ISSAC'04
 Approximate Factorization of Multivariate Polynomials via Differential Equations

Shuhong Gao Erich Kaltofen, John May Zhengfeng Yang, Lihong Zhi
Clemson NCSU

AMSS
http://www.math.ncsu.edu/~kaltofen/software/appfac/

Approximate Factorization Problem [Kaltofen '94]

 Given $f \in \mathbb{C}[x, y]$ irreducible, find $\tilde{f} \in \mathbb{C}[x, y]$ s.t. $\operatorname{deg} \tilde{f} \leq \operatorname{deg} f$, \tilde{f} factors, and $\|f-\tilde{f}\|$ is minimal.Approximate Factorization Problem [Kaltofen '94] Given $f \in \mathbb{C}[x, y]$ irreducible, find $\tilde{f} \in \mathbb{C}[x, y]$ s.t. $\operatorname{deg} \tilde{f} \leq \operatorname{deg} f$, \tilde{f} factors, and $\|f-\tilde{f}\|$ is minimal.

Problem depends on choice of norm $\|\cdot\|$, and notion of degree.

We use 2-norm, and multi-degree: $\operatorname{mdeg} f=\left(\operatorname{deg}_{x} f, \operatorname{deg}_{y} f\right)$

Approximate Factorization Problem [Kaltofen '94]
Given $f \in \mathbb{C}[x, y]$ irreducible, find $\tilde{f} \in \mathbb{C}[x, y]$ s.t. $\operatorname{deg} \tilde{f} \leq \operatorname{deg} f$, \tilde{f} factors, and $\|f-\tilde{f}\|$ is minimal.

Problem depends on choice of norm $\|\cdot\|$, and notion of degree.

We use 2-norm, and multi-degree: $\operatorname{mdeg} f=\left(\operatorname{deg}_{x} f, \operatorname{deg}_{y} f\right)$

Degree bound is important:
$(1+\delta x) f$ is reducible but for $\delta<\varepsilon /\|f\|$,

$$
\|(1+\delta x) f-f\|=\|\delta x f\|=\delta\|f\|<\varepsilon
$$

State of the Approximate Factorization

- No polynomial time algorithm

State of the Approximate Factorization

- No polynomial time algorithm
- Several algorithms and heuristics to find a nearby factorizable \hat{f} if f is "nearly factorizable" [Corless et al. ' $01 \&$ ' 02 , Galligo and Rupprecht ' 01 , Galligo and Watt ' 97 , Huang et al. '00, Sasaki '01]

State of the Approximate Factorization

- No polynomial time algorithm
- Several algorithms and heuristics to find a nearby factorizable \hat{f} if f is "nearly factorizable" [Corless et al. '01 \& '02, Galligo and Rupprecht '01, Galligo and Watt '97, Huang et al. '00, Sasaki '01]
- There are lower bounds for $\min \|f-\tilde{f}\|$ [Kaltofen and May ISSAC 2003]

Our Results

- A new practical algorithm to compute approximate multivariate GCDs

Our Results

- A new practical algorithm to compute approximate multivariate GCDs
- A practical algorithm to find the factorization of a nearby factorizable polynomial given any f
especially "noisy" f :
Given $f=f_{1} f_{2}+f_{\text {noise }}$,
we find \bar{f}_{1}, \bar{f}_{2} s.t. $\left\|f_{1} f_{2}-\bar{f}_{1} \bar{f}_{2}\right\| \approx\left\|f_{\text {noise }}\right\|$
even for large noise: $\left\|f_{\text {noise }}\right\| /\|f\| \geq 10^{-3}$

Maple Demonstration

Ruppert's Theorem

$f \in \mathbb{K}[x, y], \operatorname{mdeg} f=(m, n)$
\mathbb{K} is a field, algebraically closed, and characteristic 0
Theorem. f is reducible $\Longleftrightarrow \exists g, h \in \mathbb{K}[x, y]$, non-zero,

$$
\frac{\partial}{\partial y} \frac{g}{f}-\frac{\partial}{\partial x} \frac{h}{f}=0
$$

$$
\operatorname{mdeg} g \leq(m-2, n), \operatorname{mdeg} h \leq(m, n-1)
$$

Ruppert's Theorem

$f \in \mathbb{K}[x, y], \operatorname{mdeg} f=(m, n)$
\mathbb{K} is a field, algebraically closed, and characteristic 0
Theorem. f is reducible $\Longleftrightarrow \exists g, h \in \mathbb{K}[x, y]$, non-zero,

$$
\frac{\partial}{\partial y} \frac{g}{f}-\frac{\partial}{\partial x} \frac{h}{f}=0
$$

$$
\operatorname{mdeg} g \leq(m-2, n), \operatorname{mdeg} h \leq(m, n-1)
$$

PDE \rightsquigarrow linear system in the coefficients of g and h

Gao's PDE based Factorizer

Change degree bound: $\operatorname{mdeg} g \leq(m-1, n), \operatorname{mdeg} h \leq(m, n-1)$
so that: \# linearly indep. solutions to the $\mathrm{PDE}=$ \# factors of f
Require square-freeness: $\operatorname{GCD}\left(f, \frac{\partial f}{\partial x}\right)=1$

Gao's PDE based Factorizer

Change degree bound: $\operatorname{mdeg} g \leq(m-1, n), \operatorname{mdeg} h \leq(m, n-1)$
so that: \# linearly indep. solutions to the $\mathrm{PDE}=$ \# factors of f
Require square-freeness: $\operatorname{GCD}\left(f, \frac{\partial f}{\partial x}\right)=1$
Let

$$
\left.G=\operatorname{Span}_{\mathbb{C}}\{g \mid[g, h] \text { is a solution to the PDE })\right\} .
$$

Any solution $g \in G$ gives a factorization:

$$
f=\prod_{\lambda \in \mathbb{C}} \operatorname{gcd}\left(f, g-\lambda f_{x}\right)
$$

with high probability \exists distinct λ_{i} s.t. $f_{i}=\operatorname{gcd}\left(f, g-\lambda_{i} f_{x}\right)$
f_{i} 's distinct irreducible factors of f

Gao's PDE based Factorizer

Algorithm
Input: $f \in \mathbb{K}[x, y], \mathbb{K} \subseteq \mathbb{C}$
Output: $f_{1}, \ldots, f_{r} \in \mathbb{C}[x, y]$

1. Find a basis for the linear space G, and choose a random element $g \in G$.
2. Compute the polynomial $E_{g}=\prod_{i}\left(z-\lambda_{i}\right)$ via an eigenvalue formulation If E_{g} not squarefree, choose a new g
3. Compute the factors $f_{i}=\operatorname{gcd}\left(f, g-\lambda_{i} f_{x}\right)$ in $\mathbb{K}\left(\lambda_{i}\right)$.

In exact arithmetic the extention field $\mathbb{K}\left(\lambda_{i}\right)$ is found via univariate factorization.

Adapting to the Approximate Case

The following must be solved to create an approximate factorizer from Gao's algorithm:

1. Computing approximate GCDs of bivariate polynomials;
2. Determining the numerical dimension of G, and computing an approximate solution g;
3. Computing a g s.t. the polynomial E_{g} has no clusters of roots.

Determining the Number of Approximate Factors
Let $\operatorname{Rup}(f)$ be the matrix from Gao's algorithm Recall:

$$
\# \text { of factors of } f=\operatorname{Nullity}(\operatorname{Rup}(f))
$$

Determining the Number of Approximate Factors

Let $\operatorname{Rup}(f)$ be the matrix from Gao's algorithm Recall:

$$
\text { \# of factors of } f=\operatorname{Nullity}(\operatorname{Rup}(f))
$$

$\operatorname{Rup}(f)$ has nullity r if
$\sigma_{m} \geq \ldots \geq \sigma_{r+1} \neq 0$ and $\sigma_{r}=\ldots=\sigma_{1}=0$.

Say $\operatorname{Rup}(f)$ has nullity r with tolerance ε if:

$$
\sigma_{m} \geq \ldots \geq \sigma_{r+1}>\varepsilon \geq \sigma_{r} \geq \ldots \geq \sigma_{1}
$$

Find a "best" ε from the largest gap choose $\varepsilon=\sigma_{r}$ s.t. $\sigma_{r+1} / \sigma_{r}$ is maximal

Determining the Number of Approximate Factors

If f is irreducible
largest gap in the sing. values of $\operatorname{Rup}(f) \rightsquigarrow \#$ of approx. factors

Recall:

$$
G=\operatorname{Span}_{\mathbb{C}}\{g \mid[g, h] \in \operatorname{Nullspace}(\operatorname{Rup}(f))\}
$$

If r is position of the largest gap in the sing. values of $\operatorname{Rup}(f)$, approx. version of G is Span of last r sing. vectors of $\operatorname{Rup}(f)$

Approximate Factorization

Input: $f \in \mathbb{C}[x, y]$ abs. irreducible, approx. square-free Output: f_{1}, \ldots, f_{r} approx. factors of f, and c

1. Compute the SVD of $\operatorname{Rup}(f)$, determine r, its approximate nullity, and choose $g=\sum a_{i} g_{i}$, a random linear combination of the last r right singular vectors
2. compute E_{g} and its roots via an eigenvalue computation
3. For each λ_{i} compute the approximate GCD $f_{i}=\operatorname{gcd}\left(f, g-\lambda_{i} f\right)$ and find an optimal scaling: $\min _{c}\left\|f-c \prod_{i=1}^{r} f_{i}\right\|$

Notes on the Repeated Factor Case

We say f is approximately square-free if:
dist. to nearest reducible poly. < dist. to nearest non-square-free poly.

Notes on the Repeated Factor Case

We say f is approximately square-free if:
dist. to nearest reducible poly. < dist. to nearest non-square-free poly.

We handle the repeated factor case differently than usual: without iterating approximate GCDs:

Compute the approximate quotient \bar{f} of f and $\operatorname{gcd}\left(f, f_{x}\right)$ and factor the approximately square-free kernel \bar{f}

Notes on the Repeated Factor Case

We say f is approximately square-free if:
dist. to nearest reducible poly. < dist. to nearest non-square-free poly.

We handle the repeated factor case differently than usual: without iterating approximate GCDs:

Compute the approximate quotient \bar{f} of f and $\operatorname{gcd}\left(f, f_{x}\right)$ and factor the approximately square-free kernel \bar{f}

Determine multiplicity of approximate factors f_{i} by comparing the degrees of the approximate GCDs:

$$
\operatorname{gcd}\left(f_{i}, \partial^{k} f / \partial x^{k}\right)
$$

Table of Benchmarks

Example	$\operatorname{tdeg}\left(f_{i}\right)$	$\frac{\sigma_{r+1}}{\sigma_{r}}$	σ_{r} $\\|R(f)\\|_{2}$	coeff. error	backward error	time(sec)
Nagasaka'02	2,3	11	10^{-3}	10^{-2}	$1.08 \mathrm{e}-2$	14.631
Kaltofen'00	2,2	10^{9}	10^{-10}	10^{-4}	$1.02 \mathrm{e}-9$	13.009
Sasaki'01	5,5	10^{9}	10^{-10}	10^{-13}	$8.30 \mathrm{e}-10$	5.258
Sasaki'01	10,10	10^{5}	10^{-6}	10^{-7}	$1.05 \mathrm{e}-6$	85.96
Corless et al'01	7,8	10^{7}	10^{-8}	10^{-9}	$1.41 \mathrm{e}-8$	19.628
Corless et al'02	$3,3,3$	10^{8}	10^{-10}	0	$1.29 \mathrm{e}-9$	9.234
Zeng'04	$(5)^{3}, 3,(2)^{4}$	10^{7}	10^{-9}	10^{-10}	$2.09 \mathrm{e}-7$	73.52

Table of Benchmarks

Example	$\operatorname{tdeg}\left(f_{i}\right)$	$\frac{\sigma_{r+1}}{\sigma_{r}}$	$\frac{\sigma_{r}}{\\|R(f)\\|_{2}}$coeff. error	backward error	time(sec)	
Random $\left(f_{i} \in \mathbb{Z}\right)$	9,7	486	10^{-4}	10^{-4}	$2.14 \mathrm{e}-4$	43.823
$"$	$6,6,10$	10^{3}	10^{-6}	10^{-5}	$2.47 \mathrm{e}-4$	539.67
$"$	$4,4,4,4,4$	273	10^{-6}	10^{-5}	$1.31 \mathrm{e}-3$	3098.
$"$	$3,3,3$	1.70	10^{-3}	10^{-1}	$7.93 \mathrm{e}-1$	29.25
$"$	18,18	10^{4}	10^{-7}	10^{-6}	$3.75 \mathrm{e}-6$	3173.
$"$	$12,7,5$	8.34	10^{-4}	10^{-3}	$8.42 \mathrm{e}-3$	4370.
Not Sqr Free	$5,(5)^{2}$	10^{3}	10^{-5}	10^{-5}	$6.98 \mathrm{e}-5$	34.28
3 variables	5,5	10^{4}	10^{-5}	10^{-5}	$1.72 \mathrm{e}-5$	332.99
$f_{i} \in \mathbb{C}$	6,6	10^{6}	10^{-8}	10^{-7}	$2.97 \mathrm{e}-7$	30.034

Table of Benchmarks

Example	$\operatorname{tdeg}\left(f_{i}\right)$	$\frac{\sigma_{r+1}}{\sigma_{r}}$	$\frac{\sigma_{r}}{\\|R(f)\\|_{2}}$	coeff. error	backward error	time(sec)
$\operatorname{Random}\left(f_{i} \in \mathbb{Z}\right)$	9,7	486	10^{-4}	10^{-4}	$2.14 \mathrm{e}-4$	43.823
"	6,6,10	10^{3}	10^{-6}	10^{-5}	$2.47 \mathrm{e}-4$	539.67
"	4,4,4,4,4	273	10^{-6}	10^{-5}	1.31e-3	3098.
"	3,3,3	1.70	10^{-3}	10^{-1}	$7.93 \mathrm{e}-1$	29.25
"	18,18	10^{4}	10^{-7}	10^{-6}	3.75e-6	3173.
12,7,5		8.34	10^{-4}	$\mathbf{1 0}^{-3}$	8.42e-3	4370.
Not Sqr Free	5, (5) ${ }^{2}$	10^{3}	10^{-5}	10^{-5}	6.98e-5	34.28
3 variables	5,5	10^{4}	10^{-5}	10^{-5}	$1.72 \mathrm{e}-5$	332.99
$f_{i} \in \mathbb{C}$	6,6	10^{6}	10^{-8}	10^{-7}	$2.97 \mathrm{e}-7$	30.034

More than two variables

- Everything can be generalized to many variables directly (w/o projecting to 2 -variables)

More than two variables

- Everything can be generalized to many variables directly (w/o projecting to 2 -variables)
- Our multivariate implementation together with Wen-shin Lee's numerical sparse interpolation implementation quickly factors polynomials arising in engineering Stewart-Gough platforms

Polynomials were 3 variables, factor mult. up to 5 , coefficient error 10^{-16}, and were provided by to us Jan Verschelde

Future Work

- Factorization algorithm can be modified to use only iterative blackbox methods to compute singular values/vectors
$\operatorname{Rup}(f) \cdot \mathbf{v}$ costs 4 polynomial multiplications
Should make very large problems possible

Future Work

- Factorization algorithm can be modified to use only iterative blackbox methods to compute singular values/vectors
$\operatorname{Rup}(f) \cdot \mathbf{v}$ costs 4 polynomial multiplications
Should make very large problems possible
- Replace SVD techniques with Structured SVD/Total least squares

Future Work

- Factorization algorithm can be modified to use only iterative blackbox methods to compute singular values/vectors
$\operatorname{Rup}(f) \cdot \mathbf{v}$ costs 4 polynomial multiplications
Should make very large problems possible
- Replace SVD techniques with Structured SVD/Total least squares
- Find robust "noisy" sparse interpolation to handle sparse multivariate problems

Code + Benchmarks at:

$$
\begin{aligned}
& \text { http://www.mmrc.iss.ac.cn/~lzhi/Research/appfac.html } \\
& \text { or } \\
& \text { http://www.math.ncsu.edu/~kaltofen/ } \\
& \text { click on "Software" }
\end{aligned}
$$

