ISSAC'04

Approximate Factorization of Multivariate Polynomials via Differential Equations

Shuhong GaoErich Kaltofen, John MayZhengfeng Yang, Lihong ZhiClemsonNCSUAMSS

http://www.math.ncsu.edu/~kaltofen/software/appfac/

Approximate Factorization Problem [Kaltofen '94]

Given $f \in \mathbb{C}[x, y]$ irreducible, find $\tilde{f} \in \mathbb{C}[x, y]$ s.t. deg $\tilde{f} \leq \text{deg } f$, \tilde{f} factors, and $||f - \tilde{f}||$ is minimal.

Approximate Factorization Problem [Kaltofen '94]

Given $f \in \mathbb{C}[x, y]$ irreducible, find $\tilde{f} \in \mathbb{C}[x, y]$ s.t. deg $\tilde{f} \leq \text{deg } f$, \tilde{f} factors, and $||f - \tilde{f}||$ is minimal.

Problem depends on choice of norm $\|\cdot\|$, and notion of degree.

We use 2-norm, and multi-degree: mdeg $f = (\deg_x f, \deg_v f)$

Approximate Factorization Problem [Kaltofen '94]

Given $f \in \mathbb{C}[x, y]$ irreducible, find $\tilde{f} \in \mathbb{C}[x, y]$ s.t. deg $\tilde{f} \leq \text{deg } f$, \tilde{f} factors, and $||f - \tilde{f}||$ is minimal.

Problem depends on choice of norm $\|\cdot\|$, and notion of degree.

We use 2-norm, and multi-degree: mdeg $f = (\deg_x f, \deg_y f)$

Degree bound is important: $(1 + \delta x)f$ is reducible but for $\delta < \varepsilon/||f||$,

 $||(1+\delta x)f - f|| = ||\delta x f|| = \delta ||f|| < \varepsilon$

State of the Approximate Factorization

• No polynomial time algorithm

State of the Approximate Factorization

- No polynomial time algorithm
- Several algorithms and heuristics to find a nearby factorizable *f* if *f* is "nearly factorizable" [Corless et al. '01 & '02, Galligo and Rupprecht '01, Galligo and Watt '97, Huang et al. '00, Sasaki '01]

State of the Approximate Factorization

- No polynomial time algorithm
- Several algorithms and heuristics to find a nearby factorizable *f̂* if *f* is "nearly factorizable"
 [Corless et al. '01 & '02, Galligo and Rupprecht '01, Galligo and Watt '97, Huang et al. '00, Sasaki '01]
- There are lower bounds for $\min ||f \tilde{f}||$ [Kaltofen and May ISSAC 2003]

Our Results

• A new practical algorithm to compute approximate multivariate GCDs

Our Results

• A new practical algorithm to compute approximate multivariate GCDs

• A practical algorithm to find the factorization of a nearby factorizable polynomial given any *f*

especially "noisy" f: Given $f = f_1 f_2 + f_{noise}$, we find $\overline{f_1}, \overline{f_2}$ s.t. $||f_1 f_2 - \overline{f_1} \overline{f_2}|| \approx ||f_{noise}||$

even for large noise: $||f_{\text{noise}}||/||f|| \ge 10^{-3}$

Maple Demonstration

Ruppert's Theorem

 $f \in \mathbb{K}[x,y]$, mdeg f = (m,n)

 \mathbb{K} is a field, algebraically closed, and characteristic 0

Theorem. *f* is reducible $\iff \exists g, h \in \mathbb{K}[x, y]$, non-zero,

$$\frac{\partial}{\partial y}\frac{g}{f} - \frac{\partial}{\partial x}\frac{h}{f} = 0$$

mdeg $g \leq (m-2,n)$, mdeg $h \leq (m,n-1)$

Ruppert's Theorem

 $f \in \mathbb{K}[x,y]$, mdeg f = (m,n)

 \mathbb{K} is a field, algebraically closed, and characteristic 0

Theorem. *f* is reducible $\iff \exists g, h \in \mathbb{K}[x, y]$, non-zero,

$$\frac{\partial}{\partial y}\frac{g}{f} - \frac{\partial}{\partial x}\frac{h}{f} = 0$$

mdeg $g \leq (m-2,n)$, mdeg $h \leq (m,n-1)$

PDE \rightsquigarrow linear system in the coefficients of *g* and *h*

Gao's PDE based Factorizer

Change degree bound: mdeg $g \le (m-1, n)$, mdeg $h \le (m, n-1)$

so that: # linearly indep. solutions to the PDE = # factors of f

Require square-freeness: $GCD(f, \frac{\partial f}{\partial x}) = 1$

Gao's PDE based Factorizer

Change degree bound: mdeg $g \le (m - 1, n)$, mdeg $h \le (m, n - 1)$ so that: # linearly indep. solutions to the PDE = # factors of fRequire square-freeness: $GCD(f, \frac{\partial f}{\partial x}) = 1$

Let

 $G = \operatorname{Span}_{\mathbb{C}} \{ g \mid [g,h] \text{ is a solution to the PDE} \} \}.$

Any solution $g \in G$ gives a factorization:

$$f = \prod_{\lambda \in \mathbb{C}} \gcd(f, g - \lambda f_x)$$

with high probability \exists distinct λ_i s.t. $f_i = \gcd(f, g - \lambda_i f_x)$ f_i 's distinct irreducible factors of f Gao's PDE based Factorizer

Algorithm **Input:** $f \in \mathbb{K}[x, y], \mathbb{K} \subseteq \mathbb{C}$ **Output:** $f_1, \dots, f_r \in \mathbb{C}[x, y]$

- 1. Find a basis for the linear space G, and choose a random element $g \in G$.
- 2. Compute the polynomial $E_g = \prod_i (z \lambda_i)$ via an eigenvalue formulation If E_g not squarefree, choose a new g
- 3. Compute the factors $f_i = \text{gcd}(f, g \lambda_i f_x)$ in $\mathbb{K}(\lambda_i)$.

In exact arithmetic the extention field $\mathbb{K}(\lambda_i)$ is found via univariate factorization.

Adapting to the Approximate Case

The following must be solved to create an approximate factorizer from Gao's algorithm:

- 1. Computing approximate GCDs of bivariate polynomials;
- 2. Determining the numerical dimension of G, and computing an approximate solution g;
- 3. Computing a g s.t. the polynomial E_g has no clusters of roots.

Determining the Number of Approximate Factors Let $\operatorname{Rup}(f)$ be the matrix from Gao's algorithm Recall:

of factors of f = Nullity(Rup(f))

Determining the Number of Approximate Factors Let $\operatorname{Rup}(f)$ be the matrix from Gao's algorithm Recall:

of factors of f = Nullity(Rup(f))

Rup(*f*) has nullity *r* if $\sigma_m \ge \ldots \ge \sigma_{r+1} \ne 0$ and $\sigma_r = \ldots = \sigma_1 = 0$.

Say $\operatorname{Rup}(f)$ has nullity *r* with tolerance ε if:

 $\sigma_m \geq \ldots \geq \sigma_{r+1} > \varepsilon \geq \sigma_r \geq \ldots \geq \sigma_1$

Find a "best" ε from the largest gap choose $\varepsilon = \sigma_r$ s.t. σ_{r+1}/σ_r is maximal Determining the Number of Approximate Factors

If *f* is irreducible largest gap in the sing. values of $\operatorname{Rup}(f) \rightsquigarrow \#$ of approx. factors

Recall:

$G = \operatorname{Span}_{\mathbb{C}} \{ g \, | \, [g,h] \in \operatorname{Nullspace}(\operatorname{Rup}(f)) \}$

If *r* is position of the largest gap in the sing. values of $\operatorname{Rup}(f)$, approx. version of *G* is Span of last *r* sing. vectors of $\operatorname{Rup}(f)$

Approximate Factorization

Input: $f \in \mathbb{C}[x, y]$ abs. irreducible, approx. square-free **Output**: f_1, \ldots, f_r approx. factors of f, and c

- 1. Compute the SVD of $\operatorname{Rup}(f)$, determine *r*, its approximate nullity, and choose $g = \sum a_i g_i$, a random linear combination of the last *r* right singular vectors
- 2. compute E_g and its roots via an eigenvalue computation
- 3. For each λ_i compute the approximate GCD $f_i = \gcd(f, g - \lambda_i f)$ and find an optimal scaling: $\min_c ||f - c \prod_{i=1}^r f_i||$

Notes on the Repeated Factor Case

We say *f* is approximately square-free if:

dist. to nearest reducible poly. < dist. to nearest non-square-free poly.

Notes on the Repeated Factor Case

We say f is approximately square-free if:

dist. to nearest reducible poly. < dist. to nearest non-square-free poly.

We handle the repeated factor case differently than usual: without iterating approximate GCDs:

Compute the approximate quotient \overline{f} of f and $gcd(f, f_x)$ and factor the approximately square-free kernel \overline{f}

Notes on the Repeated Factor Case

We say f is approximately square-free if:

dist. to nearest reducible poly. < dist. to nearest non-square-free poly.

We handle the repeated factor case differently than usual: without iterating approximate GCDs:

Compute the approximate quotient \overline{f} of f and $gcd(f, f_x)$ and factor the approximately square-free kernel \overline{f}

Determine multiplicity of approximate factors f_i by comparing the degrees of the approximate GCDs:

 $gcd(f_i,\partial^k f/\partial x^k)$

Table of Benchmarks

Example	$tdeg(f_i)$	$\frac{\sigma_{r+1}}{\sigma_r}$	$\frac{\sigma_r}{\ R(f)\ _2}$	coeff. error	backward error	time(sec)
Nagasaka'02	2,3	11	10^{-3}	10^{-2}	1.08e-2	14.631
Kaltofen'00	2,2	10 ⁹	10^{-10}	10^{-4}	1.02e-9	13.009
Sasaki'01	5,5	10 ⁹	10^{-10}	10^{-13}	8.30e-10	5.258
Sasaki'01	10,10	10 ⁵	10^{-6}	10^{-7}	1.05e-6	85.96
Corless et al'01	7,8	107	10^{-8}	10 ⁻⁹	1.41e-8	19.628
Corless et al'02	3,3,3	10 ⁸	10^{-10}	0	1.29e-9	9.234
Zeng'04	$(5)^3, 3, (2)^4$	107	10^{-9}	10^{-10}	2.09e-7	73.52

Table of Benchmarks

Example	$tdeg(f_i)$	$\frac{\sigma_{r+1}}{\sigma_r}$	$\frac{\sigma_r}{\ R(f)\ _2}$	coeff. error	backward error	time(sec)
Random ($f_i \in \mathbb{Z}$)	9,7	486	10^{-4}	10^{-4}	2.14e-4	43.823
	6, 6, 10	10 ³	10^{-6}	10^{-5}	2.47e-4	539.67
	4,4,4,4,4	273	10^{-6}	10^{-5}	1.31e-3	3098.
"	3,3,3	1.70	10^{-3}	10^{-1}	7.93e-1	29.25
"	18,18	104	10^{-7}	10^{-6}	3.75e-6	3173.
	12,7,5	8.34	10^{-4}	10^{-3}	8.42e-3	4370.
Not Sqr Free	$(5,(5)^2)$	10 ³	10^{-5}	10^{-5}	6.98e–5	34.28
3 variables	5,5	104	10^{-5}	10^{-5}	1.72e-5	332.99
$f_i \in \mathbb{C}$	6,6	106	10^{-8}	10^{-7}	2.97e-7	30.034

Table of Benchmarks

Example	$tdeg(f_i)$	$\frac{\sigma_{r+1}}{\sigma_r}$	$\frac{\sigma_r}{\ R(f)\ _2}$	coeff. error	backward error	time(sec)
Random ($f_i \in \mathbb{Z}$)	9,7	486	10^{-4}	10^{-4}	2.14e-4	43.823
	6, 6, 10	10 ³	10^{-6}	10^{-5}	2.47e-4	539.67
	4,4,4,4,4	273	10^{-6}	10^{-5}	1.31e-3	3098.
"	3,3,3	1.70	10^{-3}	10^{-1}	7.93e-1	29.25
"	18,18	104	10^{-7}	10^{-6}	3.75e-6	3173.
"	12,7,5	8.34	10 ⁻⁴	10⁻³	8.42e-3	4370.
Not Sqr Free	$(5,(5)^2)$	10 ³	10^{-5}	10^{-5}	6.98e-5	34.28
3 variables	5,5	104	10^{-5}	10^{-5}	1.72e-5	332.99
$f_i \in \mathbb{C}$	6,6	10 ⁶	10^{-8}	10^{-7}	2.97e-7	30.034

More than two variables

• Everything can be generalized to many variables directly (w/o projecting to 2-variables)

More than two variables

- Everything can be generalized to many variables directly (w/o projecting to 2-variables)
- Our multivariate implementation together with Wen-shin Lee's numerical sparse interpolation implementation quickly factors polynomials arising in engineering Stewart-Gough platforms

Polynomials were 3 variables, factor mult. up to 5, coefficient error 10^{-16} , and were provided by to us Jan Verschelde

Future Work

• Factorization algorithm can be modified to use only iterative blackbox methods to compute singular values/vectors

 $\operatorname{Rup}(f) \cdot \mathbf{v}$ costs 4 polynomial multiplications

Should make very large problems possible

Future Work

• Factorization algorithm can be modified to use only iterative blackbox methods to compute singular values/vectors

 $\operatorname{Rup}(f) \cdot \mathbf{v}$ costs 4 polynomial multiplications

Should make very large problems possible

• Replace SVD techniques with Structured SVD/Total least squares

Future Work

• Factorization algorithm can be modified to use only iterative blackbox methods to compute singular values/vectors

 $\operatorname{Rup}(f) \cdot \mathbf{v}$ costs 4 polynomial multiplications

Should make very large problems possible

- Replace SVD techniques with Structured SVD/Total least squares
- Find robust "noisy" sparse interpolation to handle sparse multivariate problems

Code + Benchmarks at:

http://www.mmrc.iss.ac.cn/~lzhi/Research/appfac.html

or