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ABSTRACT
Differential privacy has emerged as the dominant privacy
standard for data analysis. Its wide acceptance has led to
significant development of algorithms that meet this rigorous
standard. For some tasks, such as the task of answering
low dimensional counting queries, dozens of algorithms have
been proposed. However, no single algorithm has emerged as
the dominant performer, and in fact, algorithm performance
varies drastically across inputs. Thus, it’s not clear how to
select an algorithm for a particular task, and choosing the
wrong algorithm might lead to significant degradation in
terms of analysis accuracy. We believe that the difficulty
of algorithm selection is one factor limiting the adoption of
differential privacy in real systems. In this demonstration we
present DIAS (Differentially-private Interactive Algorithm
Selection), an educational privacy game. Users are asked
to perform algorithm selection for a variety of inputs and
compare the performance of their choices against that of
Pythia, an automated algorithm selection framework. Our
hope is that by the end of the game users will understand
the importance of algorithm selection and most importantly
will have a good grasp on how to use differentially private
algorithms for their own applications.

1. INTRODUCTION
In the modern age of big data, not only is information

about individuals being collected by various agencies (e.g.,
hospitals, retailers, etc.), but also users voluntarily share
their own data. Performing analyses on such data is tremen-
dously valuable both for commercial and research purposes.
Unfortunately, such analyses can lead to significant privacy
breaches. Differential privacy has emerged as a gold stan-
dard privacy definition. Informally, differential privacy re-
quires that the output of an analysis algorithm not change
too much with the addition or removal of any single individ-
ual from the input dataset.
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The interest in differential privacy within the research
community has lead to a rich literature of algorithms. Most
differentially private algorithms work by carefully injecting
a certain amount of structured noise into analysis computa-
tions. General purpose algorithms like the Laplace Mecha-
nism [1] are easy to adapt for a variety of tasks, but often
offer sub-optimal error rates. Because of this, more sophis-
ticated task-specific algorithms have been designed that are
capable of reducing error rates by an order of magnitude
while satisfying the same privacy guarantee. Some of these
algorithms achieve lower error by adapting the added noise
to specific properties of the data. This makes their per-
formance data-dependent, meaning their error rates vary by
input and deriving tight bounds on the error for a specific
input is non-trivial. Moreover, a recent empirical study of
16 differentially private algorithms found that (a) there is no
single dominating algorithm across all inputs, (b) the error
rates of a single algorithm vary vastly depending on proper-
ties of the input include the dataset size, the setting of the
privacy parameter, and other structural properties [2].

As a result, the rich literature on differentially private
algorithm design has limited accessibility for a practitioner.
In the current algorithm landscape, a practitioner needs to
know details of each particular algorithm and under what
conditions it is likely to perform well. Moreover, the fact
that there is no single algorithm that dominates only makes
the problem more challenging.

For this reason, in our paper that appears in SIGMOD
2017 [3], we formalize the problem of Algorithm Selection
under differential privacy and propose Pythia, an end-to-
end differentially private solution to the algorithm selection
problem. Our vision with Pythia is to make differential pri-
vacy more accessible to data curators regardless of their ex-
pertise. Pythia is the first meta-algorithm for answering
low dimensional queries on datasets under differential pri-
vacy. From the user’s perspective, Pythia is no different
than any other differentially private algorithm for the task
as it shares a common interface with them. Pythia offers an
end-to-end differentially private solution, highly competitive
error rates, and an effortless application to new tasks (i.e.,
users of Pythia don’t need to be privacy experts). We believe
that Pythia is a necessary step towards a future where the
practitioner specifies her privacy constraints and the queries
she would like answered on a sensitive input and the differ-
entially private system computes an optimized output under
the privacy constraints.



Demo Overview
In this demonstration, users are introduced to two distinct
but closely related concepts: (a) the importance and hard-
ness of algorithm selection in the context of differential pri-
vacy and (b) the impact of input properties on the error of
each algorithm. To achieve both ends, users play a data re-
lease game called DIAS (Differentially private Interactive
Algorithm Selection). The goal of the game is to perform
a complex data analysis task under differential privacy with
the highest possible accuracy. The task requires the simul-
taneous private release of multiple histograms of the original
data. Each player in the game is presented with the chal-
lenge of algorithm selection: given a set of algorithms to
choose from, they must select what they believe is the best
algorithm for each histogram task, with the wrong choice
leading to potentially significant loss in accuracy.

The game is organized in rounds and in each successive
round the complexity of the inputs increases and the users
are exposed to increasingly more sophisticated challenges of
algorithm selection under differential privacy. These chal-
lenges are centered around input properties and how they
affect different algorithms. For example, in earlier rounds
users are introduced to the importance of the histogram’s
domain size and they choose only from a small class of sim-
pler algorithms. In contrast, in later rounds of the game,
users have to choose from all available algorithms and the
histograms to be computed have different structural proper-
ties that make algorithm selection challenging. At the end of
the game, users compare themselves with the best baseline
strategies as well as with the algorithms chosen by Pythia.
Users also have access to the inner workings of Pythia and
see the reasoning behind its choices.

The audience for the game includes both SIGMOD at-
tendees with little background in differential privacy – each
round is effectively a mini-tutorial – as well as differential
privacy experts who can compete to outperform Pythia.

2. PRELIMINARIES
Data Model. A database D is a multiset of records, each
having k attributes with discrete and ordered domains. Let
D denote the universe of all possible input databases. Fol-
lowing convention, we describe D as a vector x ∈ Nd where
xi reports the number of records type i for all d possible
types where d = d1 × . . . × dk and dj is the domain size of
the jth attribute.

Queries. A query workload W is a set of m linear count-
ing queries defined on x. This class of queries includes
queries that count the number of individuals satisfying a
range predicate on one or more attributes, and thus includes
histograms, marginals, and datacubes, in addition to more
general predicate counting queries. The answer to this work-
load is denoted as y = Wx.

Differential Privacy. Differential privacy is satisfied when
the output distribution of the algorithm changes by only
a small multiplicative factor with the addition or deletion
of single record. Let nbrs(D) denote the set of databases
differing from D in at most one record; i.e., if D′ ∈ nbrs(D),
then |(D −D′) ∪ (D′ −D)| = 1.

Definition 2.1 (Differential Privacy [1]). A randomized al-
gorithm A is ε-differentially private if for any instance D,

any D′ ∈ nbrs(D), and any subset of outputs S ⊆ Range(A),

Pr[A(D) ∈ S] ≤ exp(ε)× Pr[A(D′) ∈ S]

ε is called the privacy budget as it (indirectly) constrains
the amount of utility that can be extracted from the input.

Algorithms. The algorithms considered here take as input
a triple (W,x, ε) corresponding to a workload W, a private
dataset x, and a specific setting of the privacy parameter ε
and they compute noisy answers to the workload W on x
that satisfy ε-Differential Privacy, denoted ỹ.

Differentially private algorithms can be broadly classified
into two categories: data-independent and data-dependent.
A data independent algorithm has the property that its er-
ror rate is independent of the input database instance. Clas-
sic algorithms like the Laplace mechanism [1] are data in-
dependent. For the task of answering range queries on a
single dimension, the Laplace mechanism has the least error
when the domain of the attribute is small, whereas other
data independent techniques like Hb that perform hierar-
chical decompositions of the domain can yield significantly
lower error rates for attributes with larger domains.

In many settings, however, the best performing algorithms
are data dependent. Examples of such algorithms include
DAWA, AGrid, AHP, and MWEM. These algorithms typ-
ically adapt to the particular dataset, finding a collection of
aggregate statistics that serve as an accurate approximation
of the underlying database. For instance, a popular data
adaptive strategy (employed by DAWA, AGrid and AHP)
is to first learn a partitioning of x for which the data distri-
bution within each partition is approximately uniform, and
then summarize the dataset at the coarser granularity of par-
titions. Hay et al. [2] offer a more comprehensive overview
of data dependent algorithms.

A challenge with using data dependent algorithms is that
their error rates depend on the input database instance and
thus their performance can be hard to predict a priori. This
motivates the problem of algorithm selection.

Problem Statement. Given a collection of state-of-the-art
differentially private algorithms, the data curator must se-
lect the algorithm that is likely to yield the best performance
on the curator’s data. This problem is formalized as follows.

Definition 2.2. Algorithm Selection [3]. Let A denote
a set of differentially private algorithms. Given the triplet
(W,x, ε) corresponding to a workload, a private dataset and
a setting of the privacy parameter ε respectively, the algo-
rithm selection problem is to select an algorithm A∗ ∈ A to
answer W on x such that ε-differential privacy is satisfied.

Solutions to algorithm selection must satisfy the following
three desiderata:

1. Differential privacy: The algorithm selector must itself
be differentially private. In particular, any use of the in-
put data in selecting an algorithm must be included in an
end-to-end guarantee of privacy. The obvious approach
of running all available algorithms on the sensitive input,
checking their error, and selecting the one with least error
has been shown to violate privacy [3].

2. Agnostic: Each algorithm A ∈ A should be treated as a
black box, i.e., only requiring that the algorithm satisfy
differential privacy. Agnostic methods are easier to use
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Figure 1: The Pythia meta-algorithm computes private
query answers given the input data, workload, and epsilon.
Internally, it maintains a model of the performance of a set
of algorithms, automatically selects one, and executes it.

for non-experts and are also readily extensible as new
algorithms can be easily added.

3. Competitive: It should select an algorithm A∗ that of-
fers low error rates on a wide variety of inputs.

Performance. The performance of an algorithm selector
is measured using regret, which compares the error of the
selected algorithm to the error of the best possible algorithm
for that particular input.

Definition 2.3 (Regret). Given a set of differentially pri-
vate algorithms A and triplet (W,x, ε), the regret of selected
algorithm A ∈ A is:

regret(A,W,x, ε) =
error(A,W,x, ε)

OPTA(W,x, ε)

where OPTA(W,x, ε) = minA∈A error(A,W,x, ε) and
error(A,W,x, ε) = ‖ỹ − y‖2.

3. PYTHIA
Pythia is a differentially private meta algorithm that solves

algorithm selection problem and satisfies the three desider-
ata outlined in the previous section. It works in three steps
(see Fig. 1). First, it extracts a set of noisy features from
the input x using a small fraction of the privacy budget.
Next, it consults a Feature-based Algorithm Selector (FAS)
and chooses one out of a library of differentially private algo-
rithms based on the extracted features. Finally, it executes
the chosen algorithm on the input using the remainder of
the privacy budget. Since some of the privacy budget is used
for feature extraction, Pythia will necessarily have slightly
higher error than the optimal choice algorithm.

Algorithm selection is facilitated by the FAS, which is im-
plemented in Pythia as a decision tree. The FAS is learned
using a offline algorithm called Delphi that uses a synthet-
ically generated training dataset constructed from publicly
available inputs. For a detailed description of both Delphi
and Pythia we refer the reader to the forthcoming paper [3].

Figure 2: The interface of a round in the game. At the far
left column the user chooses a histogram and an algorithm
for that histogram. The middle and right columns provide
with valuable information on the selected histogram and the
chosen algorithm respectively. Once the user has locked in
all his choices he can press next to go to the next round.

Figure 3: The interface users interact with at the end of each
round. The first column shows the user’s choices and the
respective error incurred. The second column shows what
Pythia chose and the errors for each algorithm. Lastly the
last column shows the regret for each choice made by both
Pythia and the user.

By design, Pythia satisfies the first two desiderata (dif-
ferentially private and agnostic) and we empirically show
that it is also highly competitive, offering near-optimal re-
gret rates for a wide variety of inputs. Pythia closes the
accessibility gap for differential privacy since it does not re-
quire from the practitioner any knowledge of differentially
private algorithms. Lastly, Delphi’s design allows the fast
and easy inclusion of new algorithms as they are proposed
by the research community.

4. DEMO OVERVIEW
Target Group. The audience for DIAS will include SIG-
MOD attendees who have little prior knowledge of differ-
entially private algorithms as well as experts in differential
privacy. This demonstration caters to both groups, privacy
experts who participate in DIAS compete against Pythia
for the task of algorithm selection and can see how well they
fair against our automated system. At the same time, non-
experts who are interested in differential privacy and want
to understand the subtle nuances of differentially private al-
gorithms have a chance to do so by participating in DIAS,
since its rounds are designed to serve as a brief tutorial.

Game Organization. DIAS is a game of algorithm selec-
tion, where users play by selecting algorithms for a variety of
different histograms. Once users have selected an algorithm
for each histogram DIAS combines their private estimates
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Figure 4: Example of a Feature-based Algorithm Selector
for the task of 2D histogram release.

to complete a single data analysis task (e.g., Naive Bayes
Classification). The goal of the game is to privately perform
the analysis task such that a task specific accuracy measure
is maximized (e.g., in the case of a Naive Bayes Classifier the
goal is to minimize the misclassification rate). Note that the
accuracy of the task highly depends on the accuracy of the
private estimates. Hence, algorithm selection plays a cru-
cial role in performing the data analysis with high accuracy.
The game is organized in rounds each of which lasts ∼ 1
minute. Rounds act as a brief tutorial for non-experts as
in each round users select algorithms for a different subset
of the histograms. At the end of the game, users compare
their performance with that of baseline algorithm selection
strategies, as well as that of Pythia and have a chance to
peek into the inner workings of Pythia. Users can also par-
ticipate in the DIAS leaderboard, and the winner will win a
$20 value Amazon gift card.

Data Analysis Tasks. In this demonstration users can
choose between two different tasks: a differentially private
Naive Bayes Classifier (NBC) and workload answering. Train-
ing an NBC for binary classification involves the estimation
of multiple 1D histograms, and utility is measured in terms
of misclassification rate. In the case of workload answering,
there is a set of differentially private inputs S of the form
(W,x, ε) and the goal is to privately estimate all of them
while achieving the lowest possible average regret across S.

Rounds Description. Our main goal with organizing DIAS
in terms of separate rounds is to create an easy to follow
tutorial for non-privacy experts who want to employ dif-
ferential privacy in their applications. Each round serves
a different educational purpose and subsequent rounds pro-
vide a deeper dive into algorithm comparisons. In Fig. 2
we see how a round looks like. At the end of each single
round users have an opportunity to check their current per-
formance against that of Pythia and a baseline strategy (see
Fig. 3). Note that in every step of the game the demo pre-
senter will be available to answer questions on algorithms
and concepts of differential privacy.

In the first round users are introduced to the problem
of histogram estimation under differential privacy and are
introduced to the baseline algorithm that satisfies differen-
tial privacy, the Laplace Mechanism [1]. Users need to per-
form algorithm selection for 2 histograms. The nature of the
histograms is such that algorithm performance depends on
their domain size. In this round users are also first intro-
duced to the notion of regret, through a visual comparison of
algorithm performance between their choice and the choices
made by a baseline strategy and that of Pythia.

In the second round of the game users get to learn the
basics of data dependent algorithms and under what cir-
cumstances they achieve better error rates than their data
independent counterparts. The histograms to be estimated
now have a different number of records (i.e., scale) and users
get a first-handed knowledge on the importance of scale in
the error rates of different algorithms.

In the next round, users now need to estimate the same
histogram under different ε values where for the small value
a data dependent algorithm performs best and for the high
value a data independent performs the best. The main point
of this round is to emphasize the importance of the privacy
parameter in algorithm selection and how it is exchangeable
[2] with the scale parameter.

The main educational point of the last round is to in-
troduce users to structural properties and algorithms that
take advantage of these properties. More specifically, users
are introduced to properties like uniformity, sparsity, and
partitionality. The histograms to be answered are highly
heterogeneous and users need to select algorithms that ex-
ploit different structural properties of the input. These new
elements give users a valuable insight of how the structural
properties of a histogram affect error rates for different al-
gorithms.

End of the Game. Once the user has gone through all the
rounds and selected an algorithm for each histogram, DIAS
completes the data analysis task and assigns a score to the
user which puts him on the leaderboard. The user then has
the option to access Pythia’s inner workings and see exactly
how Pythia made each of its choices. We achieve this goal by
exposing users to both the features extracted from Pythia as
well as the FAS (see Fig. 4) that Pythia used. Thus, users
have a firsthand experience to learn exactly what decisions
Pythia made and what features are more important in algo-
rithm selection. Another subtle point of Pythia that users
will get to see first-hand is the trade-off inherent to Pythia.
The privacy budget spent for feature extraction implies that
more noise will be added on the release step, but on the other
hand feature extraction leads to a better algorithm choice
which can decrease the error by an order of magnitude and
thus have improvement on the performance. In the case that
a user outperforms Pythia, we hope to have a constructive
discussion on their insight for algorithm selection and what
features they used in their decision making.

Our goal is that by the end of the game, both privacy ex-
perts and non-experts alike will have increased their knowl-
edge on differential privacy and more importantly will feel
even more confident in applying differentially private algo-
rithms in their own applications.
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