Finding Small Degree Factors of Multivariate Supersparse (Lacunary) Polynomials Over Algebraic Number Fields

Erich Kaltofen IIIT

Massachusetts Institute of Technology

google->kaltofen

Joint work with Pascal Koiran (ENS-Lyon)

Supersparse (lacunary) polynomials
The supersparse polynomial

$$
f\left(X_{1}, \ldots, X_{n}\right)=\sum_{i=1}^{t} c_{i} X_{1}^{\alpha_{i, 1}} \cdots X_{n}^{\alpha_{i, n}}
$$

is input by a list of its coefficients and corresponding term degree vectors.

$$
\operatorname{size}(f)=\sum_{i=1}^{t}\left(\text { dense-size }\left(c_{i}\right)+\left\lceil\log _{2}\left(\alpha_{i, 1} \cdots \alpha_{i, n}+2\right)\right\rceil\right)
$$

Term degrees can be very high, e.g., $\geq 2^{500}$

Supersparse (lacunary) polynomials
The supersparse polynomial

$$
f\left(X_{1}, \ldots, X_{n}\right)=\sum_{i=1}^{t} c_{i} X_{1}^{\alpha_{i, 1}} \cdots X_{n}^{\alpha_{i, n}}
$$

is input by a list of its coefficients and corresponding term degree vectors.

$$
\operatorname{size}(f)=\sum_{i=1}^{t}\left(\operatorname{dense}-\operatorname{size}\left(c_{i}\right)+\left\lceil\log _{2}\left(\alpha_{i, 1} \cdots \alpha_{i, n}+2\right)\right\rceil\right)
$$

Term degrees can be very high, e.g., $\geq 2^{500}$
Over \mathbb{Z}_{p} : evaluate by repeated squaring
Over \mathbb{Q} : cannot evaluate in polynomial-time exept for $X_{i}=0, e^{2 \pi i / k}$

Easy problems for supersparse polynomials $f=\sum_{i} c_{i} X^{\alpha_{i}} \in K[X]$
Cucker, Koiran, Smale 1998: Compute root $a \in \mathbb{Z}: f(a)=0$.

Easy problems for supersparse polynomials $f=\sum_{i} c_{i} X^{\alpha_{i}} \in K[X]$
H. W. Lenstra, Jr. 1999:

Input: $\quad \varphi(\zeta) \in \mathbb{Z}[\zeta]$ monic irred.; let $K=\mathbb{Q}[\zeta] /(\varphi(\zeta))$
a supersparse $f(X)=\sum_{i=1}^{t} c_{i} X^{\alpha_{i}} \in K[X]$
a factor degree bound d
Output: a list of all irreducible factors of f over K of degree $\leq d$ and their multiplicities (which is $\leq t$ except for X)

Let $D=d \cdot \operatorname{deg}(\varphi)$
There are at most $O\left(t^{2} \cdot 2^{D} \cdot D \cdot \log (D t)\right)$ factors of degree $\leq d$
Bit complexity is $(\operatorname{size}(f)+D+\log \|\varphi\|) O(1)$

Special case $\varphi=\zeta-1, d=D=1$: Algorithm finds all rational roots in polynomial-time.

Our result for supersparse polynomials $f=\sum_{i} c_{i} \bar{X}^{\overline{\alpha_{i}}} \in K[\bar{X}]$ where $\bar{X}^{\overline{\alpha_{i}}}=X_{1}^{\alpha_{i, 1}} \cdots X_{n}^{\alpha_{i, n}}$

Input: $\quad \varphi(\zeta) \in \mathbb{Z}[\zeta]$ monic irred.; let $K=\mathbb{Q}[\zeta] /(\varphi(\zeta))$ a supersparse $f(\bar{X})=\sum_{i=1}^{t} c_{i} \bar{X}^{\overline{\alpha_{i}}} \in K[\bar{X}]$ a factor degree bound d

Output: a list of all irreducible factors of f over K of degree $\leq d$ and their multiplicities (which is $\leq t$ except for any X_{j})

Bit complexity is:

$$
\begin{aligned}
& (\operatorname{size}(f)+d+\operatorname{deg}(\varphi)+\log \|\varphi\|)^{O(n)} \\
& (\operatorname{size}(f)+d+\operatorname{deg}(\varphi)+\log \|\varphi\|)^{O(1)}(\text { blackbox factors) } \\
& (\text { factors) }
\end{aligned}
$$

Our ISSAC '05 result: $K=\mathbb{Q}, n=2, d=1$

Linear and quadratic bivariate factors [ISSAC'05]
Input: \quad a supersparse $f(X, Y)=\sum_{i=1}^{t} c_{i} X^{\alpha_{i}} Y^{\beta_{i}} \in \mathbb{Z}[X, Y]$ that is monic in X;
an error probability $\varepsilon=1 / 2^{l}$
Output: a list of polynomials $g_{j}(X, Y)$

$$
\text { with } \operatorname{deg}_{X}\left(g_{j}\right) \leq 2 \text { and } \operatorname{deg}_{Y}\left(g_{j}\right) \leq 2 \text {; }
$$

a list of corresponding multiplicities.

The g_{j} are with probability $\geq 1-\varepsilon$ all irreducible factors of f over \mathbb{Q} of degree ≤ 2 together with their true multiplicities.

Bit complexity: $(\operatorname{size}(f)+\log 1 / \varepsilon)^{O(1)}$

Linear and quadratic bivariate factors [ISSAC'05]
Input: a supersparse $f(X, Y)=\sum_{i=1}^{t} c_{i} X^{\alpha_{i}} Y^{\beta_{i}} \in \mathbb{Z}[X, Y]$ that is monic in X;
an error probability $\varepsilon=1 / 2^{l}$
Output: a list of polynomials $g_{j}(X, Y)$

$$
\text { with } \operatorname{deg}_{X}\left(g_{j}\right) \leq 2 \text { and } \operatorname{deg}_{Y}\left(g_{j}\right) \leq 2 \text {; }
$$

a list of corresponding multiplicities.
The g_{j} are with probability $\geq 1-\varepsilon$ all irreducible factors of f over \mathbb{Q} of degree ≤ 2 together with their true multiplicities.

Bit complexity: $(\operatorname{size}(f)+\log 1 / \varepsilon)^{O(1)}$
With É. Schost + [Tao 2005]: remove monicity restriction factors of degree $O(1)$.

Linear and quadratic bivariate factors [ISSAC'05]
Input: a supersparse $f(X, Y)=\sum_{i=1}^{t} c_{i} X^{\alpha_{i}} Y^{\beta_{i}} \in \mathbb{Z}[X, Y]$ that is monic in X;
an error probability $\varepsilon=1 / 2^{l}$
Output: a list of polynomials $g_{j}(X, Y)$

$$
\text { with } \operatorname{deg}_{X}\left(g_{j}\right) \leq 2 \text { and } \operatorname{deg}_{Y}\left(g_{j}\right) \leq 2 \text {; }
$$

a list of corresponding multiplicities.

The g_{j} are with probability $\geq 1-\varepsilon$ all irreducible factors of f over \mathbb{Q} of degree ≤ 2 together with their true multiplicities.

Bit complexity: $(\operatorname{size}(f)+\log 1 / \varepsilon)^{O(1)}$
With É. Schost+ [Tao 2005]: remove monicity restriction simple argument: factors of degree $O(1)$.

Concepts from algebraic number theory
Weil height for algebraic number η :

$$
\operatorname{Height}(\eta)=\prod_{v \in M_{\mathbb{Q}(\eta)}} \max \left(1,|\eta|_{v}\right)^{\frac{d_{v}}{[\mathbb{Q}(\eta): \mathbb{Q}]}}
$$

where $M_{\mathbb{Q}(\eta)}$ are all absolute values in $\mathbb{Q}(\eta), d_{v}$ their local degrees.

Concepts from algebraic number theory
Weil height for algebraic number η :

$$
\operatorname{Height}(\eta)=\prod_{v \in M_{\mathbb{Q}(\eta)}} \max \left(1,|\eta|_{v}\right)^{\frac{d_{v}}{\mathbb{Q}(\eta): \mathbb{Q}]}}
$$

where $M_{\mathbb{Q}(\eta)}$ are all absolute values in $\mathbb{Q}(\eta), d_{v}$ their local degrees.

Theorem [cf. Amoroso and Zannier 2000]
Let L be a cyclotomic, hence Abelian extension of \mathbb{Q}.
For any algebraic $\eta \neq 0$ that is not a root of unity

$$
\operatorname{Height}(\eta) \geq \exp \left(\frac{C_{1}}{D}\left(\frac{\log (2 D)}{\log \log (5 D)}\right)^{-13}\right)=1+o(1)
$$

where $C_{1}>0$ and $D=[L(\eta): L]$.

Concepts from algebraic number theory
Weil height for algebraic number η :

$$
\operatorname{Height}(\eta)=\prod_{v \in M_{\mathbb{Q}(\eta)}} \max \left(1,|\eta|_{v}\right)^{\frac{d_{v}}{\mathbb{Q}(\eta): \mathbb{Q}]}}
$$

where $M_{\mathbb{Q}(\eta)}$ are all absolute values in $\mathbb{Q}(\eta), d_{v}$ their local degrees.

Theorem [cf. Amoroso and Zannier 2000]
Let L be a cyclotomic, hence Abelian extension of \mathbb{Q}.
For any algebraic $\eta \neq 0$ that is not a root of unity

$$
\operatorname{Height}(\eta) \geq \exp \left(\frac{C_{1}}{D}\left(\frac{\log (2 D)}{\log \log (5 D)}\right)^{-13}\right)=1+o(1)
$$

where $C_{1}>0$ and $D=[L(\eta): L]$.
We do not know a C_{1} explicitly, hence \exists an algorithm.

Concepts from diophantine geometry
Let $P\left(X_{1}, \ldots, X_{n}\right) \in \mathbb{C}\left[X_{1}, \ldots, X_{n}\right]$ be irreducible $V(P)=$ rootset (variety, hypersurface) of P
$S \subseteq V(P)$ is Zariski dense iff $S \subseteq V(Q) \Longrightarrow Q=P$
Example: $\{(\xi, \xi, 0) \mid \xi \in \mathbb{C}\}$ is not dense for $X_{1}-X_{2}+X_{3}$.

Concepts from diophantine geometry
Let $P\left(X_{1}, \ldots, X_{n}\right) \in \mathbb{C}\left[X_{1}, \ldots, X_{n}\right]$ be irreducible $V(P)=$ rootset (variety, hypersurface) of P
$S \subseteq V(P)$ is Zariski dense iff $S \subseteq V(Q) \Longrightarrow Q=P$
Example: $\{(\xi, \xi, 0) \mid \xi \in \mathbb{C}\}$ is not dense for $X_{1}-X_{2}+X_{3}$.

Theorem [cf. Laurent 1984]
Let $P\left(X_{1}, \ldots, X_{n}\right) \in \mathbb{C}\left[X_{1}, \ldots, X_{n}\right]$ be irreducible and let $S \subseteq V(P)$ where each coordinate of each point is a root of unity (torsion points).
Then

$$
S \text { is dense for } P \Longleftrightarrow P=\prod_{i=1}^{n} X_{i}^{\beta_{i}}-\theta
$$

where θ is a root of unity and $\beta_{i} \in \mathbb{Z}$.
Example: $\left\{\left(e^{2 \pi i /(2 j)}, e^{2 \pi i /(3 j)}\right)\right\}$ is dense for $X_{1}^{2}-X_{2}^{3}$.

Gap theorem for factors where cyclotomic points are not dense
Let P be the irreducible factor of f.
Step 1: construct dense set $\left\{\left(\theta_{1}, \ldots, \theta_{n-1}, \eta\right)\right\}$ for P such that all θ_{i} are roots of unity, η are not.

Gap theorem for factors where cyclotomic points are not dense
Let P be the irreducible factor of f.
Step 1: construct dense set $\left\{\left(\theta_{1}, \ldots, \theta_{n-1}, \eta\right)\right\}$ for P such that all θ_{i} are roots of unity, η are not.

Step 2: If $f\left(X_{1}, \ldots, X_{n}\right)=g+X_{n}^{u} h, \operatorname{deg}_{X_{n}}(g)<k$, apply Lenstra's gap argument to

$$
g\left(\theta_{1}, \ldots, \theta_{n-1}, \eta\right)=-\eta^{u} h\left(\theta_{1}, \ldots, \theta_{n-1}, \eta\right)
$$

and get

$$
u-k \geq \chi \Longrightarrow g\left(\theta_{1}, \ldots, \theta_{n-1}, \eta\right)=0
$$

where

$$
\chi=\frac{D}{C_{2}}\left(\frac{\log (2 D)}{\log \log (5 D)}\right)^{13} \log (t(t+1) \operatorname{Height}(f))
$$

Factors for which cyclotomic points are dense
Consider irreducible factor

$$
P_{\beta, \gamma, \theta}=P\left(X_{1}, \ldots, X_{n}\right)=\prod_{i=1}^{n} X_{i}^{\beta_{i}}-\theta \prod_{i=1}^{n} X_{i}^{\gamma_{i}}
$$

with $\forall i: \beta_{i}=0 \vee \gamma_{i}=0$ and $\operatorname{GCD}_{1 \leq i \leq n}\left(\beta_{i}-\gamma_{i}\right)=1$.

Suppose $\left(\beta_{n}, \gamma_{n}\right) \neq(0,0)$. Plugging into $f=\sum_{j} c_{j} \bar{X}^{\overline{\alpha_{j}}}$

$$
X_{n}=\lambda\left(\prod_{i=1}^{n-1} X_{i}^{\gamma_{i}-\beta_{i}}\right)^{\frac{1}{\beta_{n}-\gamma_{n}}}
$$

we find j and $k= \pm \operatorname{GCD}_{1 \leq i \leq n}\left(\alpha_{0, i}-\alpha_{j, i}\right)$:

$$
\alpha_{0, n} \neq \alpha_{j, n} \text { and } \forall i: \gamma_{i}-\beta_{i}=\left(\alpha_{0, i}-\alpha_{j, i}\right) / k,
$$

Factors for which cyclotomic points are dense (cont.)

Step 1: compute candidates for (β, γ).

Step 2: compute λ as cyclotomic roots of bounded order of sets of supersparse univariate polynomials in λ.

Step 3: compute the norm of $P\left(X_{1}, \ldots, X_{n}\right)$, which must be irreducible over the ground field.

Example

$$
\begin{aligned}
X^{\beta}-\theta Y^{\gamma} \mid X^{n} Y^{0} & -X^{0} Y^{n+1} \text { if } \\
k & = \pm \operatorname{GCD}(n-0,0-(n+1))= \pm 1
\end{aligned}
$$

and

$$
-\beta=(n-0) / k, \quad \gamma=(0-(n+1)) / k
$$

Therefore there is no such factor, even in Stephen Watt's symbolic polynomial sense.

Similar symbolic irreducibility criteria with gap theorem.

Another hard problem for supersparse polynomials in $\mathbb{F}_{2^{k}}[X]$
Theorem [Kipnis and Shamir CRYPTO '99]
The set of all supersparse polynomials in $\mathbb{F}_{2^{k}}[X]$ that have a root in $\mathbb{F}_{2^{k}}$ is NP-hard for all sufficiently large k.

Corollary (cf. Open Problem in our ISSAC'05 paper)
It is NP-hard to determine if a polynomial in X over $\mathbb{F}_{2^{k}}$ given by a division-free straight-line program has a root in $\mathbb{F}_{2^{k}}$.

Grazie mille!

