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Problem [Nagasaka ISSAC’02]

Given f ∈ C[x,y], irreducible, compute “large” ε > 0,

such that ∀ f̃ ,deg f̃ ≤ deg f : ‖ f − f̃‖ < ε =⇒ f̃ is irreducible.
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Given f ∈ C[x,y], irreducible, compute “large” ε > 0,

such that ∀ f̃ ,deg f̃ ≤ deg f : ‖ f − f̃‖ < ε =⇒ f̃ is irreducible.

Problem depends on choice of norm ‖ · ‖,
choice of degree.

For f = x2 + y2 −1, the 2-norm, and total degree:

f̃ = (x−1)(x+1), ‖ f − f̃‖2 = 1.
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Problem [Nagasaka ISSAC’02]

Given f ∈ C[x,y], irreducible, compute “large” ε > 0,

such that ∀ f̃ ,deg f̃ ≤ deg f : ‖ f − f̃‖ < ε =⇒ f̃ is irreducible.

Problem depends on choice of norm ‖ · ‖,
choice of degree.

For rectangular degrees we get closer to f = x2 + y2 −1:

f̂ = (0.4906834y2 +0.8491482x−0.9073464)(x+1.214778)

= 0.596072y2+0.849148x2+0.490683xy2+0.124180x−1.102225,

‖ f − f̂‖2 ≈ 0.6727223.
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Problem [Nagasaka ISSAC’02]

Given f ∈ C[x,y], irreducible, compute “large” ε > 0,

such that ∀ f̃ ,deg f̃ ≤ deg f : ‖ f − f̃‖ < ε =⇒ f̃ is irreducible.

Our results apply to the coefficient 1-, 2- and ∞-norms, and the
rectangular bi-degree deg f = (m,n).

New results make it possible to use total degree instead.
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Problem [Nagasaka ISSAC’02]

Given f ∈ C[x,y], irreducible, compute “large” ε > 0,

such that ∀ f̃ ,deg f̃ ≤ deg f : ‖ f − f̃‖ < ε =⇒ f̃ is irreducible.

Degree bound is important:
(1+δx) f is reducible but for δ < ε/‖ f‖,

‖(1+δx) f − f‖ = ‖δx f‖ = δ‖ f‖ < ε
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Ruppert’s Theorem

f ∈ K[x,y], deg f = (m,n).

K is a field, algebraically closed, and characteristic 0.

Theorem. f is reducible ⇐⇒ ∃g,h ∈ K[x,y], non-zero,

∂
∂y

g
f
− ∂

∂x
h
f

= 0

degg ≤ (m−2,n) , degh ≤ (m,n−1).

The PDE leads to a set of equations linear in the coefficients of g
and h.

Given f the PDE gives a matrix R( f ).

R( f ) is rank deficient ⇐⇒ f has nontrivial factors.
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∂
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g
f
− ∂

∂x
h
f
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degg ≤ (m−2,n) , degh ≤ (m,n−1).

Bounds on the degrees of g and h eliminate the solution

g = ∂ f
∂x , h = ∂ f

∂y .

The PDE leads to a set of equations linear in the coefficients of g
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Theorem. f is reducible ⇐⇒ ∃g,h ∈ K[x,y], non-zero,

∂
∂y

g
f
− ∂

∂x
h
f

= 0

degg ≤ (m−2,n) , degh ≤ (m,n−1).

The PDE can be rewritten as

f
∂g
∂y

−g
∂ f
∂y

+h
∂ f
∂x

− f
∂h
∂x

= 0.

The PDE leads to a set of equations linear in the coefficients of g
and h.

Given f the PDE gives a matrix R( f ).

R( f ) is rank deficient ⇐⇒ f has nontrivial factors.
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Structure of R( f ) for a generic degree 2 f
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−c0,1 c1,0 c0,0 0 −c0,0 0 0 0 0

−2c0,2 c1,1 0 0 −c0,1 2c0,0 0 0 0

−c1,1 2c2,0 c1,0 −c0,1 0 0 c0,0 −2c0,0 0

0 c1,2 −c0,2 0 −c0,2 c0,1 0 0 0

−2c1,2 2c2,1 0 −2c0,2 0 2c1,0 0 −2c0,1 2c0,0

−c2,1 0 c2,0 −c1,1 c2,0 0 c1,0 −c1,0 0

0 2c2,2 −c1,2 0 0 c1,1 −c0,2 −2c0,2 c0,1

−2c2,2 0 0 −2c1,2 c2,1 2c2,0 0 −c1,1 2c1,0

0 0 0 −c2,1 0 0 c2,0 0 0

0 0 −c2,2 0 c2,2 c2,1 −c1,2 −c1,2 c1,1

0 0 0 −2c2,2 0 0 0 0 2c2,0

0 0 0 0 0 0 −c2,2 0 c2,1
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Generalizations

Gao 2000: Counting Factors
Changes the degree bound: degg ≤ (m−1,n)
# linearly indep. solutions to the PDE = # factors of f

Requires squarefreeness: GCD( f , ∂ f
∂x ) = 1
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Generalizations

Gao 2000: Counting Factors
Changes the degree bound: degg ≤ (m−1,n)
# linearly indep. solutions to the PDE = # factors of f

Requires squarefreeness: GCD( f , ∂ f
∂x ) = 1

Gao and Rodrigues 2002: Sparse Version
If (g,h) is a solution to the PDE, then P(xg) ⊆ P( f ),
P(yh) ⊆ P( f ), where P is the Newton polytope for the term
degree pairs.
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Generalizations

May 2003: Multivariate Version
f ∈ C[x,y1, . . . ,yk] is irreducible ⇐⇒ ∃g,hi,1 ≤ i ≤ k :

∂
∂yi

g
f
− ∂

∂x
hi

f
= 0, ∀1 ≤ i ≤ k

degg ≤ deg f , deghi ≤ deg f , ∀1 ≤ i ≤ k,

degx g ≤ (degx f )−2, degyi
hi ≤ (degyi

f )−1, ∀1 ≤ i ≤ k.
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Distance to the Nearest Reducible Polynomial

For a fixed norm and factor degree:

The problem can be solved by finding the distance to the nearest
reducible polynomial [cf. Hitz et al. ISSAC’99].

We can find a lower bound on the radius of irreducibility by:

1. Separating R( f ) from rank deficient matrices then

2. relating the norm of R( f ) to the norm of f .
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Some Linear Algebra

Generalized operator norm of a matrix:

‖A‖p,q = max
x 6=0

‖Ax‖p
/

‖x‖q

This include all standard operator norms as well as the height of
a matrix H(A) = ‖A‖∞,1.

Theorem. Suppose A ∈ C
ν×µ has full rank and A has more rows

than columns. If A−A∆ has lower rank than A, then

‖A∆‖p,q ≥ 1
/

‖A†‖q,p

where A† = (AHA)−1AH .

If p = q = 2, then ‖A†‖−1
q,p = σ(A), smallest singular value of A.
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Structure of R( f )

Facts about R( f ) where f = ∑ ci, jxiy j :

• All the entries of R( f ) are integer multiples of coefficients
of f or zero.

• Every multiple in R( f ), aci, j, satisfies: |a| ≤ max{m,n}

• There are at most 2mn−m multiples of ci, j in the entries of
R( f )

• There is at most one multiple of ci, j in each column

• There are at most two multiples of ci, j in each row
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Structure of R( f ) for a generic degree 2 f
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2-Norm of R( f ) and a Lower Bound

Structure of R( f ) leads to relationships between the norms of
R( f ) and the norms of f :

‖R( f )‖2 ≤ ‖R( f )‖Frob ≤ max{m,n}
√

2mn−n‖ f‖2

Theorem.
If f ∈ C[x,y] is irreducible, f̃ ∈ C[x,y] is factorizable, and
deg f̃ ≤ deg f then:

‖ f − f̃‖2 ≥
σ(R( f ))

max{m,n}
√

2mn−n
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Lower Bound
Suppose:

‖ f − f̃‖2 <
σ(R( f ))

max{m,n}
√

2mn−n

‖R( f )−R( f̃ )‖Frob = ‖R(ϕ)
∣

∣

ϕ= f− f̃ ‖Frob

≤ max{m,n}
√

2mn−m ‖ f − f̃‖2

< σ(R( f )).

f is irreducible ⇒ R( f ) is full rank. So
‖R( f )−R( f̃ )‖Frob < σ(R( f )) ⇒ R( f̃ ) is full rank ⇒ f̃ is
irreducible.
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Other Norms of R( f )

Other relationships between the norms of R( f ) and the norms of
f : lead to other Theorems:

If f̃ factors, then

‖R( f )‖1 ≤
max{m,n}‖ f‖1

‖ f − f̃‖1 ≥
(max{m,n}‖R( f )†‖1)

−1

‖R( f )‖∞ ≤
2max{m,n}‖ f‖1

‖ f − f̃‖1 ≥
(2max{m,n}‖R( f )†‖∞)−1

‖R( f )‖∞,1 ≤
max{m,n}‖ f‖∞

‖ f − f̃‖∞ ≥
(max{m,n} ∑i, j |R( f )†

i, j|)−1
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Example 1

f = x2 + y2 −1,

ϕ = c2,2x2y2 + c2,1x2y+ c1,2xy2 + c2,0x2 + c0,2y2 + c1,1xy+
c1,0x+ c0,1y+ c0,0

Computing ‖R(ϕ)‖2
Frob, we get:

15 |c0,2|2 +15 |c2,2|2 +15 |c2,0|2 +12 |c1,2|2 +9 |c2,1|2

+6 |c1,1|2 +15 |c0,0|2 +12 |c1,0|2 +9 |c0,1|2 .

The largest coefficient is 15 (vs. theoretical bound 24), and the
smallest singular value of R( f ) is σ(R( f )) ≈ 0.613616, so f is at
least distance σ(R( f ))

/√
15 ≈ 0.1584349 from a reducible

polynomial.
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Example 2 [Nagasaka priv. commun. 2003]

f = (−0.769142u6 −0.791975u2 +0.535324u+0.828448)x4 +

(−0.653187u3 +0.320409u2 +0.103376u+0.475811)x3 +

(0.996342u5 +0.755931u−0.941103)x2 +(0.169204u5 −
0.243435u)x−0.838000u6 −0.214451u+0.209513

R( f ) is 88×53.

Largest coefficient of ‖R(ϕ)‖Frob is 514 vs. the theoretical bound
of 848.

Our lower bound (2-norm): 0.04326727713

Nagasaka’s lower bound: 0.00001128558364
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Challenge Problems:
http://www.math.ncsu.edu/˜jpmay/issac03/challenge.html
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