA/GPU solutions. Although the CPU and GPU can achieve impressive speed-ups using hashsets, these are on relatively
small graphs (2,500 edges), and these solutions scale linearly with roadmap size.

seen in Figure 9 showing the performance of these solutions
on roadmaps of increasing size. By contrast, the hardware
design is completely parallel and takes constant time to do
the computation regardless of the number of edges. The only
obstacle in achieving this parallelism for huge roadmaps is the
fixed hardware budget.

Collision detection is only one part of motion planning, so
we next consider the timing of the motion planning process
as a whole. Table IV shows the time to generate a complete
motion plan using the FPGA, precomputed hashsets, and
conventional solutions. Running the PRM algorithm on the
high performance workstation described above on the same
sample environments took 0.8 seconds to produce a solution.
Rapidly Exploring Random Trees (RRT) is a single-query
probabilistic method that is slightly faster at 0.75 seconds.
Our approach produces motion plans three orders of magnitude
faster than conventional solutions running on CPUs and two
orders of magnitude faster than current GPU methods.

B. Power and Energy

Another advantage enjoyed by specialized accelerators is
power efficiency. In order to quantify power consumption,
we wired a high-wattage current shunt resistor in series with
the DE5 board’s power supply to determine the peak power
consumption of our design while computing collisions for a
1024-edge roadmap. We used an oscilloscope to measure the
voltage drop across the resistor during a collision detection
query, which caused the board power to increase from a
nominal 12W to a peak 15W. The board has other components
contributing to this power consumption, so the FPGA would
be some fraction of this. GPU solutions, in contrast, are often
much higher power. The Tesla K20 is rated for 225 W, and it
takes a longer time to execute than the FPGA, thus consuming
far more energy.

C. Motion Planning Efficacy

The FPGA solution we present in this work is robust to
a wide range of pick-and-place environment distributions.
Simulation allowed profiling the final roadmap over tens of
thousands of scenarios, and results were verified by imple-
menting the physical system end-to-end and testing it against
real environments. The method is conservative; discretization
of space makes obstacles appear larger than they are. No
planned motion will ever mistakenly be in collision, which
is of the utmost importance for safety reasons. However,
using this conservative discretization strategy does mean that
sometimes the chip will report failure when a solution exists.
This situation could occur either due to obstacles appearing
too large, or simply if the roadmap created at design-time does
not contain appropriate edges for the given scenario. Testing
showed that these situations rarely happen in practice. With the
help of heuristic pruning, edges were chosen such that even
modestly-sized roadmaps that would fit on an FPGA solved
example scenarios with a success rate of greater than 98%. In
the rare cases in which a path is not found, the system can fall

back on a conventional probabilistic algorithm that maintains
asymptotic completeness.

VI. FUTURE WORK

Both the timing and power measurements would likely
improve even further if the design were implemented on an
ASIC instead of an FPGA. An ASIC would also likely increase
the number of edges that could fit, enabling the use of much
larger roadmaps. We used the Synopsys CAD tools to estimate
that a 1024-edge design would use fewer than 10 million
transistors when mapped to an ASIC. Given that chips with
more than 1 billion transistors have been available for more
than 10 years, an ASIC could easily fit 100,000-edge roadmaps
using an established technology process. The ability to fit
roadmaps of this size would allow the chip to solve problems
comparable to those faced in industrial applications (in real-
time).

VII. RELATED WORK

There have been a variety of approaches by the robotics
community to accelerate motion planning. Atay and Bayazit
focused on directly accelerating the PRM algorithm on an
FPGA [21]. In this work the authors present a design for an
accelerator not just for collision detection, but for most of the
learning phase of a batch-variant of the PRM algorithm. The
authors create functional units to perform the random sampling
of new configurations, as well as nearest neighbor search.
They hoped to parallelize triangle-triangle testing as well, by
implementing multiple intersection test modules (similar to
our initial approach described in Section III.A). The idea was
that the roadmap would be transmitted back to the host to
perform the query phase. However, even on a small low-DOF
toy robot example they found they could not fit their design
onto an FPGA, resorting to simulation instead.

There has also been work focusing on the use of GPUs
to parallelize conventional planning algorithms [5][6][7]. For
example, Bialkowski et al. divide the collision detection tasks
of the RRT* algorithm into three parallel dimensions to
create grids of thread blocks that can simultaneously perform
collision computations [7]. The main limitation of approaches
utilizing GPUs is that a GPU provides only a constant factor
speedup; once the cores of the GPU are fully utilized, the
execution time scales linearly with problem size.

The algorithmic side of the problem is also frequently
studied. One strategy is to use a “lazy” approach and elide
collision checks until an edge is a candidate for use in a
shortest path, instead of performing collision detection when
building the roadmap [22]. This strategy does reduce the
number of collision checks that must be done, but still results
in expensive collision checking being done at runtime.

VIII. CONCLUSIONS

In this work we have presented a novel microarchitecture for
the hardware acceleration of motion planning algorithms. The
solution achieves several orders of magnitude speedup over the
current state of the art. This sub-millisecond speed is sufficient

to enable previously infeasible robotic applications, such as
real-time planning in dynamic environments. We demonstrated
an end-to-end implementation on a real, high-DOF robotic
arm, and the accelerator was able to solve dynamic pick-and-
place scenarios with a high rate of success. The methodology
is general enough to be applied to a wide range of robotics
applications and scales well with roadmap size. In short,
the hardware acceleration of motion planning algorithms is
a highly effective approach.

ACKNOWLEDGMENTS

This work was supported in part by the Defense Advanced
Research Projects Agency (DARPA) Robotics Fast Track
Program. Any opinions, findings, and conclusions or recom-
mendations expressed in this material are those of the authors
and do not necessarily reflect the view of DARPA OSRF, or the
US government. We thank Kris Hauser for his assistance with
the Klampt robotics software package [15]. Altera Corporation
also provided support for this work. We would additionally
like to thank Barret Ames, Saeed Alrahama, Xiangyu Zhang,
Martha Barker, and Hayden Bader.

REFERENCES

[1] A. Putnam, A. M. Caulfield, E. S. Chung, D. Chiou, K. Constantinides,
J. Demme, H. Esmaeilzadeh, J. Fowers, G. P. Gopal, J. Gray, M. Hasel-
man, S. Hauck, S. Heil, A. Hormati, J.-Y. Kim, S. Lanka, J. Larus,
E. Peterson, S. Pope, A. Smith, J. Thong, P. Y. Xiao, and D. Burger, “A
reconfigurable fabric for accelerating large-scale datacenter services,” in
Proceedings of the 41st Annual International Symposium on Computer
Architecuture, pp. 13–24, 2014.

[2] Z. Du, R. Fasthuber, T. Chen, P. Ienne, L. Li, T. Luo, X. Feng, Y. Chen,
and O. Temam, “ShiDianNao: Shifting vision processing closer to the
sensor,” in Proceedings of the 42nd Annual International Symposium on
Computer Architecture, pp. 92–104, 2015.

[3] X. Liu and Y. Deng, “Fast radix: A scalable hardware accelerator for
parallel radix sort,” in 12th International Conference on Frontiers of
Information Technology, 2014.

[4] D. E. Shaw, M. M. Deneroff, R. O. Dror, J. S. Kuskin, R. H. Larson, J. K.
Salmon, C. Young, B. Batson, K. J. Bowers, J. C. Chao, M. P. Eastwood,
J. Gagliardo, J. P. Grossman, C. R. Ho, D. J. Ierardi, I. Kolossváry,
J. L. Klepeis, T. Layman, C. McLeavey, M. A. Moraes, R. Mueller,
E. C. Priest, Y. Shan, J. Spengler, M. Theobald, B. Towles, and
S. C. Wang, “Anton, a special-purpose machine for molecular dynamics
simulation,” in Proceedings of the 34th Annual International Symposium
on Computer Architecture, pp. 1–12, 2007.

[5] J. Pan and D. Manocha, “GPU-based parallel collision detection for
fast motion planning,” International Journal of Robotics Research, Feb.
2012.

[6] J. Pan, C. Lauterbach, and D. Manocha, “g-Planner: Real-time motion
planning and global navigation using GPUs,” in Proceedings of the AAAI
Conference on Artificial Intelligence, 2010.

[7] J. Bialkowski, S. Karaman, and E. Frazzoli, “Massively parallelizing
the RRT and the RRT∗,” in Proceedings of the IEEE/RSJ International
Conference on Intelligent Robots and Systems, 2011.

[8] S. Murray, W. Floyd-Jones, Y. Qi, D. Sorin, and G. Konidaris, “Robot
motion planning on a chip,” in Robotics: Science and Systems, June
2016.

[9] T. Lozano-Perez, “Spatial planning: A configuration space approach,”
IEEE Transactions on Computers, pp. 108–120, 1983.

[10] L. E. Kavraki, P. Svestka, J.-C. Latombe, and M. H. Overmars, “Prob-
abilistic roadmaps for path planning in high-dimensional configuration
spaces,” IEEE Transactions on Robotics and Automation, vol. 12, no. 4,
pp. 566–580, 1996.

[11] N. M. Amato and L. K. Dale, “Probabilistic roadmap methods are
embarrassingly parallel,” in Proceedings of the IEEE International
Conference on Robotics and Automation, pp. 688–694, 1999.

[12] C. Ericson, Real-Time Collision Detection. CRC Press, 2004.

[13] P. Leven and S. Hutchinson, “A framework for real-time path planning
in changing environments,” The International Journal of Robotics Re-
search, vol. 21, no. 12, pp. 999–1030, 2002.

[14] J. Stuecheli, B. Blaner, C. Johns, and M. Siegel, “CAPI: A coherent
accelerator processor interface,” IBM Journal of Research and Develop-
ment, vol. 59, no. 1, pp. 7–1, 2015.

[15] K. Hauser, “Robust contact generation for robot simulation with un-
structured meshes,” in Proceedings of the International Symposium on
Robotics Research, 2013.

[16] D. Nieuwenhuisen and M. H. Overmars, “Useful cycles in probabilistic
roadmap graphs,” in Proceedings of the IEEE International Conference
on Robotics and Automation, vol. 1, pp. 446–452, 2004.

[17] R. Brayton, G. Hatchel, C. McMullen, and A. Sangiovanni-Vincentelli,
Logic Minimization Algorithms for VLSI Synthesis. Boston, MA: Kluwer
Academic Publishers, 1984.

[18] R. Rudell, “Multiple-valued logic minimization for PLA synthesis,”
Tech. Rep. UCB/ERL M86/65, EECS Department, University of Cali-
fornia, Berkeley, 1986.

[19] T. Wiedemeyer, “IAI Kinect2.” https://github.com/code-iai/iai kinect2,
2014 – 2015. Accessed June 12, 2015.

[20] S. Niekum, “ar track alvar.” http://wiki.ros.org/ar track alvar, 2011 –
2015.

[21] N. Atay and B. Bayazit, “A motion planning processor on reconfigurable
hardware,” in Proceedings of the IEEE International Conference on
Robotics and Automation, pp. 125–132, 2006.

[22] K. Hauser, “Lazy collision checking in asymptotically-optimal motion
planning,” in Proceedings of the IEEE International Conference on
Robotics and Automation, pp. 2951–2957, 2015.

https://github.com/code-iai/iai_kinect2
http://wiki.ros.org/ar_track_alvar

