ISSAC 2003

On Approximate Irreducibility of Polynomials in Several Variables

John May
Joint work with: Erich Kaltofen

North Carolina State University

```
    http://www.kaltofen.us
http://www.math.ncsu.edu/~jpmay
```

This talk is sponsored by a TATA ECCAD'02 Award

Problem [Nagasaka ISSAC'02]

Given $f \in \mathbb{C}[x, y]$, irreducible, compute "large" $\varepsilon>0$, such that $\forall \tilde{f}, \operatorname{deg} \tilde{f} \leq \operatorname{deg} f:\|f-\tilde{f}\|<\varepsilon \Longrightarrow \tilde{f}$ is irreducible.

Problem [Nagasaka ISSAC'02]

Given $f \in \mathbb{C}[x, y]$, irreducible, compute "large" $\varepsilon>0$, such that $\forall \tilde{f}, \operatorname{deg} \tilde{f} \leq \operatorname{deg} f:\|f-\tilde{f}\|<\varepsilon \Longrightarrow \tilde{f}$ is irreducible.

Problem depends on choice of norm $\|\cdot\|$, choice of degree.
For $f=x^{2}+y^{2}-1$, the 2 -norm, and total degree:

$$
\tilde{f}=(x-1)(x+1),\|f-\tilde{f}\|_{2}=1
$$

Problem [Nagasaka ISSAC'02]

Given $f \in \mathbb{C}[x, y]$, irreducible, compute "large" $\varepsilon>0$, such that $\forall \tilde{f}, \operatorname{deg} \tilde{f} \leq \operatorname{deg} f:\|f-\tilde{f}\|<\varepsilon \Longrightarrow \tilde{f}$ is irreducible.

Problem depends on choice of norm $\|\cdot\|$, choice of degree.
For rectangular degrees we get closer to $f=x^{2}+y^{2}-1$:

$$
\begin{aligned}
& \hat{f}=\left(0.4906834 y^{2}+0.8491482 x-0.9073464\right)(x+1.214778) \\
= & 0.596072 y^{2}+0.849148 x^{2}+0.490683 x y^{2}+0.124180 x-1.102225,
\end{aligned}
$$

$$
\|f-\hat{f}\|_{2} \approx 0.6727223
$$

Problem [Nagasaka ISSAC'02]

Given $f \in \mathbb{C}[x, y]$, irreducible, compute "large" $\varepsilon>0$, such that $\forall \tilde{f}, \operatorname{deg} \tilde{f} \leq \operatorname{deg} f:\|f-\tilde{f}\|<\varepsilon \Longrightarrow \tilde{f}$ is irreducible.

Our results apply to the coefficient $1-, 2$ and ∞-norms, and the rectangular bi-degree $\operatorname{deg} f=(m, n)$.

New results make it possible to use total degree instead.

Problem [Nagasaka ISSAC'02]

Given $f \in \mathbb{C}[x, y]$, irreducible, compute "large" $\varepsilon>0$, such that $\forall \tilde{f}, \operatorname{deg} \tilde{f} \leq \operatorname{deg} f:\|f-\tilde{f}\|<\varepsilon \Longrightarrow \tilde{f}$ is irreducible.

Degree bound is important:
$(1+\delta x) f$ is reducible but for $\delta<\varepsilon /\|f\|$,

$$
\|(1+\delta x) f-f\|=\|\delta x f\|=\delta\|f\|<\varepsilon
$$

Ruppert's Theorem

$f \in \mathbb{K}[x, y], \operatorname{deg} f=(m, n)$.
\mathbb{K} is a field, algebraically closed, and characteristic 0 .
Theorem. f is reducible $\Longleftrightarrow \exists g, h \in \mathbb{K}[x, y]$, non-zero,

$$
\frac{\partial}{\partial y} \frac{g}{f}-\frac{\partial}{\partial x} \frac{h}{f}=0
$$

$$
\operatorname{deg} g \leq(m-2, n), \operatorname{deg} h \leq(m, n-1) .
$$

Ruppert's Theorem

$f \in \mathbb{K}[x, y], \operatorname{deg} f=(m, n)$.
\mathbb{K} is a field, algebraically closed, and characteristic 0 .
Theorem. f is reducible $\Longleftrightarrow \exists g, h \in \mathbb{K}[x, y]$, non-zero,

$$
\begin{gathered}
\frac{\partial}{\partial y} \frac{g}{f}-\frac{\partial}{\partial x} \frac{h}{f}=0 \\
\operatorname{deg} g \leq(m-2, n), \operatorname{deg} h \leq(m, n-1) .
\end{gathered}
$$

Bounds on the degrees of g and h eliminate the solution $g=\frac{\partial f}{\partial x}, h=\frac{\partial f}{\partial y}$.

Ruppert's Theorem

$f \in \mathbb{K}[x, y], \operatorname{deg} f=(m, n)$.
\mathbb{K} is a field, algebraically closed, and characteristic 0 .
Theorem. f is reducible $\Longleftrightarrow \exists g, h \in \mathbb{K}[x, y]$, non-zero,

$$
\begin{gathered}
\frac{\partial}{\partial y} \frac{g}{f}-\frac{\partial}{\partial x} \frac{h}{f}=0 \\
\operatorname{deg} g \leq(m-2, n), \operatorname{deg} h \leq(m, n-1) .
\end{gathered}
$$

The PDE can be rewritten as

$$
f \frac{\partial g}{\partial y}-g \frac{\partial f}{\partial y}+h \frac{\partial f}{\partial x}-f \frac{\partial h}{\partial x}=0 .
$$

Ruppert's Theorem

$f \in \mathbb{K}[x, y], \operatorname{deg} f=(m, n)$.
\mathbb{K} is a field, algebraically closed, and characteristic 0 .
Theorem. f is reducible $\Longleftrightarrow \exists g, h \in \mathbb{K}[x, y]$, non-zero,

$$
\begin{gathered}
f \frac{\partial g}{\partial y}-g \frac{\partial f}{\partial y}+h \frac{\partial f}{\partial x}-f \frac{\partial h}{\partial x}=0 \\
\operatorname{deg} g \leq(m-2, n), \operatorname{deg} h \leq(m, n-1) .
\end{gathered}
$$

The PDE leads to a set of equations linear in the coefficients of g and h.

Ruppert's Theorem

$f \in \mathbb{K}[x, y], \operatorname{deg} f=(m, n)$.
\mathbb{K} is a field, algebraically closed, and characteristic 0 .
Theorem. f is reducible $\Longleftrightarrow \exists g, h \in \mathbb{K}[x, y]$, non-zero,

$$
\begin{gathered}
f \frac{\partial g}{\partial y}-g \frac{\partial f}{\partial y}+h \frac{\partial f}{\partial x}-f \frac{\partial h}{\partial x}=0 \\
\operatorname{deg} g \leq(m-2, n), \operatorname{deg} h \leq(m, n-1) .
\end{gathered}
$$

The PDE leads to a set of equations linear in the coefficients of g and h.

Given f the PDE gives a matrix $R(f)$.
$R(f)$ is rank deficient $\Longleftrightarrow f$ has nontrivial factors.

Structure of $R(f)$ for a generic degree $2 f$
$\left[\begin{array}{ccccccccc}-c_{0,1} & c_{1,0} & c_{0,0} & 0 & -c_{0,0} & 0 & 0 & 0 & 0 \\ -2 c_{0,2} & c_{1,1} & 0 & 0 & -c_{0,1} & 2 c_{0,0} & 0 & 0 & 0 \\ -c_{1,1} & 2 c_{2,0} & c_{1,0} & -c_{0,1} & 0 & 0 & c_{0,0} & -2 c_{0,0} & 0 \\ 0 & c_{1,2} & -c_{0,2} & 0 & -c_{0,2} & c_{0,1} & 0 & 0 & 0 \\ -2 c_{1,2} & 2 c_{2,1} & 0 & -2 c_{0,2} & 0 & 2 c_{1,0} & 0 & -2 c_{0,1} & 2 c_{0,0} \\ -c_{2,1} & 0 & c_{2,0} & -c_{1,1} & c_{2,0} & 0 & c_{1,0} & -c_{1,0} & 0 \\ 0 & 2 c_{2,2} & -c_{1,2} & 0 & 0 & c_{1,1} & -c_{0,2} & -2 c_{0,2} & c_{0,1} \\ -2 c_{2,2} & 0 & 0 & -2 c_{1,2} & c_{2,1} & 2 c_{2,0} & 0 & -c_{1,1} & 2 c_{1,0} \\ 0 & 0 & 0 & -c_{2,1} & 0 & 0 & c_{2,0} & 0 & 0 \\ 0 & 0 & -c_{2,2} & 0 & c_{2,2} & c_{2,1} & -c_{1,2} & -c_{1,2} & c_{1,1} \\ 0 & 0 & 0 & -2 c_{2,2} & 0 & 0 & 0 & 0 & 2 c_{2,0} \\ 0 & 0 & 0 & 0 & 0 & 0 & -c_{2,2} & 0 & c_{2,1}\end{array}\right]$

Generalizations

Gao 2000: Counting Factors
Changes the degree bound: $\operatorname{deg} g \leq(m-1, n)$
\# linearly indep. solutions to the $\mathrm{PDE}=\#$ factors of f
Requires squarefreeness: $\operatorname{GCD}\left(f, \frac{\partial f}{\partial x}\right)=1$

Generalizations

Gao 2000: Counting Factors
Changes the degree bound: $\operatorname{deg} g \leq(m-1, n)$
\# linearly indep. solutions to the $\mathrm{PDE}=$ \# factors of f
Requires squarefreeness: $\operatorname{GCD}\left(f, \frac{\partial f}{\partial x}\right)=1$

Gao and Rodrigues 2002: Sparse Version If (g, h) is a solution to the PDE, then $P(x g) \subseteq P(f)$,
$P(y h) \subseteq P(f)$, where P is the Newton polytope for the term degree pairs.

Generalizations

May 2003: Multivariate Version
$f \in \mathbb{C}\left[x, y_{1}, \ldots, y_{k}\right]$ is irreducible $\Longleftrightarrow \exists g, h_{i}, 1 \leq i \leq k:$

$$
\frac{\partial}{\partial y_{i}} \frac{g}{f}-\frac{\partial}{\partial x} \frac{h_{i}}{f}=0, \forall 1 \leq i \leq k
$$

$\operatorname{deg} g \leq \operatorname{deg} f, \quad \operatorname{deg} h_{i} \leq \operatorname{deg} f, \forall 1 \leq i \leq k$, $\operatorname{deg}_{x} g \leq\left(\operatorname{deg}_{x} f\right)-2, \quad \operatorname{deg}_{y_{i}} h_{i} \leq\left(\operatorname{deg}_{y_{i}} f\right)-1, \forall 1 \leq i \leq k$.

Distance to the Nearest Reducible Polynomial

For a fixed norm and factor degree:
The problem can be solved by finding the distance to the nearest reducible polynomial [cf. Hitz et al. ISSAC'99].

Distance to the Nearest Reducible Polynomial

For a fixed norm and factor degree:
The problem can be solved by finding the distance to the nearest reducible polynomial [cf. Hitz et al. ISSAC'99].

We can find a lower bound on the radius of irreducibility by:

1. Separating $R(f)$ from rank deficient matrices then
2. relating the norm of $R(f)$ to the norm of f.

Some Linear Algebra

Generalized operator norm of a matrix:

$$
\|A\|_{p, q}=\max _{x \neq 0}\|A x\|_{p} /\|x\|_{q}
$$

This include all standard operator norms as well as the height of a matrix $H(A)=\|A\|_{\infty, 1}$.

Some Linear Algebra

Generalized operator norm of a matrix:

$$
\|A\|_{p, q}=\max _{x \neq 0}\|A x\|_{p} /\|x\|_{q}
$$

Theorem. Suppose $A \in \mathbb{C}^{v \times \mu}$ has full rank and A has more rows than columns. If $A-A_{\Delta}$ has lower rank than A, then

$$
\left\|A_{\Delta}\right\|_{p, q} \geq 1 /\left\|A^{\dagger}\right\|_{q, p}
$$

where $A^{\dagger}=\left(A^{H} A\right)^{-1} A^{H}$.

Some Linear Algebra

Generalized operator norm of a matrix:

$$
\|A\|_{p, q}=\max _{x \neq 0}\|A x\|_{p} /\|x\|_{q}
$$

Theorem. Suppose $A \in \mathbb{C}^{v \times \mu}$ has full rank and A has more rows than columns. If $A-A_{\Delta}$ has lower rank than A, then

$$
\left\|A_{\Delta}\right\|_{p, q} \geq 1 /\left\|A^{\dagger}\right\|_{q, p}
$$

where $A^{\dagger}=\left(A^{H} A\right)^{-1} A^{H}$.
If $p=q=2$, then $\left\|A^{\dagger}\right\|_{q, p}^{-1}=\sigma(A)$, smallest singular value of A.

Structure of $R(f)$

Facts about $R(f)$ where $f=\sum c_{i, j} x^{i} y^{j}$:

- All the entries of $R(f)$ are integer multiples of coefficients of f or zero.
- Every multiple in $R(f), a c_{i, j}$, satisfies: $|a| \leq \max \{m, n\}$
- There are at most $2 m n-m$ multiples of $c_{i, j}$ in the entries of $R(f)$
- There is at most one multiple of $c_{i, j}$ in each column
- There are at most two multiples of $c_{i, j}$ in each row

Structure of $R(f)$ for a generic degree $2 f$
$\left[\begin{array}{ccccccccc}-c_{0,1} & c_{1,0} & c_{0,0} & 0 & -c_{0,0} & 0 & 0 & 0 & 0 \\ -2 c_{0,2} & c_{1,1} & 0 & 0 & -c_{0,1} & 2 c_{0,0} & 0 & 0 & 0 \\ -c_{1,1} & 2 c_{2,0} & c_{1,0} & -c_{0,1} & 0 & 0 & c_{0,0} & -2 c_{0,0} & 0 \\ 0 & c_{1,2} & -c_{0,2} & 0 & -c_{0,2} & c_{0,1} & 0 & 0 & 0 \\ -2 c_{1,2} & 2 c_{2,1} & 0 & -2 c_{0,2} & 0 & 2 c_{1,0} & 0 & -2 c_{0,1} & 2 c_{0,0} \\ -c_{2,1} & 0 & c_{2,0} & -c_{1,1} & c_{2,0} & 0 & c_{1,0} & -c_{1,0} & 0 \\ 0 & 2 c_{2,2} & -c_{1,2} & 0 & 0 & c_{1,1} & -c_{0,2} & -2 c_{0,2} & c_{0,1} \\ -2 c_{2,2} & 0 & 0 & -2 c_{1,2} & c_{2,1} & 2 c_{2,0} & 0 & -c_{1,1} & 2 c_{1,0} \\ 0 & 0 & 0 & -c_{2,1} & 0 & 0 & c_{2,0} & 0 & 0 \\ 0 & 0 & -c_{2,2} & 0 & c_{2,2} & c_{2,1} & -c_{1,2} & -c_{1,2} & c_{1,1} \\ 0 & 0 & 0 & -2 c_{2,2} & 0 & 0 & 0 & 0 & 2 c_{2,0} \\ 0 & 0 & 0 & 0 & 0 & 0 & -c_{2,2} & 0 & c_{2,1}\end{array}\right]$

2-Norm of $R(f)$ and a Lower Bound

Structure of $R(f)$ leads to relationships between the norms of $R(f)$ and the norms of f :

$$
\|R(f)\|_{2} \leq\|R(f)\|_{F r o b} \leq \max \{m, n\} \sqrt{2 m n-n}\|f\|_{2}
$$

2-Norm of $R(f)$ and a Lower Bound

Structure of $R(f)$ leads to relationships between the norms of $R(f)$ and the norms of f :

$$
\|R(f)\|_{2} \leq\|R(f)\|_{F r o b} \leq \max \{m, n\} \sqrt{2 m n-n}\|f\|_{2}
$$

Theorem.
If $f \in \mathbb{C}[x, y]$ is irreducible, $\tilde{f} \in \mathbb{C}[x, y]$ is factorizable, and $\operatorname{deg} \tilde{f} \leq \operatorname{deg} f$ then:

$$
\|f-\tilde{f}\|_{2} \geq \frac{\sigma(R(f))}{\max \{m, n\} \sqrt{2 m n-n}}
$$

Lower Bound

Suppose:

$$
\begin{aligned}
\|f-\tilde{f}\|_{2} & <\frac{\sigma(R(f))}{\max \{m, n\} \sqrt{2 m n-n}} \\
\|R(f)-R(\tilde{f})\|_{\text {Frob }} & =\left\|\left.R(\varphi)\right|_{\varphi=f-\tilde{f}}\right\|_{\text {Frob }} \\
& \leq \max \{m, n\} \sqrt{2 m n-m}\|f-\tilde{f}\|_{2} \\
& <\sigma(R(f)) .
\end{aligned}
$$

f is irreducible $\Rightarrow R(f)$ is full rank. So $\|R(f)-R(\tilde{f})\|_{F r o b}<\sigma(R(f)) \Rightarrow R(\tilde{f})$ is full rank $\Rightarrow \tilde{f}$ is irreducible.

Other Norms of $R(f)$

Other relationships between the norms of $R(f)$ and the norms of f : lead to other Theorems:

	If \tilde{f} factors, then				
$\\|R(f)\\|_{1} \leq$	$\\|f-\tilde{f}\\|_{1} \geq$				
$\max \{m, n\}\\|f\\|_{1}$	$\left(\max \{m, n\}\left\\|R(f)^{\dagger}\right\\|_{1}\right)^{-1}$				
$\\|R(f)\\|_{\infty} \leq$	$\\|f-\tilde{f}\\|_{1} \geq$				
$2 \max \{m, n\}\\|f\\|_{1}$	$\left(2 \max \{m, n\}\left\\|R(f)^{\dagger}\right\\|_{\infty}\right)^{-1}$				
$\\|R(f)\\|_{\infty, 1} \leq$	$\\|f-\tilde{f}\\|_{\infty} \geq$				
$\max \{m, n\}\\|f\\|_{\infty}$	$\left(\max \{m, n\} \sum_{i, j}\left\|R(f)_{i, j}^{\dagger}\right\|\right)^{-1}$				

Example 1

$f=x^{2}+y^{2}-1$,
$\varphi=c_{2,2} x^{2} y^{2}+c_{2,1} x^{2} y+c_{1,2} x y^{2}+c_{2,0} x^{2}+c_{0,2} y^{2}+c_{1,1} x y+$
$c_{1,0} x+c_{0,1} y+c_{0,0}$
Computing $\|R(\varphi)\|_{\text {Frob }}^{2}$, we get:

$$
\begin{aligned}
& 15\left|c_{0,2}\right|^{2}+15\left|c_{2,2}\right|^{2}+15\left|c_{2,0}\right|^{2}+12\left|c_{1,2}\right|^{2}+9\left|c_{2,1}\right|^{2} \\
&+6\left|c_{1,1}\right|^{2}+15\left|c_{0,0}\right|^{2}+12\left|c_{1,0}\right|^{2}+9\left|c_{0,1}\right|^{2} .
\end{aligned}
$$

The largest coefficient is 15 (vs. theoretical bound 24), and the smallest singular value of $R(f)$ is $\sigma(R(f)) \approx 0.613616$, so f is at least distance $\sigma(R(f)) / \sqrt{15} \approx 0.1584349$ from a reducible polynomial.

Example 2 [Nagasaka priv. commun. 2003]
$f=\left(-0.769142 u^{6}-0.791975 u^{2}+0.535324 u+0.828448\right) x^{4}+$ $\left(-0.653187 u^{3}+0.320409 u^{2}+0.103376 u+0.475811\right) x^{3}+$ $\left(0.996342 u^{5}+0.755931 u-0.941103\right) x^{2}+\left(0.169204 u^{5}-\right.$ $0.243435 u) x-0.838000 u^{6}-0.214451 u+0.209513$
$R(f)$ is 88×53.
Largest coefficient of $\|R(\varphi)\|_{\text {Frob }}$ is 514 vs. the theoretical bound of 848 .

Our lower bound (2-norm): 0.04326727713
Nagasaka's lower bound: 0.00001128558364

Challenge Problems:

http://www.math.ncsu.edu/~jpmay/issac03/challenge.html

