Overview   |


GPS-enabled devices are now ubiquitous, from airplanes and cars to smartphones and wearable technology. This has resulted in a wealth of data about the movements of individuals and populations, which can be analyzed for useful information to aid in city and traffic planning, disaster preparedness and so on. However, the places that people go can disclose extremely sensitive information about them, and thus their use needs to be filtered through privacy preserving mechanisms. This turns out to be a highly challenging task: raw trajectories are highly detailed, and typically no pair is alike. Previous attempts fail either to provide adequate privacy protection, or to remain sufficiently faithful to the original behavior. Hence, our goal is to provide a system to synthesize mobility data based on raw GPS trajectories of individuals while ensuring strong privacy protection in the form of ε-differential privacy.

Project Members at Duke