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ABSTRACT

The dreaded phenomenon of expression swell in symbolic computation can be palli-

ated by adopting implicit representations for symbolic objects, such as straight-line

programs or so-called black box representations. In the latter, each expression is

a symbolic object, more speci�cally, a computer program with a set of statically

initialized data, which takes as input a value for each variable and then produces

the value of the symbolic object it represents at the speci�ed point.

In this thesis we introduce FoxBox, a software package that puts in practice

the black box representation of symbolic objects and provides algorithms for per-

forming the symbolic calculus with such representations. Improved versions of the

algorithms found in Kaltofen and Trager [Journal of Symbolic Computing, vol. 9, nr.

3, p. 311 (1990)] and Kaltofen and D��az [International Symposium on Symbolic and

Algebraic Computation '95, p. 232] are discussed. Also we describe an interpolation

scheme based on a Zippel's algorithm [Journal of Symbolic Computing, vol. 9, nr. 3,

p. 375 (1990)] that optimizes the number of required black box evaluations.

The design of FoxBox is intended to demonstrate how plug-in software com-

ponents can be employed for generally used symbolic systems. Our implementation

incorporates data types parameterized by arbitrary coe�cient domains and generic

algorithms. By providing a mechanism for interfacing to general purpose computer

algebra systems, we broaden FoxBox's applicability. Furthermore we provide a dis-

tribution mechanism that allows for parallel and distributed execution of FoxBox

programs independent of the underlying parallel architecture.

Finally, we present the results of several challenge problems which exercise our

FoxBox library and represent the �rst symbolic solutions of such problems.
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CHAPTER 1

INTRODUCTION

This chapter will present the reader with an overview of the black box representation

for symbolic objects and provide some insight into the development of our system for

manipulating such objects. In x1.1, we describe the impetus behind the black box

representation, concomitantly setting the stage for the overall system description

found in section x1.2. In x1.3 we furnish a guide recounting the highlights of each

subsequent chapter.

1.1 The Black Box Representation

The proliferation of general purpose mathematical software and specialized

mathematical libraries has provided a wealth of easily accessible operations for

manipulating polynomials and rational functions. However, as observed in Moses

[Mos71], the canonical representations used by these mathematical software tools

sometimes lead to exponential intermediate expression swell.

By using an implicit representation for symbolic objects, such as by straight-

line programs [Kal85a, Kal85b, FIKL88] or by black box representations [KT90,

DK95], multivariate polynomials and rational functions can be manipulated e�-

ciently without excessive intermediate expression swell.

Actually, the black box representation improves on the straight-line program

representation in that the resulting objects are very small in size. In the black

box representation (see Figure 1.1), each expression is a symbolic object, more

speci�cally, a computer program with a set of statically initialized data. Such a

p
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Figure 1.1: Black box representation of a symbolic object
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program takes as input a value for each variable and then produces the value of the

symbolic object it represents at the speci�ed point.

Within the black box representation, the polynomial factorization (x3.2) and

greatest common divisor (x3.3) problems, as well as the problem of extracting the

numerator and denominator of a rational function (x3.4), can all be solved in ran-

dom polynomial-time [KT90, DK95]. Each of the algorithms produce black boxes

(computer programs) which evaluate the answer polynomial at arbitrary points by

making calls to the black boxes given as the input. The algorithms are Monte-Carlo

in the sense that their output, the constructed evaluation programs, are correct with

controllably high probability.

The black box approach to computing polynomial greatest common divisors,

polynomial factorization, and rational function numerator and denominator sepa-

ration has several advantages over other methods. The black box algorithms excel

when using objects that cannot be manipulated by sparse techniques due to their

denseness, such as determinants of matrices with polynomial entries. The implica-

tion is that the algorithms should be applied to large problems. The complexity of

all black box algorithms is polynomial in the number of indeterminants of the input

polynomial. Hence, the algorithms are very competitive on problems with many

variables. Also, the generated black boxes can be translated rapidly to sparse for-

mat by using our pruning sparse interpolation algorithm (x3.1) or used as input to

other black box algorithms for further computations. Finally, the algorithms probe

the input black box(es) at selected points and then perform a particular task via the

utilization of the obtained values. Therefore, the evaluation at the di�erent points

can be done in parallel on di�erent compute nodes.

The usefulness of implicit functional representations of mathematical objects

has been demonstrated in several contexts [DK97b]. One example is the LU-

factorization of a matrix. Here the inverse of a matrix is not explicitly computed and

instead a forward and backward substitution is performed when the matrix inverse

is multiplied by a vector. Another example from symbolic computation itself is the

evaluation of a polynomial remainder sequence as is needed in Sturm-like root�nd-

ing methods. The remainder sequence is implicitly computed from the polynomial
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quotient sequence, which greatly improves the running time of computing, say, the

sign variation at a point. A �nal example is the representation of power series, which

are in�nite objects. Abelson and Sussman [AS85] describe a stream-based approach

in which the i-th coe�cient of the series is given by a procedure that is evaluated

on demand thus removing the restriction of truncating the series object at a given

point.

In summary, the black box representation permits the manipulation of multi-

variate polynomials and rational functions that are exponential in size with many

variables more e�ciently than is allowed by traditional methods. Additionally, when

needed, one can rapidly convert a black box representation of a polynomial into its

canonical form. What follows is an overall description of our system, FoxBox,

which allows a scientist or engineer to readily take advantage of the black box rep-

resentation. Indeed, the realization of FoxBox was intimately related to improve-

ments to many of the algorithms in the literature (x3) while its implementation

demonstrates how \plug-in" software components can be employed for generally

utilized symbolic systems (x2).

1.2 An overview of FoxBox

FoxBox is a software package that puts into practice the black box repre-

sentation of symbolic objects and provides algorithms for performing the symbolic

calculus with such representations. A classical application of the black box model is

the factorization of the determinant of a matrix with symbolic entries. In FoxBox

a determinant object is a function which when supplied with values for the symbols

computes the value for the determinant by Gaussian elimination. FoxBox then

creates by the algorithm in x3.2 another function that evaluates all irreducible fac-

tors. Any evaluation will produce the values of one and the same associate (scalar

multiple) of each factor. This \factors box" in turn makes a series of calls to the de-

terminant box, which if need be can be executed in parallel. FoxBox also supplies

a sparse interpolation algorithm (see x3.1) with which those irreducible factors that

have not too many terms can be converted to the distributed sparse representation

which is common in symbolic computation systems. Since both the construction
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and the evaluation of the factors box is quite e�cient, in FoxBox it thus becomes

possible to factor a matrix determinant that as a polynomial would have a huge

number of terms, and to obtain the sparse factors even in the presence of very dense

ones. For example, one of our benchmarks computations in x4 �nds the factors

(in standard representation) of the determinant of a general 13 by 13 symmetric

Toeplitz matrix in 388

h

57

0

on 15 workstations of varying architectures.

The black box representation has evolved from our experience with the straight-

line program representation [Kal88, Kal89] and the Dagwood system [FIKL88]. In

the straight-line program model the matrix determinant and the factors box would

be restricted to so-called single-assignment straight-line code. That model su�ers

from expression swell, as the length of the produced straight-line programs is in

many cases proportional to the complexity of the algorithm that produced them.

In [FIKL88] an irreducible quadratic factor of a determinant of a 16 by 16 matrix,

whose entries are chosen from 16 indeterminants, has almost 200,000 assignments.

FoxBox's factor box requires a comparable number of instruction for the evaluation

of that factor, but the procedure for doing so is of almost �xed size. Furthermore,

the matrix determinant box internally can test intermediate values for being zero

and thus will not fail on certain inputs, while the straight-line code cannot in general

avoid a zero division for all inputs without increasing the cost of evaluation [Kal92]

FoxBox systematically introduces the implicit black box representation to

symbolic computation. It is written in C

++

but has a client/server style interface

to Maple. As we do much of our algorithm prototyping in Maple, a version written

entirely in Maple also exists. Aside from using as an underlying model for symbolic

expressions the black box model, the design of FoxBox incorporates two more

methodologies. First, following the Smalltalk-based system by Abdali et al. [ACS86],

Axiom [JS92, WBD

+

94], and the Standard Template Library (STL) of C

++

[MS96],

our design incorporates data types parameterized by arbitrary coe�cient domains

and generic algorithms such as homomorphic imaging of black boxes. Thus FoxBox

can be compiled with an imported underlying domain arithmetic, and in fact we

currently plug into the arithmetic of SACLIB [HNS95], GNU's MP [Gra93], and

Victor Shoup's fast modular polynomial arithmetic package NTL [Sho95, Sho97].
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C

++

template classes allow us to de�ne a precise interface while compiling FoxBox

and the imported packages in a seamless and e�cient fashion. A second methodology

incorporated into FoxBox is an MPI-compliant [GLS94] distribution mechanism

that allows for parallel and distributed execution ofFoxBox programs when needed.

The benchmark problems that we have solved with FoxBox (x4) are such extensive

symbolic computation tasks that the use of multiple processors for their solution is

necessary.

The creation of FoxBox is intimately related to the development of new

powerful algorithms. It is the e�cient greatest common divisor or factor boxes and

sparse interpolation algorithms that make the calculus of black boxes applicable

to well-known problems in symbolic computation. In FoxBox we have made im-

provements to many of the algorithms in the literature, which we describe in some

detail in x3. One improvement fundamentally a�ected the design of FoxBox itself.

Borrowing an idea from our factorization algorithm of polynomials in straight-line

representation [Kal89] our factor box evaluator can be dramatically improved in

performance for small degree factors if the black box for the original polynomial can

be probed at truncated power series as values for the variables. This need led us to

the following natural design modi�cation. It is now possible to evaluate any factor

box, say, at points that come from a domain that is an extension of the �eld over

which the polynomial was factored. One thus can, for instance, factor a polynomial

over the rational numbers and evaluate the factors at complex rationals. A second

notable improvement concerns the implementation of Zippel's sparse interpolation

algorithm [Zip90]. In FoxBox the black box polynomial functions can be fairly

complex, as they are constructed from basic boxes such as matrix determinants by

sophisticated transformations such as the factor algorithm. The e�ciency of sparse

interpolation is thus signi�cantly inuenced by the number of probes, which we

optimize by a novel term pruning technique during Zippel's algorithm.

With FoxBox we hope to demonstrate an innovative approach to building

symbolic computing software itself. One of our goals is to provide our algorithms to

the non-specialist consumer of symbolic computation software. FoxBox is designed

as a component that can be easily incorporated into any major computer algebra
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system because of its generic design. Furthermore, if a Maple user, say, wishes to

access the black box algorithms in a calculator-like fashion, which Odlyzko suggests

is the major use of symbolic math software [Odl96], our client/server interface pro-

vides a link between Maple and FoxBox that will work under most any operating

system without having to customize either Maple or FoxBox. As with \plug-and-

play" hardware components, we establish that symbolic packages such as FoxBox,

which are written by a small team of specialists, can be immediately accessible to

the many users of major systems.

1.3 Organization of Thesis

We begin in chapter 2 by describing our FoxBox system which puts into

practice the black box abstraction and serves an example of our methodology for

implementing symbolic software as \plug-in" components. Indeed, with the design

of FoxBox, we furnish an e�cient C

++

implementation which follows the black

box model while providing data types parameterized by arbitrary coe�cient do-

mains and generic algorithms. We introduce each of the major components within

FoxBox and provide an exposition of the underlying software architecture for each

component. Such components include our so-called base arithmetics, black box ob-

jects, common black box objects, black box algorithms, extended domain black box

objects, homomorphic maps and parallel black boxes. Finally, we also describe our

FoxBox server application, which allows the user of a general purpose computer

algebra system to access the FoxBox components in calculator style fashion.

In Chapter 3 we provide a full report of our pruning sparse interpolation based

on Zippel's algorithm [Zip90]. Our sparse conversion employs a novel term pruning

technique with the overall goal of reducing the number of black box evaluations,

since such evaluations are the most costly portion of each black box algorithm. We

continue by providing an exposition of several algorithms originally described in

Kaltofen and Trager [KT90] for manipulating multivariate polynomials and rational

functions given by black boxes for their evaluations. For each black box algorithm,

we describe our e�cacious algorithmic improvements aimed at providing an e�cient

realization for the calculus of black boxes. For the black box factorization algorithm,
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we present two mechanisms for reducing the costly bi-variate interpolation associ-

ated with factor box evaluation. First, we apply our term pruning technique to

reduce by half the complexity and number of black box evaluation points required

by the bi-variate interpolation. Secondly, we describe the notion of extended domain

black boxes which can dramatically improve performance of the bi-variate interpola-

tion step for small degree factors. We also furnish a full algorithmic description and

analysis of a new algorithm for computing the greatest common divisor of polyno-

mials in black box format. Our algorithm builds on the description of Kaltofen and

Trager [KT90] by employing a modular GCD approach. Finally, we describe a tech-

nique �rst observed in our GCD algorithm which markedly increases performance

of the black box reduced numerator and denominator algorithm.

In Chapter 4, we report on the results of several benchmark problems which

exercise each of the components within FoxBox. We provide solutions and timings

for \challenge" computations which represented the �rst ever symbolic solutions of

such problems. We utilize several FoxBox components to furnish the results of

computing a factor of a symmetric Toeplitz determinant over a cluster of worksta-

tions. More speci�cally, we provide solutions for symmetric Toeplitz determinants

of dimension 10; 11; 12 and 13. We also provide the timings required to retrieve

the distributed representation of the GCD of two Vandermonde matrices with two

variables in common. Each symbolic object is represented in its black box format.

For this benchmark problem, results are provided for Vandermonde matrices of di-

mensions 10; 15; 20; 25 and 30. Finally, we nest several black box objects to attain

a single factor of the numerator of a Cauchy determinant for dimensions 5 through

12.

Chapter 5 recounts our contributions to the calculus of black boxes while

concomitantly laying out several future challenges.



CHAPTER 2

THE FOXBOX SYSTEM

The FoxBox distribution consists of a C

++

object library that puts in practice

the black box representation of symbolic objects and a C

++

server that provides a

portable interface to general purpose computer algebra systems. Several features of

FoxBox include the following:

{ Manipulation of symbolic objects as black boxes

{ An extensible component library for black box objects

{ E�ciency through compilation

{ Versatility of domain types and arithmetic

{ Parallelism via an MPI compliant layer

{ Conversion of black boxes to distributed representations

{ Native Maple implementation derived from our prototypical e�orts

{ Maple interface to the C

++

FoxBox server

In x2.1 we demonstrate an innovative approach to building symbolic computing

software, and its application in the design of the FoxBox system. In x2.2, we

provide an overview of the major components within FoxBox, then detail the

underlying software architecture in x2.3. Finally, in x2.4, we describe the FoxBox

server which enables the user of a general purpose computer algebra system to access

the FoxBox components.

2.1 Design Methodology

Our so called \double sided fan" design (Figure 2.1) is intended to demonstrate

how plug-in software components can be employed by generally used symbolic sys-

tems. Blades on the bottom represent base arithmetic packages and support libraries

while each blade on the top represents a di�erent method of system access.

8
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Figure 2.1: Double sided fan design

By applying this design methodology, our FoxBox system is able to take

advantage of specialized arithmetic packages and support libraries without loss of

e�ciency; at the same time FoxBox remains versatile with respect to the user in-

terface. When one designs symbolic computation software as components that can

be easily incorporated into any computer algebra system and that can be compiled

with several underlying base arithmetics, the software can take on many di�erent

arrangements. Drawing from our double sided fan analogy, n top blades and m

bottom blades would allow nm possible instantiations of one symbolic computation

software system. Indeed, in the following section we provide an example of a C

++

FoxBox application which takes advantage advantage of two underlying base arith-

metics. Our illustration utilizes the specialty o�ered by each arithmetic for di�erent

stages of a symbolic computation.

2.2 Overview of FoxBox Components

There are seven major components within FoxBox, namely: base arithmetics,

black box objects, common black box objects, black box algorithms, extended domain

black box objects, homomorphic maps and parallel black boxes. This section will cover
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the highlights of each component, leaving an exposition of our underlying software

architecture to x2.3.

2.2.1 Base Arithmetic

The algorithms o�ered by the C

++

FoxBox library are parameterized proce-

dural schemata that are completely independent of the underlying data representa-

tion. Hence, a single expression of each algorithm can be utilized with any concrete

representation of a �eld type or polynomial algorithm. We call such concrete repre-

sentations a base arithmetic.

Fundamental to the instantiation of such algorithms are our arithmetic wrap-

per/adaptor classes. Native arithmetic packages are wrapped and adapted to express

a particular polynomial algorithm or �eld type along with its corresponding access

operations. Such exibility implies that the black box algorithms have a broader

utility. By inlining the member functions provided by the wrapper/adaptor classes,

dedicated arithmetic packages can be utilized for specialized applications of the

black box algorithms in an e�cient manner.

The exact operations required by an arithmetic wrapper/adaptor depends on

each particular black box algorithm. However, the entire library only requires uni-

variate polynomial arithmetic, even when manipulating implicit representations of

multivariate polynomials or rational functions. The representations of bi-variate

polynomials or rational functions required by the black box algorithms are con-

structed by FoxBox itself.

An arithmetic wrapper/adaptor also provides one or more means of setting

native arithmetic parameters. The code sample in �gure x2.2 is intended to initialize

our SACLIB modular polynomial arithmetic wrapper/adaptor.

In order to utilize FoxBox components, an application must employ the pre-

processor #include directive to make available each particular component. The

C

++

FoxBox library distribution organizes each header �le in accordance to

FoxBox's overall component structure.

The function SaclibInitEnv initializes SACLIB by allocating memory and

utilizing the address of Stack as the �rst variable located on the stack. FoxBox uti-
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#include "PlugIns/saclib.h"

int main( int argc, char *argv[] )

{

Word Stack;

// initialize SACLIB wrapper/adaptor

SaclibInitEnv( 1000000, Stack );

MP_INT MPPrime;

mpz_init_set_str( &MPPrime, "32771", 10 );

// set modulo

SaclibSetPrime( &MPPrime );

mpz_clear( &MPPrime ); SaclibCleanUpEnv();

}

Figure 2.2: SACLIB wrapper/adaptor

lizes GNU MP for its internal arbitrary precision integer arithmetic. All arithmetic

wrapper/adaptors are expected to convert a GNU MP integer to its native format.

An example of this is illustrated by the SaclibSetPrime function which initializes

the SACLIB modular polynomial arithmetic wrapper/adaptor to GF(32771).

A FoxBox application releases resources associated with each wrapper/adaptor

arithmetic by calling a corresponding \clean-up" function. In the case of our

SACLIB wrapper/adaptor, the call to SaclibCleanUpEnv frees the previously allo-

cated memory. While SACLIB allocates \heaps" of memory and employs such main-

tenance routines, other arithmetics may not require an explicit initialization/clean-

up phase.

2.2.2 Black Box Objects

Black box objects are C

++

function objects derived from an abstract base

class, namely BlackBox< K >. The BlackBox base class is parameterized by a co-

e�cient domain K and serves as a framework which speci�es the minimal interface

required for all black boxes. Each black box object requires a function that provides

its degree, number of variables and the probability of the correctness of its particular

black box evaluation program. A constructor provided by each black box performs
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a particular black box manufacturing algorithm. Using a black box as a function

is analogous to the evaluation of a black box. Since a C

++

compiler can inline

the de�nition of the function at the site of the calls, using functional objects not

only avoids the overhead of an indirect function call (as occurs when using pointers

to functions), it even eliminates the cost of a direct call. Each distinct black box

common object and algorithm may extend this minimum black box interface by

providing additional functionality speci�c to a particular problem.

2.2.3 Common Black Box Objects

FoxBox provides a library of common objects for constructing implicit rep-

resentations. One can construct a black box polynomial or rational function from

a handle to an external C function; construct a determinant object which evalu-

ates via Gaussian elimination; or utilize specialized common objects for Cauchy,

Vandermonde, and Toeplitz matrices. Indeed, extensibility to other implicit rep-

resentations is achieved via the development of user de�ned common objects. For

example, our special purpose symmetric Toeplitz determinant algorithm computes

the determinant in O(n

2

) operations utilizing a technique based on subresultant

computations.

The C

++

code provided in Figure 2.3 constructs a symmetric Toeplitz com-

mon object. In this example, our special purpose symmetric Toeplitz determinant

is instantiated to utilize the wrapper/adaptor to SACLIB's rational coe�cient and

polynomial arithmetic, SaclibQ and SaclibQX respectively. Due to the poten-

tial of deeply nested template arguments, a C

++

FoxBox application utilizes the

typedef facility for creating new data type names. We utilize capitalized names,

BBSymToeDet for example, to emphasize typedefs. The SymToeDet black box com-

mon object can provide values for the determinant of a 4 by 4 symmetric Toeplitz

matrix. This determinant has a total degree 4.

2.2.4 Black Box Algorithms

The C

++

FoxBox library provides black box algorithms for constructing

factor, greatest common divisor, and numerator/denominator black boxes (see x3).

FoxBox also supplies a specialized sparse interpolation algorithm with which black
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#include <iostream.h>

#include "PlugIns/saclib.h"

#include "BlackBox/CommonObjects/bbtoeplitz.h"

typedef BlackBoxSymToeDet< SaclibQ, SaclibQX >

BBSymToeDet;

int main( int argc, char *argv[] )

{

Word Stack;

// initialize SACLIB wrapper/adaptor

SaclibInitEnv( 1000000, Stack );

int N = 4;

int DegDet = 4;

// construct a symmetric Toeplitz determinant object

BBSymToeDet SymToeDet( N, DegDet );

SaclibCleanUpEnv();

}

Figure 2.3: Symmetric Toeplitz common object

boxes representing polynomials that do not have overly many terms can be converted

to a distributed sparse representation. The only di�erence between what we cate-

gorize as black box algorithms and common objects is that a black box algorithm

generates its result from a sophisticated process that probes values from another

black box supplied as input.

Expanding on our previous example, the code in �gurex2.4 retrieves the dis-

tributed representation of a factor of a 4 by 4 symmetric Toeplitz determinant. The

BBFactors type de�nition is used to generate an instance of our factors black box

algorithm which employs SACLIB's rational coe�cient and polynomial arithmetic.

Once constructed, a BBFactors object evaluates the irreducible factors of a sym-

metric Toeplitz black box object given by the BBSymToeDet type de�nition. The

BlackBoxSelector auxiliary function servers as a n to 1 multiplexor (in the narrow

sense) which is utilized to select a particular factor. In the previous example where

the exact type of an black box object is known at compile time, e�ciency is ob-



14

#include <iostream.h>

#include "PlugIns/saclib.h"

#include "BlackBox/CommonObjects/bbtoeplitz.h"

#include "BlackBox/Algorithms/bbfactors.h"

#include "BlackBox/Aux/bbselector.h"

#include "BlackBox/Aux/bbvector.h"

#include "BlackBox/Algorithms/bbsparse.h"

typedef BlackBoxSymToeDet< SaclibQ, SaclibQX >

BBSymToeDet;

typedef BlackBoxFactors< SaclibQ, SaclibQX, BBSymToeDet >

BBFactors;

typedef BlackBoxSelector< SaclibQ, BBFactors >

BBFactor;

int main( int argc, char *argv[] ) {

Word Stack; int i;

// initialize SACLIB wrapper/adaptor

SaclibInitEnv( 1000000, Stack );

MP_INT MPCard; mpz_init_set_si( &MPCard, 32771 );

int N = 4; int DegDet = 4;

// construct symmetric Toeplitz determinant object

BBSymToeDet SymToeDet( N, DegDet );

// construct a factors black box

double Prob = -1.0; int Seed = 103069;

BBFactors Factors( SymToeDet, Prob, Seed, &MPCard );

// interpolate the first factor

BBFactor FirstFactor( Factors, 0 );

BBSPARSEAUX_VarVector Vars; BBSPARSEAUX_DegVector Degs;

SaclibQX SaclibQXElm[BBSPARSEAUX_MAXTERMS];

BBSPARSEAUX_VecDegVector AnsDegs; bbvector< SaclibQ > AnsMons;

int IsRestart = BBDEFS_FALSE; char* ProbName = NULL;

for( i=1; i<=N; i++ ) { Vars.push_back(i);

Degs.push_back(DegDet); }

SparseInterp( FirstFactor, Vars, Degs, DegDet, &MPCard,

AnsDegs, AnsMons, SaclibQXElm, ProbName, IsRestart );

mpz_clear( &MPCard ); SaclibCleanUpEnv();

}

Figure 2.4: Black box factors and sparse conversion
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tained at the cost of potential code bloat. The code bloat problem can be alleviated

by generating instances of black box algorithms which utilize our black box base

class. This technique is described in x2.3.2.

The black box factors algorithm instantiated in �gure x2.4 requires as input a

seed value which can be utilized to provide consistency between runs, a black box

symmetric Toeplitz object and a measure of reliability. In this example, supplying a

value of �1 as the success probability measure indicates that random �eld elements

should be selected from a �eld of cardinality MPCard. The probability of success

measure associated with this cardinality is computed and consequently inserted into

the Prob variable.

The factors black box object extends on the minimum interface imposed by

our black box base class by adding several member functions, which allows access

to other important information such as the number of factors and factor exponents.

Each distinct black box common object and algorithm may extend the minimum

black box interface by providing additional functionality speci�c to a particular

problem.

Our sparse conversion implementation utilizes a subset of the functionality

of STL vectors for maintaining monomials and degree information. We provide

such a subset as an auxiliary package for users who may not have access to STL

(bbvector.h). The sparse conversion algorithm requires a vector of variable iden-

ti�ers (Vars), bound on the degree of each variable (Degs), and bound on the total

degree in order to populate AnsMons and AnsDegs. Since several of the benchmark

problems that we have solved with FoxBox (see x4) are rather extensive symbolic

computations, our sparse conversion algorithm provides a \check pointing" mech-

anism which helps to ensure fault tolerance. In our example, this functionality

has been deactivated by virtue of the IsRestart ag. As a �nal note, the actual

base arithmetic utilized by the SparseInterp template function is speci�ed by its

invocation parameters.
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2.2.5 Extended Domain Black Box Objects

The FoxBox C

++

library also provides for constructing black boxes that can

evaluate at points not only from a particular domain but also at points that come

from a domain which is an extension of the �eld over which it was constructed.

Extended domain black boxes are derived from the abstract base class BlackBoxEx<

K, L > which itself is derived from BlackBox. Extended domain common objects are

parameterized by a coe�cient domain K and by an extension domain L. Extended

domain black box algorithms often employ a distinct method of evaluation from

their black box algorithm counterparts. Furthermore, extended domain black box

algorithms require as input common objects that can evaluate over an extension

domain.

The code displayed in �gure x2.5 constructs the extended domain factors black

box of a 4 by 4 symmetric Toeplitz determinant. In this example, the symmetric

Toeplitz determinant common object SymToeDetEx, can be probed at truncated

power series, as well as, at rational numbers as values for the variables. The ex-

tended domain factor black box algorithm constructs the factor black box by probing

SymToeDetEx at rational numbers and performs subsequent evaluations by probing

SymToeDetEx at truncated power series.

The function SaclibSetTruncDeg provided by the SACLIB wrapper/adaptor

sets the appropriate truncation degree for the truncated rational polynomial arith-

metic. The reader is directed to observe that the code samples provided in �gure x2.4

and �gure x2.5 are similar as a result of our underlying design methodology discussed

in x2.1. Hence, the program detailed in �gure x2.5 can easily be extended to retrieve

the same distributed representation of a factor of a 4 by 4 symmetric Toeplitz de-

terminant as in our previous example (�gurex2.4) by simply adding the appropriate

sparse conversion code.

2.2.6 Homomorphic Maps

The homomorphic imaging of a black box object is a generic algorithm which

utilizes a supplied mapping function to convert between coe�cient domains. The

result of such a mapping is another black box which evaluates over the integers
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#include <iostream.h>

#include "PlugIns/saclib.h"

#include "BlackBox/CommonObjects/bbtoeplitz.h"

#include "BlackBox/Algorithms/bbfactors.h"

typedef BlackBoxSymToeDetEx< SaclibQ, SaclibQXT >

BBSymToeDetEx;

typedef BlackBoxFactorsEx< SaclibQ, SaclibQX, SaclibQXT,

BBSymToeDetEx > BBFactorsEx;

int main( int argc, char *argv[] )

{

Word Stack; int i;

// initialize SACLIB wrapper/adaptor

SaclibInitEnv( 1000000, Stack ); SaclibSetTruncDeg( 5 );

MP_INT MPCard; mpz_init_set_si( &MPCard, 32771 );

int N = 4; int DegDet = 4;

// construct an extended domain symm. Toe. det. object

BBSymToeDetEx SymToeDetEx( N, DegDet );

// construct an extended domain factors black box

double Prob = -1.0; int Seed = 103069;

BBFactorsEx FactorsEx( SymToeDetEx, Prob, Seed, &MPCard );

mpz_clear( &MPCard ); SaclibCleanUpEnv();

}

Figure 2.5: Extended domain black boxes

modulo a prime. In fact, interoperability between distinct base arithmetics can

be achieved by suppling the homomorphic imaging algorithm with an appropriate

mapping operator.

Following our running example, the code in �gure x2.6 demonstrates how to

perform the homomorphic map of a factors black box. This particular instance

of the factor homomorphic map algorithm (BBFactorsQMapZP), requires as input a

factor black box constructed over the rationals, a mapping operator SaclibQShoupZP

which converts SACLIB rational numbers to NTL's modular representation and a

symmetric Toeplitz determinant common object (of type BBSymToeDetZP) which
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#include <iostream.h>

#include "PlugIns/saclib.h"

#include "PlugIns/shoup.h"

#include "PlugIns/maps.h"

#include "BlackBox/CommonObjects/bbtoeplitz.h"

#include "BlackBox/Algorithms/bbfactors.h"

#include "BlackBox/HomomorphicMaps/bbfachmap.h"

typedef BlackBoxSymToeDet< SaclibQ, SaclibQX >

BBSymToeDetQ;

typedef BlackBoxSymToeDet< ShoupZP, ShoupZPX >

BBSymToeDetZP;

typedef BlackBoxFactors< SaclibQ, SaclibQX, BBSymToeDetQ >

BBFactorsQ;

typedef BlackBoxFactorsHMap< SaclibQ, SaclibQX, ShoupZP,

ShoupZPX, BBSymToeDetQ, BBSymToeDetZP, SaclibQShoupZP >

BBFactorsQMapZP;

int main( int argc, char *argv[] )

{

Word Stack; int i;

// initialize SACLIB and Shoup wrapper/adaptors

SaclibInitEnv( 1000000, Stack );

MP_INT MPCard; mpz_init_set_si( &MPCard, 32771 );

ShoupInitEnv( &MPCard );

int N = 4; int DegDet = 4;

// construct symmetric Toeplitz determinant object over Q and ZP

BBSymToeDetQ SymToeDetQ( N, DegDet );

BBSymToeDetZP SymToeDetZP( N, DegDet );

// construct a factors black box over Q

double Prob = -1.0; int Seed = 103069;

BBFactorsQ FactorsQ( SymToeDetQ, Prob, Seed, &MPCard );

// map the factors black box to Shoup's modular arithmetic

SaclibQShoupZP h;

BBFactorsQMapZP FactorsZP( SymToeDetZP, FactorsQ, h );

mpz_clear( &MPCard ); SaclibCleanUpEnv(); ShoupCleanUpEnv();

}

Figure 2.6: Homomorphic map of a factor black box
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evaluates over the integers modulo a prime. The consequent homomorphic image

black box evaluates utilizing NTL's fast modular polynomial arithmetic.

Note that although the static information \housed" within the factors black

box over the rationals includes polynomials, all that is required is a mapping operator

to convert between coe�cient domains. FoxBox employs a generic algorithm which

converts between polynomial algorithms utilizing the coe�cient domain mapping

supplied to the factor homomorphic map algorithm. In fact, this is one example

of several optimized internal procedures utilized by FoxBox to alleviate the user

from providing additional functionality.

2.2.7 Parallel Black Boxes

Once constructed, a black box algorithm utilizes a small amount of precom-

puted static information for evaluation. Hence, black box objects are ideally suited

for parallelization: an initialization phase transmits the static information to each

processor allowing for subsequent probes. FoxBox provides a parallel version of

each black box algorithm. Each parallel black box object is derived (by inheritance)

from its counterpart. The parallel black box interface adds three member func-

tions for administering its remote evaluation, namely Distribute, Wait and Kill.

Our sparse conversion algorithm, for example, utilizes these member functions for

parallel execution.

Message-passing is a parallel programming technique used on MPP (Massively

Parallel Procesor) systems, workstation clusters, and other distributed memory sys-

tems. The Message Passing Interface (MPI) e�ort produced a library speci�cation

intended for the portable development of message-passing applications. Hence, pro-

viding a MPI compliant mechanism for parallelizing black boxes broadens FoxBox's

applicability. All of the parallel black box member functions are realized via MPI

compliant calls.

In order for a FoxBox application to exploit the existence of multiple pro-

cessors within the MPI framework, the user must issue a directive to the operating

system. This has the e�ect of placing a copy of an executable program on each pro-

cessor. Thus di�erent processors execute di�erent statements within their copy of
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#include <iostream.h>

#include "PlugIns/saclib.h"

#include "PlugIns/shoup.h"

#include "PlugIns/maps.h"

#include "BlackBox/CommonObjects/bbtoeplitz.h"

#include "BlackBox/Algorithms/bbfactors.h"

#include "BlackBox/HomomorphicMaps/bbfachmapmpi.h"

#include "BlackBox/Aux/bbselectormpi.h"

#include "BlackBox/MPI/bbservermpi.h"

#include "BlackBox/Aux/bbvector.h"

#include "BlackBox/Algorithms/bbsparse.h"

typedef BlackBoxSymToeDet< SaclibQ, SaclibQX >

BBSymToeDetQ;

typedef BlackBoxSymToeDet< ShoupZP, ShoupZPX >

BBSymToeDetZP;

typedef BlackBoxFactors< SaclibQ, SaclibQX, BBSymToeDetQ >

BBFactorsQ;

typedef BlackBoxFactorsHMapMPI< SaclibQ, SaclibQX, ShoupZP,

ShoupZPX, BBSymToeDetQ, BBSymToeDetZP, SaclibQShoupZP >

BBFactorsQMapZP;

typedef BlackBoxSelectorMPI< ShoupZP, BBFactorsQMapZP >

BBFactorZP;

typedef BlackBoxServerMPI< ShoupZP, ShoupZPX,

BBSymToeDetZP >

BBServerMPI;

int main( int argc, char *argv[] ) {

MPI_Init(&argc, &argv);

int MyRank, NumProc, N = 4, DegDet = 4;

char FileName[BBDEFS_FILEZ];

MP_INT MPCard; mpz_init_set_ui( &MPCard, 32771 );

MPI_Comm_rank(MPI_COMM_WORLD, &MyRank);

MPI_Comm_size(MPI_COMM_WORLD, &NumProc);

....

mpz_clear( &MPCard ); ShoupCleanUpEnv(); MPI_Finalize();

}

Figure 2.7: Parallel sparse conversion - skeleton
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the same program based on processor ranks. To this end, FoxBox provides a MPI

black box server object which has the ability to accept messages from parallel black

boxes to construct/evaluate/destroy black box algorithms and common objects.

The combined code in �gures x2.7 and x2.8 retrieves the distributed repre-

sentation of a factor of a 4 by 4 symmetric Toeplitz determinant modulo a prime

in parallel. Our code illustration imports the following: 1) wrapper/adaptors for

SACLIB's rational arithmetic and NTL's fast modular polynomial arithmetic; 2)

arithmetic conversion operators; 3) the symmetric Toeplitz common object library;

4) the pruning sparse conversion algorithm; 5) the MPI black box server; 5) parallel

versions of the factors homomorphic map algorithm and the n to 1 factor multi-

plexor. Within the FoxBox distribution, each parallel component header �le ends

with a mpi.h su�x.

As with our arithmetic wrappers/adaptors, the MPI standard requires an ini-

tialization and clean-up phase. The function calls MPI Init and MPI Finalize pro-

vide this functionality. Each executable image utilizes the MPI function MPI Comm rank

to identify its process rank and MPI Comm size for determining the number of pro-

cesses executing the program.

In this particular illustration we employ the parallel version of our sparse

conversion application which consists of \driver" and \parallel subtask" portion (see

�gure x2.8). The driver portion of the code only executes on the processor which

has rank BBMPI DRIVER RANK and performs the sparse conversion algorithm. The

parallel subtask portion executes on each of the remaining processors and executes a

copy of the MPI black box server object, namely ServerMPI. The sparse conversion

algorithm dispatches construction/evaluation/shutdown requests to each available

processor.

2.3 Underlying Software Architecture

In our C

++

implementation, the specialization to particular choices of �eld

type and polynomial algorithm occurs at compile time. This is accomplished by

means of template and ordinary class de�nitions. Classes provide important mech-

anism for localizing code and channeling access through a well de�ned interface.
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if ( MyRank == BBMPI_DRIVER_RANK ) {

// initialize SACLIB and Shoup wrapper/adaptors

Word Stack; int i;

SaclibInitEnv( 1000000, Stack );

// construct a factors black box over Q

int Seed = 103069; double Prob = -1.0;

BBSymToeDetQ SymToeDetQ( N, DegDet );

BBFactorsQ FactorsQ( SymToeDetQ, Prob, Seed, &MPCard );

// map the factors black box to Shoup's modular arithmetic

ShoupInitEnv( &MPCard );

SaclibQShoupZP h;

BBSymToeDetZP SymToeDetZP( N, DegDet );

BBFactorsQMapZP FactorsZP( SymToeDetZP, FactorsQ, h );

SaclibCleanUpEnv();

// interpolate the first factor in parallel

BBFactorZP FirstFactorZP( FactorsZP, 0 );

BBSPARSEAUX_VarVector Vars; BBSPARSEAUX_DegVector Degs;

ShoupZPX ShoupZPXElm[BBSPARSEAUX_MAXTERMS];

BBSPARSEAUX_VecDegVector AnsDegs; bbvector< ShoupZP > AnsMons;

int IsRestart = BBDEFS_FALSE; char* ProbName = NULL;

for( i=1; i<=N; i++ ) { Vars.push_back(i);

Degs.push_back(DegDet); }

SparseInterp( FirstFactorZP, Vars, Degs, DegDet, &MPCard,

AnsDegs, AnsMons, ShoupZPXElm, ProbName, IsRestart,

NumProc );

}

else {

ShoupInitEnv( &MPCard );

BBSymToeDetZP SymToeDetZP( N, DegDet );

sprintf( FileName, "%dx%dtoesacQXshoupZPX", N, N );

BBServerMPI ServerMPI( BBMPI_DRIVER_RANK, MyRank, SymToeDetZP,

FileName, BBMPI_CLOCK_ON );

}

Figure 2.8: Parallel sparse conversion - driver/subtask
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Since a class is a type in C

++

, local instantiations can be automatic without the

use of free store or garbage collection. This allows circumventing heap allocation,

the most common performance bottleneck in real systems.

The black box common objects and algorithms are realized as template func-

tion objects. Ordinary class de�nitions are utilized to wrap/adapt a particular

polynomial algorithm or �eld type along with its corresponding access operations.

The native arithmetic wrapper/adaptor is passed as a template argument to our

black box objects. In C

++

, we can syntactically indicate which types are parame-

ters. However, the language does not provide a mechanism capable of expressing the

requirement that the types supply certain operations. Instead, in x2.3.1 we provide

operation prototypes along with their corresponding informal semantic descriptions

with an emphasis on implementation in C

++

.

In x2.3.2 we detail the interface speci�cation de�ned by our so called black

box abstraction. Each black box common object and algorithm supplies an imple-

mentation for the black box speci�cation and may build on this interface by adding

several custom operations.

2.3.1 Native Arithmetic Wrappers/Adaptors

By expressing the black box common objects and algorithms in terms of poly-

nomial and �eld access operations, we permit a single expression of a black box

object to be utilized with any concrete base arithmetic. Native base arithmetic

packages are wrapped and adapted [GHJV94] to express a particular polynomial

algorithm or �eld type along with its corresponding access operations. The black

box common objects and algorithms are instantiated by utilizing arithmetic wrap-

per/adaptor classes. Such exibility implies that the black box objects have a

broader utility:

� End users can employ black box common objects and algorithms while remain-

ing in a \familiar" setting with respect to a particular arithmetic package.

� E�cient and dedicated arithmetic packages can be utilized for specialized ap-

plications of the black box algorithms.
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� By taking advantage of inlining, a C

++

implementation is possible without

overhead.

Since inlining is purely an optimization, it should be used only when the

bene�t in run-time or space outweighs the cost and inconveniences imposed by its

use. The ideal candidate for inlining is a function that performs a simple action

such as returning a value, incrementing a value, or calling another function. Such

functions proliferate where data hiding is used, as in our black box objects and

our arithmetic wrapper/adaptor classes. Care must be taken when using inline

functions. The de�nition of an inline function has to be available for inlining to be

done. This implies that all callers of an inline function must be recompiled if its

de�nition changes. The usual function call implementation protects users against

that. In our �nal analysis, the performance gained by careful inlining outweighs the

inconveniences.

The components within FoxBox utilize GNU MP for internal arbitrary pre-

cision integer arithmetic. All arithmetic wrapper/adaptors are expected to convert

a GNU MP integer to the format of the underlying base arithmetic. A base arith-

metic which requires an explicit initialization/clean-up phase should encapsulate

these operations by providing corresponding functions. Such initialization/clean-up

functions should be invoked before and after a FoxBox application.

The exact operations required by an arithmetic wrapper/adaptor depends on

each particular black box object. In what follows, we provide an exposition of the

requirements for the �eld and polynomial arithmetic wrapper/adaptor classes that

are common to all black box objects. We also highlight those operations which

are speci�c to a particular black box algorithm. As an illustration of our speci�ca-

tion, x2.3.1.1 and x2.3.2 also provide the actual class de�nitions for our arithmetic

wrapper/adaptor of SACLIB's rational univariate polynomial arithmetic.

2.3.1.1 Field arithmetic

All black box objects are parameterized by a �eld wrapper/adaptor. A �eld

wrapper/adaptor encapsulates a native representation of a �eld element as a C

++

class (user de�ned type), as well as provides the set of operations that can be applied
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to such types.

Constructors

The black box objects utilize the default constructor when allocating arrays

of �eld elements. In C

++

, no initializers can be speci�ed for arrays. Arrays of

objects of a class with constructors can be created by the C

++

operator new only

if the class has a default constructor. In this case, the default constructor will be

called for each element of the array. Hence, we require that a �eld wrapper/adaptor

provide a default constructor.

A native arithmetic wrapper/adaptor is required to provide a constructor for

the purpose of creating �eld types from a pointer to a GNU MP integer. Compo-

nents within FoxBox do not directly access native format �eld elements. However,

a constructor which instantiates a �eld wrapper/adaptor from a base arithmetic ele-

ment may be bene�cial for implementation purposes, but certainly this constructor

is not required.

The black box algorithms utilize a C-string in base 10 representation of a

native format �eld element for archival, interprocess communication, and tracing

purposes. A �eld wrapper/adaptor is expected to construct an instance from a base

10 C-string representation.

A class object can be copied in two ways, by assignment and by initialization

including function argument passing and function value return. In C

++

, these two

operations are implemented by an assignment operator and a copy constructor. The

utility of copy constructors spans to the situation in which a compiler instantiates

temporary objects. If these member functions are not de�ned by the programmer,

they will be de�ned as memberwise assignment and memberwise initialization. Such

a scenario can be problematic for some base arithmetics. It is expected that the

�eld wrapper/adaptor handle such situations gracefully.

The C

++

destructor provides a method of destroying values in class types

immediately before the object containing them is destroyed. When implementing a

C

++

�eld wrapper/adaptor, it is often necessary to reverse the e�ect of a construc-

tion allowing for the freeing of system resources. For this reason, we include a �eld



26

wrapper/adaptor destructor in the speci�cation.

Operators and Public Member Functions

Operators are used to provide notational convenience. C

++

allows for the

overloading of function names and operators. The black box objects utilize a subset

of the C

++

operators that are expected to manipulate �eld wrapper/adaptors.

Table x2.1 details a list of the required operators.

Operator Description

= Assignment

== Test for equality

! = Test for inequality

<< Output

+ Addition

� Subtraction

� Multiplication

= Division

Table 2.1: Field wrapper/adaptor operators

Table 2.2 depicts each public member function a FoxBox component may

require. The member functions DistinctSelect, Card, and toString are required

by all black box algorithms. The Exp member function is utilized by the symmetric

Toeplitz black box, factors black box and the sparse conversion algorithm. Finally,

Denom and LCM provide the necessary functionality for the numerator and denomi-

nator black box.

All black box algorithms require a function, Card that provides the �eld car-

dinality. In the case of an in�nite �eld, a value of -1 should be returned.

The black box algorithms perform univariate interpolation on a transformed

version of the input black box(es). This interpolation requires the use of a \stream"

of distinct �eld elements. On invocation, it is expected that the member function

DistinctSelect return a distinct �eld element. An initial assignment to a �eld

wrapper/adaptor provides the starting point from which distinct elements are cho-

sen.
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Member Function Description

DistinctSelect All black box algorithms

Card All black box algorithms

toString All black box algorithms

Exp Factor, SparseInterp, Toeplitz

Denom NumDen

LCM NumDen

Table 2.2: Field wrapper/adaptor public member functions

As previously explained, the black box algorithms convert between a termi-

nated C-string in base 10 to a native format. The member function toString

populates a supplied character array with the string base 10 representation of the

value of the encapsulated native �eld element.

The Exp member function raises the value of the encapsulated �eld element

to the power of a supplied integer. The Denom function returns the denominator

of the encapsulated �eld element. Finally in the case where the LCM is unique up

to an associate, the LCM member function returns the least common multiple of an

arbitrary number of elements. An array of elements and the number of elements in

that array are supplied as arguments to the LCM function.

Random Iterator

Many of the black box algorithms utilize randomization. The algorithms are

Monte-Carlo in that their output, the constructed evaluation programs, are correct

with controllably high probability (see x3). For this purpose, a random number it-

erator RandomIterator class with constructor RandomIterator(const int Seed,

const MP INT* Card) must be provided by the �eld wrapper/adaptor. The con-

structor generates a random iterator object which provides random �eld elements

from a set of cardinality MPCard seeded at Seed. An overloaded function call op-

erator supplies random �eld elements. It is expected that identical sets of random

numbers are generated by di�erent runs with the same seed and cardinality param-

eters, providing consistency between runs.

Example
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Figure x2.9 provides an example of an e�cient C

++

arithmetic wrapper/adaptor

to SACLIB's rational number arithmetic. It is intended that this example aid in the

exposition of the exact arguments and return values of each operator and member

function outlined in the �eld wrapper/adaptor speci�cation. As noted in the intro-

duction of this section, a native �eld and polynomial arithmetic wrapper/adaptor

can be implemented in C

++

without overhead by utilizing inlining. The ideal candi-

date for inlining is a function that performs a simple action such as returning a value,

incrementing a value, or calling another function. Such behaviors are exhibited in

our implementation of SACLIB's native arithmetic wrappers/adaptors.

2.3.1.2 Polynomial arithmetic

Several of the components implemented within FoxBox are parameterized

by a univariate polynomial algorithm. As in the case of the �eld wrapper/adaptor,

polynomial wrapper/adaptors are implemented as a C

++

class upon which instan-

tiation contains or refers to a polynomial in some native format. It is expected that

a particular polynomial wrapper/adaptor provide the set of functions and operators

that can be applied to such user de�ned types.

Constructors

As with the �eld wrapper/adaptor, we require the following: 1) a default

constructor for the allocation of arrays of polynomial elements; 2) an assignment

operator and a copy constructor for copying polynomial wrapper/adaptor objects;

and 3) a destructor which provides a method of deallocating a native form uni-

variate polynomial element immediately before the polynomial wrapper/adaptor is

destroyed.

Several FoxBox components create univariate monomials from a �eld wrap-

per/adaptor object and degree or simply create the constant polynomial from a �eld

wrapper/adaptor object. Hence the appropriate constructors must be furnished.

Finally, a constructor which instantiates a monomial from a native arithmetic �eld

element may be bene�cial for implementation purposes, but is not required for any

of the FoxBox components.
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class SaclibQ {

private:

Word SaclibQElm;

public:

friend SaclibQX;

inline friend ostream& operator<<( ostream&, const SaclibQ& );

SaclibQ( );

SaclibQ( const MP_INT*);

SaclibQ( const char* );

SaclibQ( const SaclibQ& );

SaclibQ( const Word& SaclibQElm_i );

~SaclibQ( );

inline SaclibQ& operator=( const SaclibQ& );

inline friend int operator==( const SaclibQ&, const SaclibQ& );

inline friend int operator!=( const SaclibQ&, const SaclibQ& );

inline SaclibQ operator+(const SaclibQ&);

inline SaclibQ operator-(const SaclibQ&);

inline SaclibQ operator*(const SaclibQ&);

inline SaclibQ operator/(const SaclibQ&);

inline SaclibQ DistinctSelect( );

inline MP_INT Card( );

inline SaclibQ Exp( int );

inline SaclibQ Denom( );

inline SaclibQ LCM( SaclibQ*, int );

inline void toString( char* );

class RandomIterator {

public:

RandomIterator( const int, const MP_INT* );

~RandomIterator( );

SaclibQ operator()( );

private:

long RandStateArray[32];

int RandSeed;

MP_INT MPCard;

Word SLCard; };

};

Figure 2.9: SACLIB rational number wrapper/adaptor
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Operators and Public Member Functions

The black box objects utilize a subset of the C

++

operators that are expected

to manipulate polynomial wrapper/adaptors. Table x2.3 is a list of the required

operators.

Operator Description

= Assignment

== Test for equality

! = Test for inequality

[] Extract the coe�cient of x

n

<< Output

+ Addition

� Subtraction

� Multiplication

= Exact Division

Table 2.3: Polynomial wrapper/adaptor operators

Table 2.2 depicts each public member function a FoxBox component may re-

quire from a polynomial arithmetic wrapper/adaptor. The member function Eval is

required by all black box algorithms. The factor black box requires the functionality

o�ered by Deg, Rem, QuoRem, GCD, EEA and Factors. The greatest common divisor

black box requires Deg, LCoeff, GCD. The numerator and denominator black box

depends on Deg, LCoeff and QuoRem. The algorithm which solves the Vandermonde

system that arises in our sparse conversion algorithm employs the Diff member

function. Finally, the symmetric Toeplitz common object employs Deg, LCoeff and

Rem for producing an evaluation.

The Eval member function produces the value of the encapsulated univariate

polynomial at a speci�ed point. The argument for Eval is a pointer to a �eld

wrapper/adaptor object which remains consistent with the evaluation speci�cation

detailed by the black box abstraction (see x2.3.2). The Deg LCoeff, and Diff

functions returns the degree, the leading coe�cient and derivative of its encapsulated

native polynomial respectively.
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Member Function Object

Eval All black box algorithms

Deg Factor, GCD, NumDen, Toeplitz

LCoeff GCD, NumDen, Toeplitz

Rem Factor, Toeplitz

QuoRem Factor, NumDen

GCD Factor, GCD

EEA Factor

Factors Factor

Diff SparseInterp

Table 2.4: Polynomial wrapper/adaptor public member functions

The polynomial quotient and remainder of two polynomial wrapper/adaptor

objects populate the last two arguments of the QuoRem member function. The

polynomial remainder function Rem returns the remainder of two polynomial wrap-

per/adaptor objects via its third argument. Clearly this member function can in-

terface to the same native arithmetic function which implements QuoRem. Similarly,

the GCD member function inserts the greatest common divisor of its �rst two ar-

guments into its third argument. The factorization black box object requires an

extended Euclidean algorithm for computing partial fractions. Given two polyno-

mial objects a and b, the EEA member function computes g, s, and t such that

g = GCD(a; b) = a � s + b � t. Finally, the Factors member function performs the

univariate factorization of an input polynomial object and returns the integer con-

tent of the input polynomial, an array of factors, and an array of exponents via its

argument list. The reader is referred to �gure x2.10 for more information regarding

the exact prototype for each operator and public member function.

A polynomial wrapper/adaptor which implements all of the speci�cations de-

tailed above will provide the necessary functionality for each FoxBox component.

However, a polynomial wrapper/adaptor supplying a subset of the speci�ed func-

tionality can be utilized in several situations since the particular choice of algorithm

dictates the minimal interface required. For instance, the black box GCD algorithm

requires a univariate GCD function and does not employ a univariate factorization
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routine. Hence, an arithmetic lacking polynomial factorization may be furnished to

the GCD algorithm without consequence.

Actually, the amount of functionality required by an arithmetic wrapper/adaptor

is minimized by providing template classes that build on the supplied functionality.

Our internal support template classes, like adapter classes, convert the interface of

a polynomial wrapper/adaptor into another interface. Furthermore, our support

wrappers add functionality by providing an implementation based on the selected

polynomial arithmetic. For example, given a univariate polynomial arithmetic which

provides univariate factorization, we deliver a template wrapper which implements

the truncated bivariate polynomial arithmetic and specialized Hensel lifting algo-

rithm required by the black box factorization algorithm (see x3.2).

Example

Figure x2.10 provides an example of an e�cient C

++

arithmetic wrapper/adaptor

to SACLIB's univariate polynomial arithmetic with rational coe�cients. As in the

�eld wrapper/adaptor example, the intention of this example is to aid in the exposi-

tion of the exact arguments and return values of each operator and member function

outlined in the previous speci�cation.

2.3.2 The Black Box Abstraction

The FoxBox class library supplies a C

++

base class, namely BlackBox, which

implements a framework for the black box abstraction. All of FoxBox's black box

objects are derived from this black box base class. Consequently, each black box

object furnishes at the very least an interface which adheres to the speci�cation

detailed in �gure x2.11. The utilization of a base class to express commonality among

black box objects allows the implementation of algorithms that can manipulate black

boxes independently of type. Hence, such a framework should be utilized for user

de�ned black box objects.

In some circumstances, it may be necessary or convenient for a compiler to gen-

erate a temporary object. In C

++

, when a compiler instantiates a temporary object,

it must call the object's corresponding constructor and destructor. By providing a

copy constructor, black box objects are able to properly handle such situations.
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class SaclibQX {

private:

Word SaclibQXElm;

public:

inline friend ostream& operator<<( ostream&, const SaclibQX& );

SaclibQX( );

SaclibQX( const Word& );

SaclibQX( const Word&, const int& );

SaclibQX( const SaclibQ&, const int& );

SaclibQX( const SaclibQ& );

SaclibQX( const SaclibQX& );

~SaclibQX( );

inline SaclibQX& operator=( const SaclibQX& );

inline friend int operator==( const SaclibQX&, const SaclibQX& );

inline friend int operator!=( const SaclibQX&, const SaclibQX& );

inline SaclibQX operator*( const SaclibQX& );

inline SaclibQX operator/( const SaclibQX& );

inline SaclibQX operator+( const SaclibQX& );

inline SaclibQX operator-( const SaclibQX& );

inline SaclibQ operator[] ( int );

inline int Deg( );

inline SaclibQ Eval( const SaclibQ* );

inline SaclibQ LCoeff( );

inline void Rem( const SaclibQX&, const SaclibQX&, SaclibQX& );

inline void QuoRem( const SaclibQX&, const SaclibQX&,

SaclibQX&, SaclibQX&);

inline void GCD( const SaclibQX&, const SaclibQX&, SaclibQX& );

inline void EEA( const SaclibQX&, const SaclibQX&, SaclibQX&,

SaclibQX&, SaclibQX& );

inline void Factors( const SaclibQX&, int&, SaclibQ&,

unsigned int&, unsigned int*, SaclibQX* );

inline SaclibQX Diff( );

};

Figure 2.10: SACLIB univariate rational polynomial wrapper/adaptor
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template< class K >

class BlackBox {

protected:

int Degree;

unsigned int NumVariables;

double Probability;

public:

BlackBox( );

~BlackBox( ) { }

virtual inline K* operator() ( K* ) { }

inline unsigned int Deg( );

inline unsigned int NumVars( );

inline double Prob( );

};

Figure 2.11: Black box abstract base class

An overloaded function call operator is utilized for black box evaluation. The

black box object takes as input a value for each variable as an array of �eld elements

and then produces the value of the symbolic object it represents at the speci�ed

point. The interpretation of this return value depends on the particular black box

object. For example, a black box polynomial common object returns a C

++

pointer

to a �eld element representing the value of the polynomial at that point. On the

other hand, a black box representing the factors of a polynomial returns a pointer

to the �rst element of an array of values, one value for each factor. In the latter, the

interface remains consistent by virtue of using pointers. The return value can be

used as the value of the �rst factor or manipulated via pointers to access the values

of the remaining factors.

BlackBox::Degree()

Value Interpretation

< 0 degree not known

� 0 exact or upper bound

Table 2.5: Return Values for BlackBox::Degree()

Each black box object requires a function that provides the degree of its cor-

responding symbolic object. Table 2.5 provides a description of the two possible
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template< class K, class L >

class BlackBoxEx : public BlackBox< K > {

public:

BlackBoxEx( ) : BlackBox< K >( ) { }

~BlackBoxEx( ) { }

virtual inline L* operator() ( L* ) { }

};

Figure 2.12: Extended domain black box abstract base class

ranges a degree value may hold.

Our black box algorithms can be implemented without a dependency on vari-

able names. The only requirement is a knowledge of the number of variables. The

function BlackBox::NumVars() provides this functionality.

The probability of the correctness of a black box evaluation program can be

retrieved by the BlackBox::Prob() function. The return value is a oat between

0 and 1. This value can be used by the programmer to measure the reliability of a

computed result. Please refer to x3 for a mathematical description of the estimate

of success corresponding to each black box algorithm.

The FoxBox class library supplies a C

++

base class BlackBoxEx (�gure x2.12)

which implements a framework for the extended domain black box abstraction. Ex-

tended domain black boxes can evaluate at points not only from a particular �eld

but also at points that come from a domain which is an extension of the �eld over

which it was constructed. All of FoxBox's extended domain black box objects are

derived from this black box base class. This class extends the BlackBox class by

adding a function object which takes as input a value for each variable as an array of

extended domain elements. Its return value is a pointer to the value of the symbolic

object it represents at the speci�ed point.

By utilizing pointers or references to the base black box class, the black box

algorithms may access any of the derived black box classes in a uniform way. In

the case that the exact type of an object is known at compile time, the virtual

function call mechanism need not be used. Instead, an inline member function call

can be used for e�ciency. A direct call is a few memory references more e�cient

than a virtual function [ES95], but the real advantage of direct calls is for inline
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functions where the di�erence in run-time overhead can be signi�cant. This allows

the circumvention of the virtual function call mechanism at a cost of potential code

bloat.

In what follows we provide the implementation notes behind our black box

speci�cation for each FoxBox component. This portion will also describe any

extended functionality a particular FoxBox component may o�er. The reader is

referred to the C

++

FoxBox library source code [DK97a] for a more detailed

explanation.

2.3.2.1 Common Black Box Objects

Table 2.6 depicts the current set of common objects found in the FoxBox

library. Each common object provides an implementation for the functionality im-

posed by the black box abstraction. These particular common objects do not o�er

additional functionality over the black box abstraction. Thus, only the construction

and evaluation operations will be detailed.

Template Prototype

Common Objects Extended Domain Common objects

BlackBoxPoly< K > BlackBoxPolyEx< K, L >

BlackBoxRatFunc< K > BlackBoxRatFuncEx< K, L >

BlackBoxDet< K > BlackBoxDetEx< K, L >

BlackBoxSymToeDet< K, KP > BlackBoxSymToeDetEx< K, KP, L, LP >

BlackBoxVandDet< K >

BlackBoxCauchyDet< K >

Table 2.6: FoxBox common object library

The �rst template parameter of each common object is a coe�cient domain (K).

Extended domain common objects are also parameterized by an extension domain

(L). The constructors for BlackBoxPoly and BlackBoxRatFunc have the same form.

typedef K ( *FPTRK )( K* );

BlackBoxPoly( FPTRK PolyK, int NumVars, int Deg, double Prob );

BlackBoxRatFunc( FPTRK RatFK, int NumVars, int Deg, double Prob );
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The �rst argument is a function which is utilized for point generation, the

second indicates the number of variables, the third a degree bound and the fourth

a probability of correctness. In the case of the black box polynomial, the degree

parameter sets the total degree. This same parameter is utilized to indicate a

bound on the total degree of the denominator of the black box rational function.

The con�dence that an evaluation is correct is expressed by a value between 0 and

1.

In the extended domain case, both the constructors for BlackBoxPolyEx and

BlackBoxRatFuncEx require an additional function. Depending on a particular eval-

uation domain a corresponding input function will be employed for point generation.

typedef K ( *FPTRK )( K* );

typedef L ( *FPTRL )( L* );

BlackBoxPolyEx( FPTRK PolyK, FPTRL PolyL, int NumVars, int Deg,

double Prob );

BlackBoxRatFuncEx( FPTRK RatFK, FPTRL RatFL, int NumVars, int Deg,

double Prob );

New implicit representations as well as external libraries can easily be intro-

duced into FoxBox via this method. For example, an external C function could

serve as a wrapper which links to a Maple routine. Such a routine could evaluate a

determinant of a particular type of matrix.

FoxBox provides a domain independent Gaussian elimination algorithmwhich

can be utilized for computing the determinant of a matrix. The BlackBoxDet and

BlackBoxDetEx common objects employ Gaussian elimination for evaluation. Con-

structing a black box determinant common object requires similar arguments to

those described above.

typedef void ( *FPTRK )( K*, K [BBDET_MAXN][BBDET_MAXM] );

typedef void ( *FPTRL )( L*, L [BBDET_MAXN][BBDET_MAXM] );

BlackBoxDet( FPTRK FillMatrixFuncK, int NumVars, int Deg,

double Prob, int n, int m );

BlackBoxDetEx( FPTRK FillMatrixFuncK, FPTRL FillMatrixFuncL,
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int NumVars, int Deg, double Prob, int n, int m );

The main di�erence lies in the input function which is intended to populate

an array with elements from a particular domain. This array represents a matrix

from which the black box computes the determinant for evaluation. The dimension

of this matrix is provided by the n and m parameters. As an example, a \matrix

�lling" function could map each value from an array of points P to a square matrix

which has as its (i; j)-th entry P [i]

(j�1)

. In this case, the black box evaluates the

determinant of a Vandermonde matrix.

FoxBox provides several common objects which can take advantage of a

particular matrix structure (Cauch, Toeplitz, Vandermonde) to provide a specialized

algorithm for the determinant computation. In fact, extensibility to other implicit

representations can be achieved by importing C

++

user de�ned common objects

which derive from either the BlackBox or BlackBoxEx abstract base classes.

Our symmetric Toeplitz determinant common object utilizes a technique based

on subresultant computations for the determinant computation. Hence, the sym-

metric Toeplitz determinant common object employs an extra template parameter

which supplies a polynomial algorithm. The constructors

BlackBoxSymToeDet( int NumVars, int Deg );

BlackBoxSymToeDetEx( int NumVars, int Deg );

produce an n by n symmetric Toeplitz determinant common object where n is spec-

i�ed by the number of variables. In the case of the extended domain symmetric

Toeplitz common object, a template parameter which supplies polynomial arith-

metic for the extension domain (LP) is also required.

The constructor

BlackBoxCauchyDet( int NumVars, int Deg );

generates a n by n Cauchy determinant common object. In this case, n is the

number of variables divided by 2.

Our black box Vandermonde determinant common object provides a construc-

tor for building Vandermonde objects customized for our GCD challenge problem

(see x4.2).
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BlackBoxVandDet( int NumVars, int Deg, int StartIndex,

int EndIndex );

From this interface, one can construct a Vandermonde common object which

utilizes only a subset of the input points for evaluation. For example, one can con-

struct a Vandermonde common object which can evaluate given points (x

1

; x

2

; x

3

; x

4

),

but only utilizes (x

1

; x

2

) to compute its determinant. The index delimiters indicating

which \window" of variables to employ for evaluation is speci�ed by the StartIndex

and EndIndex parameters.

2.3.2.2 Black Box Algorithms

Table 2.7 details template prototypes for the black box algorithm objects avail-

able within the C

++

FoxBox library. Each algorithm black box object is derived

from either the BlackBox or BlackBoxEx base classes. This section will supply in-

terface details for each algorithm black box object, as well as describe our sparse

interpolation implementation which converts black boxes representing polynomials

to a distributed sparse format.

Template Prototype

Algorithms Extended Domain Algorithms

BlackBoxFactors< K, KP, B > BlackBoxFactorsEx< K, KP, B, L, LP >

BlackBoxGCD< K, KP, B >

BlackBoxNumDen< K, KP, B >

Table 2.7: FoxBox black box algorithm library

The �rst template parameter of each algorithm object is the coe�cient domain

(K), the second is a polynomial algorithm (KP), and the third a black box type (B).

For our extended domain factorization algorithm, we also require extension domain

arithmetic (L and LP).

Each black box algorithm object utilizes a particular set of static information

for evaluation. This static information uniquely describes a particular black box

instance. Utilizing this \signature", one can archive constructed black boxes. To

this end each black box algorithm provides overloaded input and output operators
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for �le input (ifstream) and �le output (ofstream). Each black box instance �le

is tagged identifying a particular black box algorithm.

Common arguments utilized by the constructor of each black box algorithm

objects include a seed, a probability measure and a cardinality. The seed value

is utilized by the native arithmetic wrapper/adaptor random �eld element gener-

ator. This value enables control of the stream of random elements which can be

utilized to provide consistency between runs. The cardinality of the set from which

to choose random �eld elements is determined by a probability measure between 0

and 1. Given a probability measure, each particular black box algorithm computes

the corresponding cardinality and returns this cardinality via a supplied argument.

In another mode of operation, by supplying a value of �1 as the probability mea-

sure, random �eld elements are selected from a �eld of predetermined cardinality

supplied as a parameter. The probability measure associated with this cardinality

is computed and consequently returned via a constructor argument.

It should be noted that all three black box algorithms evaluate one and the

same associate (scalar multiple) of the goal polynomial (see x3). In what follows

is a description of the remaining aspects of each black box algorithm found in the

FoxBox C

++

library.

Factorization

The black box factorization algorithm takes a black box for a multivariate

polynomial and produces a black box object that will evaluate all individual irre-

ducible factors.

BlackBoxFactors( B& BBPoly, double& Prob, int Seed, MP_INT* Card );

BlackBoxFactorsEx( B& BBPoly, double& Prob, int Seed, MP_INT* Card );

The construction phases for both of the above black box factorization algo-

rithms are identical. Also, both algorithms provide a function object which requires

as input a value for each variable. This function object returns a pointer to the �rst

element of an array of �eld elements representing the values of each factor. However,

the extended domain factors black box employs a di�erent method of evaluation.
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Furthermore, the extended domain factors black box probes the input black box at

points that are from a domain which is an extension of the �eld over which it was

constructed.

Both the factor black box and its extended domain version augment the black

box abstraction by providing member functions GetNumFacs and GetExp for retriev-

ing the number of factors and factor exponents respectively.

Greatest Common Divisor

Our black box greatest common divisor algorithm constructs a black box rep-

resenting the GCD of an arbitrary number of black box polynomials.

BlackBoxGCD( B** BBArray, int NumBBs, MP_INT* Card, double& Prob,

int Seed );

Each black box object is supplied to the greatest common divisor black box

constructor as an array of pointers to black box objects. The catalyst for this design

was the need to compute the black box greatest common divisor of a heterogeneous

set of black box objects. A reference to a derived class may be implicitly converted

to a reference to an accessible base class. In the case that B is a black box base

class, heterogeneity can be achieved by the standard conversion from a derived class

pointer to a base class pointer.

The black box greatest common divisor extends the interface speci�ed by the

black box abstraction by providing the public member function GetNumBlackBoxes

for accessing the number of input black boxes.

Numerator and Denominator Separation

The black box numerator and denominator algorithm computes the values of

the numerator and the denominator of a rational function black box.

BlackBoxNumDen( B& BBRatFunc, MP_INT* Card, int DenBound,

double& Prob, int Seed );
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Without the knowledge of a degree bound for the denominator, the construc-

tion phase may loop forever (see x3.4). An overloaded function operator provides for

evaluation. The return value is a pointer to an array of two �eld elements. The �rst

represents the value of the numerator and the second the value of the denominator.

The black box numerator and denominator provides the public member func-

tions GetDegNum and GetDegDen for accessing the degrees of the numerator and

denominator respectively.

The reader is referred to x5.2 where we discuss plans to provide an extended

domain version of this algorithm. The performance of the Cauchy challenge problem

(see x4.3) will improve dramatically by probing the numerator/denominator black

box at truncated power series.

Sparse Conversion

Our sparse conversion implementation is parameterized by a coe�cient domain

(K), polynomial algorithm (KP) and black box type (B).

template< class K, class KP, class B >

void SparseInterp( B& BBPoly, vector< int > Vars, vector< int > Degs,

int TotalDeg, MP_INT* Card, vector< vector< int > > AnsDegs,

vector< K > AnsMons, KP* PolyArray, char* ProbName,

int& IsRestart, int NumProc = 0 );

The algorithm converts a black box representing a multivariate polynomial

into a distributed sparse format. This is achieved by utilizing STL vectors for

maintaining monomials and degree information. Our sparse conversion algorithm

interpolates one variable at a time. In fact its performance can depend on the order

in which each variable in interpolated (see x3.1). Furthermore, the algorithm reduces

the number of black box evaluations by a term pruning technique (see x3.1.1). This

technique utilizes degree bounds for each variable and a bound on the total degree

(TotalDeg). The user speci�es a variable order by supplying a vector of variable

identi�ers (Vars) and a corresponding vector of degree bounds (Degs). The algo-

rithm probes the black box by utilizing random elements from a set of cardinality
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Card. By \setting" the IsRestart ag, our sparse conversion algorithm will save

\check pointing" information in a �le indicated by ProbName. This mechanism en-

sures fault tolerance by securing interpolation state information on disk. Our sparse

conversion algorithm solves a transposed Vandermonde system of equations by uti-

lizing univariate polynomial arithmetic. The PolyArray argument solely serves as a

mechanism of specifying a polynomial algorithm. The NumProc argument indicates

the number of processors available processors for parallel black box evaluation.

2.3.2.3 Homomorphic Maps

In FoxBox, computing the homomorphic image of a black box object is a

generic algorithm which employs a supplied mapping function to convert between

coe�cient domains. The result of such a mapping is another black box which eval-

uates over the integers modulo a prime. More speci�cally, the homomorphic map

produces a new black box where all of the \static" information, which characterizes

the original black box, has been converted to its modular image. All evaluations of

the mapped black box occur modulo a prime. FoxBox provides a homomorphic

map for all of the black box algorithm objects (see Table 2.8).

Template Prototype

BlackBoxFactorsHMap< K, KP, F, FP, B, FB, H >

BlackBoxGCDHMap< K, KP, F, FP, B, FB, H >

BlackBoxNumDenHMap< K, KP, F, FP, B, FB, H >

Table 2.8: FoxBox homomorphic map library

Each homomorphic map is parameterized by a �eld arithmetic (K and KP) and

an arithmetic modulo a prime (F and FP). A \mapping" function object H is utilized

to convert between coe�cient domains. Conversion between polynomial algorithms

is accomplished by utilizing the supplied mapping function. The parameters B and

FB specify input black boxes, the �rst of which evaluates utilizing arithmetic spec-

i�ed by K and and the second employing arithmetic speci�ed by F for evaluation.

The result of a homomorphic image of a black box algorithm computes its value

by probing FB at values modulo a prime. If FB is not available, FoxBox supplies

a class, namely BlackBoxMod< K, F, B, H>, which will wrap/adapt a black box
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so as to provide values modulo a prime. The mapping function object H is em-

ployed to convert the input to the original domain and the output to its modular

representation. Modular wrapping is likely to be less e�cient than homomorphic

imaging.

Interoperability between distinct base arithmetics can be achieved by suppling

the homomorphic imaging algorithm with an appropriate mapping operator. For

instance, a black box can be constructed utilizing SACLIB's rational polynomial

arithmetic and mapped to a new black box that evaluates by employing NTL's

fast modular polynomial arithmetic. This combination of utilizing specialized base

arithmetics for di�erent steps in the solution of a particular problem is one example

of our \plug-and-play" software design methodology detailed in x2.1.

2.3.2.4 Parallel Black Boxes

Our sparse conversion algorithm is ideally suited for parallelization: the algo-

rithm probes the polynomial at selected points and then performs the interpolation

task using the obtained values. Therefore, the evaluation at the di�erent points can

be done on di�erent computers. Each black box object is characterized by a small

amount of pre-computed static information. An initial phase transmits this static

information to each processor allowing for subsequent remote evaluations.

The parallel black box interface adds three member functions Distribute,

Wait and Kill for administering remote construction, evaluation and termination

of black box objects. Table 2.9 details each parallel black box object provided

by FoxBox. Each class is derived from its black box algorithm counterpart and

extends the inherited data members and member functions by the parallel black box

interface.

The parallel black box interface can be implemented utilizing di�erent par-

allelization techniques. By virtue of this abstraction, applications that employ

the parallel black box interface can remain independent of such techniques. For

example, one can plug-in to the functionality o�ered by parallel systems such as

DSC [DHK

+

95], PVM [GBD

+

94], or MPICH [GLS94] simply by providing a corre-

sponding derived class.
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Template Prototype

BlackBoxFactorsMPI< K, KP B >

BlackBoxGCDMPI< K, KP B >

BlackBoxNumDenMPI< K, KP B >

BlackBoxFactorsHMapMPI< K, KP, F, FP, B, FB, H >

BlackBoxGCDHMapMPI< K, KP, F, FP, B, FB, H >

BlackBoxNumDenHMapMPI< K, KP, F, FP, B, FB, H >

Table 2.9: FoxBox parallel black box library

For instance, our DSC system distributes computations over many comput-

ers. The system currently runs on workstations with the Unix operating system

communicating via the DARPA Internet standard IP/TCP/UDP protocols. DSC

a�ords a heterogeneous approach to problem solving in the following sense: DSC

supports the distribution of C, C

++

, Lisp and Maple code; it has been tested on

several architectures; and it distributes over our local area network as well as over

the Internet to o�-site compute nodes. DSC hides processor scheduling from the

user and provides mechanisms for automatic fault tolerance. Each member function

described by the parallel black box interface can be implemented by employing API

calls from the DSC C

++

programming library. This would allow a parallel FoxBox

application to take advantage of all of the aforementioned features.

The current set of objects provided by the FoxBox parallel black box library

are realized via MPI (Message Passing Interface) compliant calls. Message-passing

is a parallel programming technique used on MPP systems, workstation clusters,

and other distributed memory systems. The Message Passing Interface standard-

ization e�ort produced a library speci�cation intended for the portable development

of message-passing applications. Implementations of MPI exist for heterogeneous

workstations clusters, the Cray T3D, 64-bit mips3 and mips4 SGI machines, and

Microsoft Windows, to name a few. In summary, MPI was designed for high perfor-

mance on both massively parallel machines and on workstation clusters; is widely

available, with both freely available and vendor-supplied implementations; and was

developed by a broadly based committee of vendors, implementors, and users. MPI

and its workstation cluster implementation lack several features found in our dis-



46

tributed computing environment (DSC) such as process scheduling and dynamic

process creation. However, providing an MPI-compliant mechanism for paralleliz-

ing black boxes broadens FoxBox's applicability.

An MPI parallel FoxBox application consists of a C

++

program that com-

municates with other processes by ultimately calling MPI routines. The initial

loading of the executables onto the parallel machine is beyond the scope of the MPI

interface. Each MPI implementation will have its own means of performing this

task. However, once loaded, each processor executes di�erent statements within

their copy of the same FoxBox application program based on processor ranks. A

typical application will consist of a driver and a parallel subtask portion. The driver

will request evaluations from each parallel subtask. Each parallel subtask executes

a copy of the MPI black box server object, which has the ability to accept messages

from the interface provided by parallel black boxes. The �rst call to a Distribute

member function sends an object's static information to a particular processor, as

well as a point for evaluation. Subsequent calls simply send evaluation points. The

call to Wait blocks the driver program until a particular remote evaluation can be

processed. Each parallel subtask can be destroyed by a call to Kill.

Drawing from our experiences with DSC, the parallel black box interface can

be enhanced to provide additional functionality such as a choice of distribution

strategies. These enhancements are a focus of future work detailed in x5.2.

2.4 The FoxBox Server

The FoxBox distribution provides a server application that allows the user of

a general purpose computer algebra system to access the FoxBox components in

calculator style fashion. Since the FoxBox server essentially provides for remotely

invoking C

++

black box object methods, there is quite a bit of overlap between the

components of the FoxBox server and the FoxBox C

++

programming library.

Through the development of examples, x2.4.1 describes the overall components

of the FoxBox server. The main design goal for an interface between FoxBox and

a computer algebra system was that this interface had to be easily portable between

di�erent systems. Finally, x2.4.2 details the design behind the FoxBox interface,
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which yields a fairly portable implementation.

2.4.1 Accessing the FoxBox Server

A C

++

FoxBox application speci�es an underlying base arithmetic at com-

pile time by template class arguments. The FoxBox server application utilizes

SACLIB's rational and modular polynomial arithmetic. However, since the compo-

nents within the C

++

FoxBox programming library are parameterized procedural

schemata (see x2.2), the FoxBox server can easily be ported to take advantage

of other base arithmetics. Currently, the FoxBox server provides for construction

and evaluation of various types of black box objects. The server is also capable of

converting such objects to sparse format.

As an example, let us consider the problem of computing a factor of the deter-

minant of a 4 by 4 symmetric Toeplitz matrix utilizing the Maple interface to the

FoxBox server.

The following code fragment illustrates the initialization of the FoxBox in-

terface in a Maple session.

> read `bridge.mpl`:

> FoxBoxInitEnv( `bpid.bbs`, `cpid.bbs`, `command.bbs`, `ans.bbs` ):

> Mod := 32771: Seed := 103069:

> FoxBoxSetPrime( Mod ):

The read command is utilized to import the Maple speci�c FoxBox inter-

face code into the Maple environment. Control of the remote black box objects

is achieved via TCP/IP communication on a dedicated port. The FoxBox server

library function FoxBoxInitEnv establishes such a communication connection to a

remote FoxBox server and initializes several internal variables. Maple character

strings formed by back quotes specify �le names utilized by the FoxBox server

interface. The only restriction for each �le name argument is that they be unique.

The FoxBoxSetPrime procedure initializes the FoxBox modular arithmetic.

The next code fragment issues FoxBox server library calls intended to re-

motely instantiate two 4 by 4 symmetric Toeplitz determinant common objects. One
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evaluates over the rationals and the other modulo a prime. Each Maple constructor

returns an integer index which serves as a remote black box object identi�er. The

call to BlackBoxFactors creates a factors black box over the rationals which can

evaluate each irreducible factor of the previously constructed symmetric Toeplitz

determinant common object.

> SymToeQ := BlackBoxSymToe( BBNET_Q, 4, -1, 1.0 ):

SymToeQ := 0

> SymToeZP := BlackBoxSymToe( BBNET_ZP, 4, -1, 1.0 ):

SymToeZP := 1

> FactorsQ := BlackBoxFactors( BBNET_Q, SymToeQ, Mod, 1.0, Seed ):

FactorsQ := 2

The parameters for the Maple black box object constructors mirror those uti-

lized by the C

++

FoxBox programming library detailed in x2.3.2. The reader is

referred to x2.3.2 and [DK97a] for a more elaborate exposition of each FoxBox

server library procedure call. The result of the BlackBoxHomomorphicMap Maple

constructor is a homomorphic image of the previously computed factors black box

object. Such an image evaluates over the integers modulo a prime.

> FactorsZP := BlackBoxHomomorphicMap( BBNET_FACS, FactorsQ,

SymToeZP ):

FactorsZP := 3

> FactorZP := BlackBoxSelectValue( BBNET_ZP, FactorsZP, 0 ):

FactorZP := 4

The BlackBoxSelectValue function call serves as an n to 1 multiplexor which

is utilized to select the �rst factor. The code below converts the �rst factor into

its distributed sparse representation by employing the homomorphic map of the

factors black box object to interpolate the selected factor modulo a prime. As an

example, we provide two methods of sparse conversion. The �rst performs a remote

conversion utilizing our modi�ed Zippel algorithm (see x3.1).
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> FB1 := SparseConversion( BBNET_ZP, FactorZP, [ x1, x2, x3, x4 ],

[ 4, 4, 4, 4 ], 4, Mod );

FB1 :=

2 2 2

32768 x1 + 3 x2 + 32768 x1 x2 + 3 x3 +

6 x2 x3 + 32768 x2 x4 + 32768 x1 x4

The call to the SparseConversion FoxBox server library procedure requires

as input a base arithmetic ag, an index to a black box representing a polynomial, a

bound on the total degree of the input polynomial black box, a degree bound for each

variable, and cardinality from which to choose random �eld elements. The result of

this call is a vector of monomials and corresponding degrees. This representation

is converted to a Maple polynomial by matching the input variables to each mono-

mial degree pair. The second method employs Maple's sparse multivariate modular

polynomial interpolation function.

> f := proc( x1, x2, x3, x4, p)

> local FactorValue;

> FactorValue := BlackBoxEval( BBNET_ZP, BBNET_FAC_HMAP_EVAL,

> FactorZP, [ x1, x2, x3, x4 ] );

> RETURN( FactorValue );

> end:

> readlib(sinterp):

> FB2 := sinterp( f, [x1, x2, x3, x4 ], 4, Mod );

FB2 :=

2 2 2

32768 x1 + 3 x2 + 32768 x1 x2 + 3 x3 +

6 x2 x3 + 32768 x2 x4 + 32768 x1 x4

The Maple sinterp function call requires a procedure which given integers

and a prime returns the value of a polynomial modulo the input prime. In our

example, this procedure calls the BlackBoxEval FoxBox server library procedure

to evaluate the homomorphic map of the factors black box. Clearly, our remote
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interpolation generates the same result in less time since it employs an improved

algorithm, utilizes compiled code, and does not incur the communication overhead

of transmitting evaluations.

As a �nal example, let us consider computing the greatest common divisor of

two 3 by 3 Vandermonde matrices which have two variables in common.

> VandQ1 := BlackBoxVand( BBNET_Q, BBNET_VAND, 6, -1, 1.0 );

VandQ1 := 5

> VandQ2 := BlackBoxVand( BBNET_Q, BBNET_VANDSHIFT, 6, -1, 1.0 );

VandQ2 := 6

> GCDQ := BlackBoxGCD( BBNET_Q, [ VandQ1, VandQ2 ], Mod , 1.0,

Seed );

GCDQ := 7

> GCD := SparseConversion( BBNET_Q, GCDQ, [x1, x2, x3, x4, x5, x6 ],

[ 1, 1, 0, 0, 0, 0 ], 1, Mod );

GCD := - x1 + x2

FoxBoxCleanUp();

The FoxBox server Vandermonde determinant constructor provides for build-

ing Vandermonde determinant objects customized for our GCD challenge prob-

lem (see x4.2). The code detailed above constructs two Vandermonde determi-

nant objects which evaluate by utilizing rational number arithmetic. The call to

BlackBoxGCD returns an index to a newly constructed black box greatest common

divisor of the previously instantiated Vandermonde determinant objects. Finally,

the SparseConversion call performs a remote conversion of the black box greatest

common divisor into a distributed representation.

While the current scope of the FoxBox server is to provide a calculator style

interface to general purpose computer algebra systems, it is quite feasible to expand

this notion to allow for the transparent exchange of symbolic objects given by black

boxes between a FoxBox server and algebra system. In light of the fact that black

box objects are characterized by a small amount of static data, the framework for

a more sophisticated interaction between the FoxBox server and general purpose
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computer algebra systems is in place by virtue of the FoxBox server design (see

x2.4.2). Such improvements are a focus of future work detailed in section x5.2.

2.4.2 Underlying Interface Architecture

As stated in the introduction, the primary design goal for our interface between

FoxBox and a computer algebra system was that this interface had to be easily

portable between di�erent systems. Most general purpose computer algebra systems

provide a method of invoking commands in the host operating system. Therefore,

we chose a mechanism by which the FoxBox server functions are invoked through

a \system" call. Drawing from an idea utilized by our DSC interface to Maple

[CDK94], that system call executes an interface program which sends a signal to a

concurrent daemon process. It is that single daemon process which forwards each

request via a TCP/IP connection to the FoxBox server. Thus, we avoid any de-

pendence on calls to functions written in C from within a computer algebra system.

Furthermore, similar to OpenMath \phrase books" [ADS96] which translates (both

ways) between the application speci�c representation of a mathematical concept and

its representation as an OpenMath object, \bridges" to di�erent computer algebra

systems require only a small amount of customized code. Thus, our bridges are the

only application-dependent portion of the FoxBox server interface. Naturally, each

di�erent computer algebra system requires its own particular bridging code.

Figure 2.13 provides an illustration of the di�erent bands of the FoxBox

server interface. Residing in band A, a small amount of system dependent code acts

as a bridge between a computer algebra system (eg. Axiom, Maple, Mathematica)

and a temporary process T. The temporary process in band B makes a request

to a local daemon process D which in turn forwards the request to the FoxBox

server which resides in band C. The temporary process T blocks the execution of the

application program running on the algebra system until the desired result has been

received. In an ideal situation the FoxBox server will execute on a compute node

with a fast processor and a considerable amount of memory, essentially providing a

service for many computer algebra \front ends".

The transfer of information between processes in bands A and B employs a
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Figure 2.13: Bands of the FoxBox server interface

�le based communication utilizing a specialized ASCII protocol. OpenMath aims to

provide a complete protocol for the exchange of mathematical expressions in order

to become the primary standard for the exchange of such information. OpenMath

speci�es a mapping between mathematical concepts and their concrete representa-

tions by de�ning so-called content dictionaries. Each content dictionary embodies

semantic information from a single area of mathematics. In the same way that some

areas of mathematics build on others, a content dictionary may depend on others.

Our hopes are that the �nal version of OpenMath will allow for the introduction of

a \black box" content dictionary hence broadening FoxBox's applicability. Such a

content dictionary will further reduce the amount of bridge code required to interface

to general computer algebra systems.



CHAPTER 3

THE BLACK BOX ALGORITHMS

We now provide an exposition of several algorithms for manipulating multivariate

polynomials and rational functions given by black boxes for their evaluations. In

x3.1, we provide a full description and illustration of our sparse interpolation al-

gorithm which employs a novel term pruning technique. This technique is aimed

at reducing the number of black box evaluations necessary to convert a black box

polynomial into its distributed representation. In fact, our term pruning technique

is also applicable to a special bi-variate polynomial interpolation which arises in our

factor box evaluation algorithm. x3.2 outlines the aforementioned optimization and

concomitantly describes the notion of extended domain black boxes which dramati-

cally improves evaluation performance for small degree factors. In x3.3, we provide a

detailed description and analysis of our algorithm for computing the greatest com-

mon divisor of polynomials in black box format. By employing a modular GCD

approach, we improve on the black box GCD algorithm sketched in the literature.

Finally, in x3.4, we describe a technique �rst observed in our GCD algorithm to

markedly increase performance of the black box reduced numerator and denomina-

tor algorithm.

For clarity in our detailed algorithmic descriptions in x3.1 and x3.3, we shall

state the actual computations in imperative mood and typeset them in italics font,

while keeping the extensive comments in narrative and roman.

3.1 Sparse Conversion

We now discuss our version of Zippel's sparse interpolation algorithm for con-

verting a polynomial from its' black box representation to a distributed format. The

reader is referred to the sparse conversion algorithm presented by Kaltofen [Kal89]

and the transposed Vandermonde linear system solver by Kaltofen and Laksh-

man [KL88]. Both are algorithms from which we base our modi�cations and hence

we closely mirror their notational conventions and algorithmic description.

53
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Zippel provides a probabilistic resolution to the interpolation problem. No

information is given in regards to a bound on the number of terms. An estimate

on the number of terms is reached as each new variable is introduced during the

interpolation process. The algorithm is based on the assumption that during the

task of interpolation many of the coe�cients are zero and any zero coe�cient is,

with high probability, the image of a zero polynomial.

In FoxBox, the black box algorithm objects can become complex, because

they are constructed from common objects such as matrix determinants by sophis-

ticated transformations. The potential for nesting black box algorithms can further

increase complexity. Hence, the e�ciency of sparse interpolation is greatly inuenced

by the number of required evaluation points. We employ two novel techniques for

reducing the number of overall evaluations required during Zippel's algorithm. First,

we introduce an extra variable which provides an exact bound for the degree of each

monomial. Secondly, utilizing these exact bounds of each monomial, we reduce the

size of the resulting transposed Vandermonde system and hence the number of black

box probes by \term pruning" after each interpolation step.

Our pruning sparse conversion algorithm proved quite useful for our black box

factorization benchmark problem (see x4.1). For instance, one benchmark problem

was to convert to sparse representation a factor of a 10 by 10 symmetric Toeplitz

determinant given a black box which evaluates both irreducible factors. Our pruning

sparse conversion algorithm only requires 2; 623 black box calls while the original

version employs 4; 675 black box evaluations. For both runs, an exact degree bound

(d

i

) for each variable was supplied. While exact degree information d

i

and deg(f)

is extremely bene�cial for the original version found in Kaltofen [Kal89], it is not

so critical for our pruning sparse conversion algorithm. In fact, our technique for

\zooming-in" on the degree of each monomial provides a mechanism which can

quickly account for overestimated degree bounds.

In x3.1.1, we provide a formal presentation and description of our pruning

sparse interpolation algorithm. We give a simple demonstration of our algorithm in

x3.1.2.
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3.1.1 The Pruning Sparse Interpolation Algorithm

Given a multivariate polynomial f(x
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At this point, we provide a detailed description of our algorithm. The full

analysis and probabilistic measure follows from Kaltofen's [Kal89] original version.

For our algorithm, the probability formulation depends on the singularity of the

resulting Vandermonde system as well as the support structure at each interpolation

step.

Algorithm Pruning Sparse Conversion
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which implicitly augments the number of variables to include x

0

. We will utilize the

augmented polynomial

�

f(x

0

; : : : ; x

n

) for the purpose of interpolation. Note that the

degree of x

0

is deg(f) and that x

0

is represented in each monomial. Furthermore,

the degree of x

0

in each monomial is the total degree of x

1

; : : : ; x

n

for each particular

monomial in f . This will provide an exact bound for our prune step detailed below.

In many cases, the deg(f) + 1 extra evaluations introduced by the extra variable

will be overcome by the savings brought by advanced knowledge of the exact degree

measure of the monomials. However, for those instances where the cost of the extra

evaluations are not surmounted, our algorithm can easily be modi�ed to remove this

procedure and prune with a degree bound instead.

Step 2: Interpolation loop
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e

0

;::: ;e

n

= 0g

Finally, return

X

c

e

1

;::: ;e

n

x

e

1

1

� � �x

e

n

n

:

This distributed representation is constructed from the pruned monomials in P

n+1

.

Note that any mention of e

0

can be safely excluded from the answer since the

overline operator

�

does not change the coe�cients of the monomials in the original

polynomial.

Step I: Interpolate one more variable

At this point, we have with high probability computed the sparse representation of

�

f(x

0

; : : : ; x

i�1

; a

i

; : : : ; a

n

) =

X

(e

0

;::: ;e

i�1

)2J

i

c

e

0

;::: ;e

i�1

x

e

0

0

� � �x

e

i�1

i�1

;

0 6= c

e

0

;::: ;e

i�1

2 K; J

i

� N

i�1

:

Here we interpolate one more variable.
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If i = 0 set

j

0

 deg(f) + 1;

^

J

0

 f(�) j 0 � � < j

i

g; P

0

= ;; J

0

= f;g

and continue to Step V.

For all other values of i we have the previously computed set of exponent vectors

J

i

. Each exponent vector in J

i

can be associated with a corresponding nonzero

coe�cient c

e

0

;::: ;e

i�1

. Set

^

J

i

 f(e

0

; : : : ; e

i�1

; �) j (e

0

; : : : ; e

i�1

) 2 J

i

; 0 � � � d

e

0

;::: ;e

i�1

; d

e

0

;::: ;e

i�1

> 0g;

j

i

 card(

^

J

i

)

where d

e

0

;::: ;e

i�1

= min [d

i

; e

0

�e

1

�� � ��e

i�1

]. Populate the set of pruned monomials

P

i

with the vectors and corresponding coe�cients of those (e

0

; : : : ; e

i�1

) 2 J

i

whose

d

e

0

;::: ;e

i�1

value is 0.

P

i

 P

i�1

[ f(e

0

; : : : ; e

i�1

; c

e

0

;::: ;e

i�1

) j (e

0

; : : : ; e

i�1

) 2 J

i

; d

e

0

;::: ;e

i�1

= 0g:

Note that e

0

is the exact degree of each monomial by virtue of the the overline

operator

�

.

Step V: Solve transposed Vandermonde system of equations

Select random points b

0

; : : : ; b

i

.

For k  0; : : : ; j

i

� 1 Do:

Compute

g

k;i

 

�

f(b

k

0

; : : : ; b

k

i

; a

i+1

; : : : ; a

n

)�

X

(e

0

;::: ;e

i�1

;c

e

0

;::: ;e

i�1

)2P

i

c

e

0

;::: ;e

i�1

b

ke

0

0

� � � b

ke

i�1

i�1

by evaluating

�

B(b

k

0

; : : : ; b

k

i

; a

i+1

; : : : ; a

n

) and adjusting this value to account for the

monomials pruned thus far. If B is not de�ned at b

k

0

; : : : ; b

k

i

; a

i+1

; : : : ; a

n

return

\failure".

oD
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Solve the j

i

by j

i

transposed Vandermonde linear system of equations

X

(e

0

;::: ;e

i

)2

^

J

i



e

0

;::: ;e

i

b

e

0

k

0

� � � b

e

i

k

i

= g

k;i

; 0 � k � j

i

:

If the system is singular return \failure". We suggest the e�cient algorithm by

Kaltofen and Lakshman that solves a transposed Vandermonde system of equations

in O(n

2

) employing only O(n) space. There is a small chance that the solution of

the above linear system is wrong if a \bad" anchor point a

0

; : : : ; a

n

is chosen. For

details on the probability of choosing a rogue anchor point, see Zippel [Zip90]. Set

c

e

0

;::: ;e

i

= 

e

0

;::: ;e

i

where the right hand side ranges over all nonzero components of

the solution of the above system. Notice that the subscripts de�ne the set J

i+1

for

which each degree vector can be associated a nonzero c

e

0

;::: ;e

i

. If the number of those

nonzero coe�cients becomes more than t, return \input polynomial has (probably)

more than t monomials." Set

J

i+1

 f(e

0

; : : : ; e

i

) j 

e

0

;::: ;e

i

6= 0g:

2

3.1.2 Demonstration of the Pruning Sparse Interpolation Algorithm

Let us consider as an example the problem of interpolating the polynomial

f(x

1

; x

2

; x

3

) 2 Q[x

1

; x

2

; x

3

] given by

f(x

1

; x

2

; x

3

) = x

2

1

+ x

1

+ x

1

x

2

+ x

2

2

+ x

2

+ x

3

:

In what follows we provide an annotated step by step trace of our pruning sparse

interpolation algorithm.

Step 1: Select initial evaluation points

Our �rst task is to choose three random �eld elements. Let us select the follow-

ing values f7; 6; 14g as the anchor points a

1

; a

2

; a

3

respectively. Step 2 performs a
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variable by variable interpolation of a new polynomial

�

f(x

0

; x

1

; x

2

; x

3

) given by:

�

f(x

0

; x

1

; x

2

; x

3

) = f(x

1

x

0

; x

2

x

0

; x

3

x

0

) = x

2

0

x

2

1

+ x

0

x

1

+ x

2

0

x

1

x

2

+ x

2

0

x

2

2

+ x

0

x

2

+ x

0

x

3

:

As illustrated above, by implicitly introducing another variable x

0

the algorithm

can determine an exact degree bound for each monomial. Indeed, even for this

small example there is an overall savings of two black box evaluations compared to

Zippel's interpolation.

Step 2: Interpolation loop

i = 0

We �rst seek the skeleton for x

0

. For this example let us assume that we are provided

with the following information regarding the degree of f(x

1

; x

2

; x

3

), upper bounds

for each of the variables in f and the total number of terms in f :

deg(f) = 3; d

0

= 2; d

1

= 2; d

2

= 2; t = 6:

Also, let us assume that the choice of random elements come from a set of su�ciently

large cardinality to guarantee a high probability of success. Our initial set of state

variables are initialized as follows:

j

0

 3;

^

J

0

 f(0); (1); (2)g; P

0

= ;; J

0

= f;g:

Step V: Solve transposed Vandermonde system of equations

For each interpolation step i we randomly choose an an initial i-tuple

~

b

i

= fb

0

; : : : ; b

i

g.

Given an i-tuple

~

b

i

and a degree vector ~e we denote by

~

b

~e

i

the set fb

e

0

0

; : : : ; b

e

i

i

g and

de�ne (

~

b

i

)

k

as the set fb

k

0

; : : : ; b

k

i

g. We generate j

i

values of

�

f(x

1

; : : : ; x

n

) from

evaluation points constructed from successive powers of

~

b

i

and points selected from

our initial set of anchor �eld elements ~a

i+1

= fa

i+1

; : : : ; a

n

g. The values for each of

the monomials are (

~

b

~e

i

)

k

; ~e 2

^

J

i

for k = 0; : : : ; j

i

� 1 . Thus we have the following
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transposed Vandermonde system of equations:



e

0;0

;::: ;e

0;i

+ � � �+ 

e

j

1

;0

;::: ;e

j

i

;i

=

�

f(

~

b

0

i

;~a

i+1

)



e

0;0

;::: ;e

0;i

b

e

0;0

0

; : : : ; b

e

0;i

i

+ � � �+ 

e

j

1

;0

;::: ;e

j

i

;i

b

e

j

1

;0

0

; : : : ; b

e

j

i

;i

i

=

�

f(

~

b

1

;~a

i+1

)

.

.

.



e

0;0

;::: ;e

0;i

(b

e

0;0

0

; : : : ; b

e

0;i

i

)

j

i

�1

+ � � �+ 

e

j

1

;0

;::: ;e

j

i

;i

(b

e

j

1

;0

k

0

; : : : ; b

e

j

i

;i

i

)

j

i

�1

=

�

f(

~

b

j

i

�1

;~a

i+1

)

where

^

J

i

 f(e

0;0

; : : : ; e

0;i

); (e

1;0

; : : : ; e

1;i

); : : : ; (e

j

i

;0

; : : : ; e

j

i

;i

)g:

We choose

~

b

0

= f10g and select ~a

1

= f7; 6; 14g from our set of anchor values.

For this particular instance we do not need to account for pruned monomials and

consequently have the following system of transposed Vandermonde equations:



0

+ 

1

+ 

2

= 154



0

+ 

1

10 + 

2

100 = 12970



0

+ 

1

100 + 

2

1000 = 1272700

The solution of the above system is 

0

= 0; 

1

= 27; 

2

= 127. We set the next

degree vector to include those degrees whose monomials are non zero:

J

1

 f(1); (2)g:

The monomials corresponding to each entry in J

1

are given by c

1

= 27; c

2

= 127

respectively.

i = 1

At this point we must create our new set of exponent vectors

^

J

1

utilizing J

1

as a

starting point. One can observe that a tight bound has already been found for all

of the monomials. Each monomial in f will have either degree 1 or 2. The new set

of state variables employed to interpolate x

1

follows:

^

J

1

 f(1; 0); (1; 1); (2; 0); (2; 1); (2; 2)g; j

1

 5:
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Step V: Solve transposed Vandermonde system of equations

We choose

~

b

1

= f13; 17g and employ ~a

2

= f6; 14g to complete our evaluation point.

The values for each of the

~

b

~e

1

; ~e 2

^

J

1

are

f13; 221; 169; 2873; 48841g

and each of the values of

�

f(x

0

; x

1

; x

2

; x

3

) are given by

f64; 72644; 2436048472; 116649904565948; 5690748462493657264g:

The solution of the transposed Vandermonde system de�ned by the above state

variables in terms of  is 

1;0

= 20; 

1;1

= 1; 

2;0

= 36; 

2;1

= 6; 

2;2

= 1. The next

degree vector J

2

is identical to

^

J

1

since all of the solutions are non zero:

J

2

 f(1; 0); (1; 1); (2; 0); (2; 1); (2; 2)g:

The corresponding set of monomials for each degree vector in J

2

is c

1;0

= 20; c

1;1

=

1; c

2;0

= 36; c

2;1

= 6; c

2;2

= 1.

i = 2

At this point we have enough information to prune the x

1

and x

2

1

terms. Our set of

state information follows:

^

J

2

 f(1; 0; 0); (1; 0; 1); (2; 0; 0); (2; 0; 1); (2; 0; 2); (2; 1; 0); (2; 1; 1)g;

j

2

 7 P

2

 f(1; 1; 1); (2; 2; 1)g:

By pruning we were able to reduce the size of

^

J

2

by two degree vectors.

Step V: Solve transposed Vandermonde system of equations

For this step the random points were chosen as

~

b

2

= f12; 25; 24g. The Vandermonde

system of equations is described by the monomials

~

b

~e

2

; ~e 2

^

J

2

given by:

f12; 288; 144; 3456; 82944; 3600; 86400g
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and evaluations:

f17; 169800; 14344752096; 1215602996600448; 103055998085609319936;

8740464474326435884247040; 741608668658921404201047023616g:

Note that the values of

�

f(x

0

; x

1

; x

2

; x

3

) have been adjusted to account for the mono-

mials we have pruned thus far. The solution in terms of  is 

1;0;0

= 14; 

1;0;1

=

1; 

2;0;0

= 0; 

2;0;1

= 0; 

2;0;2

= 1; 

2;1;0

= 0; 

2;1;1

= 1. The degree vector J

3

includes

those degrees whose monomials are non zero:

J

3

 f(1; 0; 0); (1; 0; 1)(2; 0; 2); (2; 1; 1)g:

The corresponding set of monomials for each degree vector in J

3

is c

1;0;0

= 14; c

1;0;1

=

1; c

2;0;2

= 1; c

2;1;1

= 1.

i = 3

The interpolation of the �nal variable x

3

begins with pruning monomials which we

know do not include x

3

. For f this includes all monomials but one. The following

details the current state of the interpolation process after each completed monomial

has been pruned:

^

J

3

 f(1; 0; 0; 0); (1; 0; 0; 1)g; j

3

 2

P

3

 f(1; 1; 1); (2; 2; 1)(1; 0; 1; 1); (2; 0; 2; 1); (2; 1; 1; 1)g:

As a result of pruning, the size of the linear system in this stage has been decreased.

Step V: Solve transposed Vandermonde system of equations

The base evaluation point was chosen as

~

b

3

= f24; 3; 20; 3g. There is no need to

pad the subsequent evaluation points with the initial anchor elements since we are

now interpolating the �nal variable. The Vandermonde system of equations are

described by the monomials

~

b

~e

3

; ~e 2

^

J

3

,

f24; 72g
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and evaluations of

�

f(x

0

; x

1

; x

2

; x

3

),

f1; 72g:

The values of

�

f have been adjusted by the monomials we have pruned thus far. The

solution in terms of  is 

1;0;0;0

= 0; 

1;0;0;1

= 1. The subsequent degree vector J

4

,

J

4

 f(1; 0; 0; 1)g

has as its' corresponding monomial c

1;0;0;1

= 1.

Step 2: Augment set of pruned monomials and return f

Finally, the distributed representation of f is retrieved by converting the sparse

representation stored in the augmented set P

4

given by:

P

4

 f(1; 1; 1); (2; 2; 1); (1; 0; 1; 1); (2; 0; 2; 1); (2; 1; 1; 1); (1; 0; 0; 1; 1)g:

3.2 Factorization

The input to the factor black box algorithm is a polynomial f(x

1

; : : : ; x

n

) 2

K[x

1

; : : : ; x

n

] given by its' black box format (see x1.1). Also, a failure probability

�� 1 is input. The result is an evaluation program for all irreducible factors of the

input black box polynomial (Figure x3.1). Let us denote

f(x

1

; : : : ; x

n

) =

r

Y

i=1

h

i

(x

1

; : : : ; x

n

)

e

i

; e

i

� 1:

as the factorization of f into irreducibles. The factor evaluation program accepts as

input n arbitrary elements p

1

; : : : ; p

n

2 K. The evaluation program then calls the

black box for f(x

1

; : : : ; x

n

) and determines with high probability (1��) the values for

all irreducible factors h

i

(p

1

; : : : ; p

n

); 1 � i � r. Furthermore, the factor evaluation

program returns the corresponding exponents e

1

; : : : ; e

n

with the same probability.

During the construction phase, the algorithm actually chooses an associate for each

factor h

i

(x

1

; : : : ; x

n

). For repeated invocations, the evaluation program returns the

value scaled by that associate.
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p

1

; : : : ; p

n

2 K

���������!

Precomputed data including e

1

; : : : ; e

n

.

Program makes \oracle calls":

a

1

; : : : ; a

n

�������!

f(x

1

; : : : ; x

n

)

f(a

1

; : : : ; a

n

)

��������!

b

1

; : : : ; b

n

�������!

f(x

1

; : : : ; x

n

)

f(b

1

; : : : ; b

n

)

��������!

.

.

.

c

1

; : : : ; c

n

�������!

f(x

1

; : : : ; x

n

)

f(c

1

; : : : ; c

n

)

��������!

: : :

f(x

1

; : : : ; x

n

) = h

1

(x

1

; : : : ; x

n

)

e

1

� � �h

r

(x

1

; : : : ; x

n

)

e

r

h

i

2 K[x

1

; : : : ; x

n

] irreducible.

h

1

(p

1

; : : : ; p

n

)

����������!

h

2

(p

1

; : : : ; p

n

)

����������!

.

.

.

h

r

(p

1

; : : : ; p

n

)

����������!

Figure 3.1: Black box factorization

Note that with probability at least 1 � �, the factor evaluation program is

correct and that a correct program will always produce a valid associate for each

of the factors. The probability of success depends on the selection of random �eld

elements chosen during the construction phase of the algorithm. The relationship

between the cardinality of the set from which the random elements are chosen, R,

and the probability of success � is given by

card(R) � 6deg(f) 2

deg(f)

�

�:

In what follows, we provide a description of two improvements to the black box

factor algorithm. The reader is referred to Kaltofen and Trager [KT90] for a detailed

exposition and full analysis of this algorithm.

During the evaluation process, the projection of f(x

1

; : : : ; x

n

) given by the

overline operator

�

�

f(X; Y ) = f(X + b

1

; Y (p

2

� a

2

(p

1

� b

1

)� b

2

) + a

2

X + b

2

;

: : : ; Y (p

n

� a

n

(p

1

� b

1

)� b

n

) + a

n

X + b

n

)
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must be computed by standard interpolation. The bi-variate polynomial

�

f(X; Y ) is

utilized to perform a Hensel lifting [Mus75] of the factorization of

�

f(X; 0). Given a

particular factor of

�

f(X; 0) in X whose bi-variate counterpart has degree d in Y , the

lifting process only requires the coe�cients of Y of

�

f(X; Y ) up to degree d. In fact,

our implementation of the Hensel algorithm utilizes truncated bi-variate polynomial

arithmetic to weed out unnecessary terms. Let us denote the factorization of

�

f(X; Y )

by

�

f(X; Y ) =

r

Y

i=1

�g

i

(X; Y )

e

i

:

Since we lift all of the factors at the same time, one can set the truncation degree to

d = max (deg

Y

(g

i

(X; Y ))); 1 � i � r. The implication is that for small degree factors

the bi-variate interpolation step can be dramatically improved in performance if the

black box for the original polynomial can be probed at truncated power series as

values for the variables. Such black boxes that can evaluate at points which come

from a domain that is an extension of the �eld over which the polynomial was

factored are called extended domain black boxes.

For the case of the truncated power series domain, the bi-variate interpolation

algorithm probes

�

f(X; Y ) at d

fb

= deg(

�

f(X; Y )) + 1 distinct �eld elements for X

resulting in polynomials in Y .

�

f(d

0

; Y ) mod Y

d

= c

0;0

+ c

0;1

Y + � � �+ c

0;d�1

Y

d�1

�

f(d

1

; Y ) mod Y

d

= c

1;0

+ c

1;1

Y + � � �+ c

1;d�1

Y

d�1

.

.

.

�

f(d

fb

; Y ) mod Y

d

= c

d

fb

;0

+ c

d

fb

;1

Y + � � �+ c

d

fb

;d�1

Y

d�1

Note that since the input black box performs arithmetic over an extension �eld given

by M = K[Y ]=(Y

d

) the resulting polynomials in Y are of degree d� 1. Finally, each

coe�cient of Y in

�

f(X; Y ) mod Y

d

= C

0

(X) + C

1

(X)Y + � � �+ C

d�1

Y

d�1
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can be retrieved by interpolating each corresponding coe�cient band

C

i

= interpolate(fd

0

; : : : ; d

fb

g; fc

0;i

; : : : ; c

d

fb

;i

g; X)

as a polynomial in X. The interpolate function computes a polynomial of degree

less than or equal to d

fb

in the variable X from a list of independent (fd

0

; : : : ; d

fb

g)

and dependent (fc

0;i

; : : : ; c

d

fb

;i

g) values. As illustrated above the the extended do-

main factor object switches to univariate interpolation over the truncated power

series domain M. The complexity of evaluating a factor is then speeded by a factor

of magnitude O(d

2

=deg(f)) provided that the extended black box for f over M runs

a factor O(d

2

) slower.

When the input black box can only evaluate points from the �eld over which

the polynomial was factored, we provide a bi-variate interpolation algorithm that

takes advantage of the special structure of

�

f(X; Y ). Indeed, borrowing from our

\term pruning" method described in x3.1 we can reduce the number of black box

evaluations in half.

For any f , the overline operator

�

provides a map for each variable resulting

in a bi-variate polynomial in X and Y that has the following form:

�

f(X; Y ) = c

0;0

Y

d

+ (c

0;1

+ c

1;1

X)Y

d�1

+ (c

0;2

+ c

1;2

X + c

2;2

X

2

)Y

d�2

+ � � �+

(c

0;d

+ c

1;d

X + � � �+ c

d;d

X

d

);

where c

i;i

; 0 � i � d;2 K; and d = deg(

�

f(X; Y )):

Note that if one views

�

f(X; Y ) as a polynomial in Y with coe�cients in X, the task

of interpolating

�

f(X; Y ) can be modi�ed to reduce the number of necessary black

box evaluations. The �rst step is to select d + 1 distinct �eld elements x

0

; : : : ; x

d

.

Much like standard bi-variate interpolation, our algorithm iterates through each of

x

i

's computing polynomials

�

f(x

i

; Y ); 0 � i � d. However, at the i-th stage instead

of interpolating a full degree polynomial, we only compute a polynomial of degree i

in Y . This is achieved by successively pruning the i-th coe�cient of Y and adjusting

the result of subsequent black box evaluations accordingly. We know that the i-th

coe�cient in Y is \completed" by virtue of the projection imposed by the overline
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operator

�

. Our pruning bi-variate interpolation technique becomes quite important

for input polynomials of large degree or those polynomials that are represented by

so-called \nested" black boxes. Our algorithm proved quite useful in the completion

of our numerator and denominator benchmarks problems detailed in x4.3. Clearly,

the gains from only probing the numerator and denominator black box half as many

times to evaluate the factors of the numerator were signi�cant.

3.3 Greatest Common Divisor

In this section, we revisit the problem of computing the black box greatest

common divisor (GCD) of several multivariate polynomials that are given by black

boxes. In Kaltofen and Trager [KT90] a brief sketch of a possible solution was

presented.

The black box GCD algorithm must �x a unique scalar multiple of the GCD

that the produced black box will evaluate at the given points. The scalar mul-

tiple is �xed by performing a generic symbolic shift of the variables that makes

the shifted GCD monic in the main variable X. By our shifts, we also avoid

the computationally costly content and primitive part problem of GCD algorithms

for polynomials in explicit representation like Brown's [Bro71], Zippel's [Zip79], or

Char's et al. [CGG89] modular algorithms, and like Moses's and Yun's [MY73],

Wang's [Wan80], or Kaltofen's [Kal85c] Hensel-lifting based algorithms. Note that

the shifts do not introduce expression swell since the representation of the input

polynomials is by black boxes. Values of the GCD are obtained by introducing a

second variable Y in the fashion of homotopy continuation [Dre77]. For Y = 0,

the black box computes the value of the GCD at a predetermined point, while for

Y = 1 we will have the value of the GCD at the inputs to the black box. Finally, the

problem of computing the GCD of several polynomials is reduced to the problem

of computing the GCD of a pair of polynomials by taking a random scalar sum,

which is a technique �rst introduce by D. Spear (see Wang [Wan80], p. 57). Finally,

we remark that our algorithm uses randomization and that the resulting black box

for the GCD may with controllably small probability be incorrect. However, if the

black box was determined correctly, the values for the GCD will always be correct.
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Our improvement of the algorithm sketched in Kaltofen and Trager [KT90] is

as follows [DK95]. By using a modular GCD approach for the arising bivariate GCD

problem (in the variables X and Y ) we can greatly reduce the number of calls to

the black boxes for the input polynomials. In fact, under fortunate circumstances

the input black boxes need only be called as many times as the degree of the input

polynomials in order to obtain the value of the GCD at a single point.

At this point, in x3.3.1 we provide a detailed description and in x3.3.2 a full

analysis of our algorithm.

3.3.1 The black box GCD algorithm

We now give a detailed description of our algorithm.

Algorithm Black Box GCD

Input: A black box for each polynomial f

i

(x

1

; : : : ; x

n

) 2 K[x

1

; : : : ; x

n

] for

i = 1; : : : ; r, r � 2, where K is a �eld.

Output: A program (see Figure 3.2) that makes calls to the black boxes of the

f

i

's and has with probability no less than 1�� the following property. The

program accepts n �eld elements p

1

; : : : ; p

n

: It returns g(p

1

; : : : ; p

n

) 2 K

where g = GCD

1�i�r

(f

i

): Notice that g(p

1

; : : : ; p

n

) is determined only

up to a multiple in K. For repeated invocations with di�erent arguments,

it returns the value scaled by the same multiple. Notice also that the

failure probability applies to the construction and not to the execution of

the program. That is, with probability at least 1� � the output program

is correct; a correct program will always produce the true values of the

GCD.

Step 1: Pick random �eld elements

a

2

; : : : ; a

n

; b

2

; : : : ; b

n

; c

3

; : : : ; c

r

from a su�ciently large �nite subset R � K. We will give the cardinality of this set

in relation to deg(f

i

) for 1 � i � r and � in the statement of theorem 1 below.
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p

1

; : : : ; p

n

2 K

���������!

Precomputed data including a

2

; : : : ; a

n

;

b

2

; : : : ; b

n

; c

3

; : : : ; c

r

, deg

X

(

�

f

1

), : : : ,

deg

X

(

�

f

r

), GCD(

�

f

0

(X; 0);

�

f

1

(X; 0)).

Program makes \oracle calls": 1 � i � r

q

1

; : : : ; q

n

�������!

f

i

(x

1

; : : : ; x

n

)

f

i

(q

1

; : : : ; q

n

)

��������!

g(p

1

; : : : ; p

n

) 2 K

����������!

Figure 3.2: Black box greatest common divisor

Let the overline operator

�

for any h 2 K[x

1

; : : : ; x

n

] be the projection

�

h(X; Y ) = h(X; Y (p

2

� a

2

p

1

� b

2

) + a

2

X + b

2

;

: : : ; Y (p

n

� a

n

p

1

� b

n

) + a

n

X + b

n

):

Note that

�

h(p

1

; 1) = h(p

1

; : : : ; p

n

): We will be using the bivariate polynomials

�

f

0

(X; Y ) =

�

f

2

(X; Y ) +

r

X

i=3

c

i

�

f

i

(X; Y );

�

f

1

(X; Y );

(X; Y ) = GCD(

�

f

0

(X; Y );

�

f

1

(X; Y ));

and the univariate GCDs

�

e

(X) = GCD(

�

f

0

(X; e);

�

f

1

(X; e)) for e 2 K:

Among the possible associates for the GCDs  and �

e

we always choose those whose

leading coe�cient is one and the same element of K, namely the leading coe�cient

of �

0

. We will show in the proof of Theorem 1 below that with high probability

 = �g.
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Step 2: By standard interpolation compute

�

f

0

(X; 0) = f

2

(X; a

2

X + b

2

; : : : ; a

n

X + b

n

)+

r

X

i=3

c

i

f

i

(X; a

2

X + b

2

; : : : ; a

n

X + b

n

)

and

�

f

1

(X; 0) = f

1

(X; a

2

X + b

2

; : : : ; a

n

X + b

n

);

then compute �

0

(X) = GCD(

�

f

0

(X; 0);

�

f

1

(X; 0)).

The interpolation algorithmsmentioned above and below need to know deg

X

(

�

f

i

)

for all 1 � i � r. Either the degree or an upper bound is supplied as input,

or the degree can be probabilistically guessed as follows (see Kaltofen and Trager

1990). Pick a random B 2 R and compute

�

f

i

(X;B) by determining a succession

of polynomials

�

f

(d)

i

(X;B) for d = 1; 2; 3; : : : until

�

f

(d)

i

(X;B) =

�

f

i

(X;B), where

�

f

(d)

i

(X;B) is the interpolate at X = 0; 1; : : : ; d of

�

f

i

(X;B). We test whether

�

f

(d)

i

(X;B) =

�

f

i

(X;B) by evaluating at a random A 2 R: if

�

f

(d)

i

(A;B) =

�

f

i

(A;B)

then we declare

�

f

(d)

i

(X;B) =

�

f

i

(X;B) and deg

X

(

�

f

i

) = d, otherwise we continue the

interpolation. The failure probability is bounded by deg(

�

f

i

)=card(R), which means

that the degree in X of

�

f

i

(X; Y ) would have to be very large in order for the guess-

ing procedure to be unreliable. Note that one may use B = 0 provided the leading

coe�cient of

�

f

i

(X; Y ) does not depend on Y . One can estimate the probability that

the random a

i

yield this condition, but we will not incorporate such an estimate in

our analysis. Ultimately, if the probability of determining the degree correctly is to

be guaranteed, an upper bound for all deg(f

i

) must be provided by the user of this

algorithm.

If not all polynomials f

i

for i � 3 are needed to determine �

0

, those polynomials

that are redundant meaning that they can be omitted without a�ecting the GCD,

preferably the ones of highest degree, can be ignored for future considerations. An

optimization at this point can signi�cantly reduce the complexity of the output

black box.

Step 3: This step constructs the programs for evaluation of g at p

1

; : : : ; p

n

as

described in the output speci�cations. First a

2

; : : : ; a

n

; b

2

; : : : ; b

n

; c

3

; : : : ; c

r

, d

i

=
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deg

X

(

�

f

i

) for 1 � i � r, �

0

, and � = deg(�

0

) are \hardwired" into that program.

Then the following Steps A, and B are appended to the program.

Step A: Let S � K containing f1g be of cardinality at least d

0

d

1

+ �: First select

i

1

= 1 and compute �

1

(X). If deg(�

1

(X)) = � then the black box can terminate

early, therefore return �

1

(p

1

) as the requested evaluation. If deg(�

1

(X)) > � compute

 by using a modular GCD approach. To this end select i

1

; i

2

; : : : ; i

�

pairwise

distinct elements in S such that deg(�

i

j

) = � for 0 � j � �. Any element e in S such

that deg(�

e

) > � must be discarded. Further we are guaranteed that only d

0

d

1

of

such elements exist. If for any element e in S we have deg(�

e

) < � then the black

box is invalid and the program returns an error indicating that a new black box is

needed with di�erent random elements. The polynomials �

e

are computed as GCDs

of

�

f

0

(X; e) and

�

f

1

(X; e) which can be computed by interpolation using d

i

as degree

bound for each

�

f

i

(X; e).

Step B: Let I = fi

0

= 0; i

1

; i

2

; : : : ; i

�

g, let P = f�

i

0

(X); �

i

1

(X); : : : ; �

i

�

(X)g

with each polynomial having its leading coe�cient ldcf(�

0

(X)), and let coeff(i,

P) for 0 � i � � be a function that returns an ordered coe�cient list corre-

sponding to the i

th

coe�cient of X

i

of all the polynomials in P . Furthermore, let

interpolate(I; C; V ) be a function that computes the polynomial in the variable

V which interpolates the points in I at the values given by C.

  X

�

;

For j  0; : : : ; � � 1 Do:

Let  =  +X

j

� interpolate(I; coeff(i ;P); Y );

Finally (p

1

; 1) can now be returned as the requested evaluation. Note that for

implementation purposes it is more e�cient to implicitly perform the construction

of (X; Y ) by substituting X = p

1

and Y = 1 after each interpolation step. The

�nal result is the desired �eld element (p

1

; 1). 2

The following theorem states the complexity and the failure estimate in relation to

the cardinality of R mentioned in Step 1 of the above algorithm.

Theorem 1 The Black Box Polynomial GCD algorithm can construct its output

program in polynomially many arithmetic steps as a function of r and deg(f

i

) for

1 � i � r. For each i, it requires deg(f

i

) + 1 oracle calls to the black box of the
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polynomial if the degree of each polynomial is known, or deg(f

i

) + 2 oracle calls to

the black box of the polynomial if only a degree bound is known. If the cardinality

of the set R in Step 1 is chosen

card(R) � deg(f

1

) � (1 + 2 max

2�i�r

fdeg(f

i

)g)

�

�

then the algorithm succeeds with probability no less than 1 � � and the resulting

program will always correctly evaluate the GCD at all points. That program in turn

can be executed in polynomially many arithmetic steps and at best with deg(f

i

)+1

many oracle calls to each black box of f

i

for all 1 � i � r, and at worst with

deg(f

i

) � (� + deg(f

1

) � max

2�i�r

fdeg(f

i

)g)

many oracle calls to each black box of f

i

, where � = deg(GCD

1�i�r

(f

i

)).

Note that our analysis supposes that the degrees of the input polynomials

(or upper bounds for them) are known. As explained in Step 2, it is possible to

probabilistically determine them.

3.3.2 Complexity analysis

In this section we provide a proof for the complexity and probabilistic analysis

of the Black Box GCD algorithm as given in Theorem 1. We will base our arguments

on three lemmas, which we state and prove next. First, we shall establish a well-

known condition under which GCD operations and homomorphic imaging commute.

In order to avoid ambiguities, we sometimes write GCD

D

(f

1

; f

2

) meaning that the

GCD is to be taken in the domain D. Note that our condition is weaker than those

established by Brown [Bro71], who assumes that no leading coe�cient of the inputs

an no leading coe�cient of a non-zero remainder in the Euclidean chain is mapped

to zero. Consequently, we will obtain better probabilistic estimates.

Lemma 1 Let E be a UFD, K a �eld, � : E ! K be a ring homomorphism,

f

1

= a

n

x

n

+ � � � + a

0

and f

2

= b

m

x

m

+ � � � + b

0

2 E[x], l = ldcf

x

(S

�

(f

1

; f

2

)) where

� = deg(GCD

E[x]

(f

1

; f

2

)) and where S

�

(f

1

; f

2

) is the subresultant formal degree � of
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f

1

and f

2

(see Brown and Traub [BT71]). If �(l) 6= 0 we have

u � �(GCD

E[x]

(f

1

; f

2

)) = GCD

K[x]

(�(f

1

); �(f

2

))

and

� = deg(GCD

K[x]

(�(f

1

); �(f

2

))) (1)

for u 2 K n f0g.

Proof From the condition �(l) 6= 0 we can infer that one or both of the ldcf

x

(�(f

1

))

and ldcf

x

(�(f

2

)) must be nonzero. Let c

�

= ldcf

x

(GCD

E[x]

(f

1

; f

2

)). Our �rst claim

is that

� = deg(�(GCD

E[x]

(f

1

; f

2

)));

where � was de�ned as deg(GCD

E[x]

(f

1

; f

2

)). We observe without loss of generality

that if �(a

n

) 6= 0, c

�

j a

n

implies that �(c

�

) 6= 0, which proves the claim. Let

�

0

= deg(GCD

K[x]

(�(f

1

); �(f

2

))):

Since � is a ring homomorphism

�(GCD

E[x]

(f

1

; f

2

)) j GCD

K[x]

(�(f

1

); �(f

2

)) (2)

and consequently,

� � �

0

: (3)

Let f

1

; f

2

; : : : ; f

k

be the polynomial remainder sequence (PRS) of f

1

and f

2

. Also,

let

^

f

1

;

^

f

2

; : : : ;

^

f

^

k

be the PRS of �(f

1

) and �(f

2

). Assume for purpose of contradiction

that �

0

> �. According to the Fundamental Theorem of Subresultants S

j

(

^

f

1

;

^

f

2

) = 0

for j = 0; : : : ; �

0

� 1. Since � is in the range 0; : : : ; �

0

� 1, S

�

(

^

f

1

;

^

f

2

)) = 0.

Case 1: Both ldcf

x

(�(f

1

)) and ldcf

x

(�(f

2

)) are nonzero :

The dimension of the matrix corresponding to �(S

�

(f

1

; f

2

)) is (n +m� 2�)� (n +

m � 2�). Since ldcf

x

(�(f

1

)) and ldcf

x

(�(f

2

)) are nonzero the degree of �(f

1

) and

�(f

2

) does not change, and therefore the dimension of the matrix corresponding to
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S

�

(�(f

1

); �(f

2

)) is also (n+m� 2�)� (n+m� 2�). From this it follows that when

ldcf

x

(�(f

1

)) and ldcf

x

(�(f

2

)) are nonzero �(S

�

(f

1

; f

2

)) = S

�

(�(f

1

); �(f

2

)) and hence

a contradiction.

Case 2: Without loss of generality, ldcf

x

(�(f

1

)) = 0 and ldcf

x

(�(f

2

)) 6= 0 :

Consider the following example.

�(S

�

(f

1

; f

2

)) = �(Det(

2

6

6

6

6

6

6

6

6

6

4

a

n

a

n�1

a

n�2

: : :

0 a

n

a

n�1

: : :

.

.

.

.

.

.

b

m

b

m�1

b

m�2

: : :

0 b

m

b

m�1

: : :

.

.

.

.

.

.

3

7

7

7

7

7

7

7

7

7

5

))

= Det(

2

6

6

6

6

6

6

6

6

6

4

0 �(a

n�1

) �(a

n�2

) : : :

0 0 �(a

n�1

) : : :

.

.

.

.

.

.

�(b

m

) �(b

m�1

) �(b

m�2

) : : :

0 �(b

m

) �(b

m�1

) : : :

.

.

.

.

.

.

3

7

7

7

7

7

7

7

7

7

5

)

and

S

�

(�(f

1

); �(f

2

)) =Det(

2

6

6

6

6

6

6

6

6

6

4

�(a

n�1

) �(a

n�2

) : : :

0 �(a

n�1

) �(a

n�2

) : : :

.

.

.

.

.

.

�(b

m

) �(b

m�1

) �(b

m�2

) : : :

0 �(b

m

) �(b

m�1

) : : :

.

.

.

.

.

.

3

7

7

7

7

7

7

7

7

7

5

):

The dimension of �(S

�

(f

1

; f

2

)) is again (n+m� 2�)� (n+m� 2�). However, since

ldcf

x

(�(f

1

)) = 0, there is a degree drop (in the above example by 1) in �(f

1

) and

hence the dimension of S

�

(�(f

1

); �(f

2

)) is now (n+m� 2�� 1)� (n+m� 2�� 1).

By minor expansion of the �rst column of �(S

�

(f

1

; f

2

)), we see that �(S

�

(f

1

; f

2

)) =

ldcf

x

(�(f

2

)) � S

�

(�(f

1

); �(f

2

)). In the case more coe�cients of �(f

1

) map to zero we

see that �(S

�

(f

1

; f

2

)) = � ldcf

x

(�(f

2

))

�

� S

�

(�(f

1

); �(f

2

)), where � is the number of
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coe�cients of �(f

1

) mapping to zero before the �rst nonzero coe�cient is reached.

We can be guaranteed that both �(f

1

) and �(f

2

) can not vanish identically since

�(l) 6= 0. This is again a contradiction to the assumption.

From the contradiction between what was arrived at from the Fundamental Theorem

of Subresultants and Case 1 and 2, we know that �

0

� �, hence,

� � �

0

: (4)

From (3) and (4)

� = �

0

: (5)

Finally (1) follows from (2) and (5). 2

The next lemma concerns the reduction of the GCD problem of many polynomials to

computing the GCD of a pair of polynomials. Here we follow a strategy �rst used by

Spear and extended to multivariate polynomials by Kaltofen (1988, Theorem 6.2).

Note that the usage of only r � 2 random elements can also be found in von zur

Gathen et al.(1994).

Lemma 2 Let f

i

(x

1

; : : : ; x

n

) 2 K[x

1

; : : : ; x

n

] be nonzero polynomials for i =

1; : : : ; r, r � 2, K a �eld, d = deg(f

1

) for 1 � i � r, R � K. Then for randomly

chosen c

i

2 R, 3 � i � r we have,

Pr(GCD

1�i�r

(f

i

) = GCD(f

1

; f

2

+

r

X

i=3

c

i

f

i

)) � 1� d

�

card(R)

Proof We �rst show this lemma for n = 1. Let

^

f

1

= f

1

;

^

f

2

= f

2

+

r

X

i=3



i

f

i

2 E[x]; E = K[

3

: : : 

r

];



3

: : : 

r

be indeterminants, and let g = GCD

1�i�r

(f

i

): Clearly, g j

^

f

1

; g j

^

f

2

: The

�rst claim is that g = ĝ where ĝ = GCD(

^

f

1

;

^

f

2

): We observe that ĝ 2 K[x], since

ĝ divides f

1

. Now write

^

f

2

= ĝ

^

f

�

2

, where

^

f

�

2

2 E[x]. We know that ĝ j f

1

, if we

evaluate

^

f

2

= ĝ

^

f

�

2

at 

i

= 0 for 3 � i � r, then we see that ĝ j f

2

. Evaluating this

equation at 

i

= 1 and 

j

= 0, i 6= j for 3 � i � r we get ĝ j f

2

+ f

i

for 3 � i � r
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since we know that ĝ j f

2

, hence ĝ j f

i

for 3 � i � r. Therefore ĝ j g. Consequently

since g j

^

f

1

and g j

^

f

2

we know that g j ĝ, hence we can conclude that g = ĝ which

proves the �rst claim. Now let �

c

3

;::: ;c

r

: E ! K be the ring homomorphism 

i

= c

i

for 3 � i � r, l 2 E[x] be the ldcf

x

(S

�

(

^

f

1

;

^

f

2

)) where � = deg(GCD

E[x]

(

^

f

1

;

^

f

2

)): By

lemma 1 if for randomly chosen c

i

2 R for 3 � i � r we have �

c

3

;::: ;c

r

(l) 6= 0; then

GCD

K[x]

(�

c

3

;::: ;c

r

(

^

f

1

); �

c

3

;::: ;c

r

(

^

f

2

)) = �

c

3

;::: ;c

r

(GCD

E[x]

(

^

f

1

;

^

f

2

));

which implies the asserted event. Since the deg(l) � d, the Schwartz (1980)/

Zippel (1979) Lemma then establishes the stated probability. The multivariate case

can now be reduced to the univariate case as in Theorem 6.2 in Kaltofen (1988).

2

By use of Lemma 1 we can now justify the evaluations used in Step 1 of the Black

Box GCD algorithm. Because of Lemma 2 we can restrict ourselves to the case of

two polynomials.

Lemma 3 Let

^

f

1

and

^

f

2

be nonzero polynomials 2 K[x

1

; : : : ; x

n

], d

1

= deg(

^

f

1

);

d

2

= deg(

^

f

2

); R � K, a

2

; : : : ; a

n

; b

2

; : : : ; b

n

be randomly chosen elements 2 R,

� : K[x

1

; : : : ; x

n

] ! K[X] be the ring homomorphism generated by x

1

= X; x

i

=

a

i

X + b

i

for 2 � i � n; g

1

= GCD(

^

f

1

;

^

f

2

) and let g

2

= GCD(�(

^

f

1

); �(

^

f

2

)): Then we

have

Pr (�(g

1

) = g

2

and deg(g

1

) = deg(g

2

)) � 1� 2d

1

d

2

�

card(R)

Proof Let  : K[�

2

; : : : ; �

n

][x

1

; : : : ; x

n

]! K[�

2

; : : : ; �

n

; �

2

; : : : ; �

n

][X] be the ring

isomorphism generated by substituting x

1

= X; x

i

= �

i

X + �

i

for 2 � i � n; let

�

0

: K[�

2

; : : : ; �

n

; �

2

; : : : ; �

n

]! K be the ring homomorphism generated by �

i

= a

i

;

and �

i

= b

i

for 2 � i � n; and let ~g

1

= GCD( (

^

f

1

)  (

^

f

2

)):We have � = �

0

 as seen

in the diagram in Figure 3.3.

Due to the nature of the mapping in the ring isomorphism  we can see that

deg(g

1

) = deg

X

(~g

1

) since the �

i

do not allow the vanishing of ldcf

X

(~g

1

): Let l =

ldcf

X

(S

�

( (

^

f

1

);  (

^

f

2

))); where � = deg(g

1

) and S

�

is the �

th

subresultant with re-

spect to X: We know that l 2 K[�

2

; : : : ; �

n

; �

2

; : : : ; �

n

] and from the Schwartz/
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K[�

2

; : : : ; �

n

][x

1

; : : : ; x

n

] ! K[�

2

; : : : ; �

n

; �

2

; : : : ; �

n

][X]

�& # �

0

K[X]

Figure 3.3: Diagram of  ; � and �

0

Zippel Lemma

Pr (�

0

(l) 6= 0) � 1� deg(l)

�

card(R):

The degree of the coe�cients with respect to X in  (

^

f

1

) and  (

^

f

2

) can be bounded

from above by d

1

and d

2

respectively. There are d

2

� � rows of entries in the matrix

corresponding to S

�

( (

^

f

1

);  (

^

f

2

)) of degree at most d

1

and there are d

1

� � rows of

entries of degree at most d

2

: In the worst case of � = 0 we can bound the degree of

all of the coe�cients in above mentioned subresultant by 2d

1

d

2

and hence l: Using

Lemma 1 with �

0

;  (

^

f

1

);  (

^

f

2

), E = K[�

2

; : : : ; �

n

; �

2

; : : : ; �

n

] and assuming that

�

0

(l) 6= 0 we can apply Lemma 1, which yields �

0

(~g

1

) = g

2

and deg(~g

1

) = deg

X

(g

2

).

2

Finally, we can prove Theorem 1.

Proof of Theorem 1 The statements on the run time and required black box oracle

calls of the algorithm and the returned program are easily veri�ed. First we need to

interpolate the univariate polynomials de�ned in Step 1, namely,

�

f

0

(X; 0) of degree

at most max

2�i�r

fdeg(f

i

)g and

�

f

1

(X; 0) of degree deg(f

1

). There are deg(f

i

) + 1

many oracle calls to each individual black box of f

i

if the degree is known. If the

polynomial is probabilistically guessed as described in Step 2, an extra oracle call

for the check at X = A is required. In either case the interpolation and single GCD

needed to compute 

0

(X) = GCD(

�

f

0

(X; 0);

�

f

1

(X; 0)) described in the algorithm can

be accomplished in polynomial time.

The dominating work of the output program is Step A, the computation

of GCDs of interpolated univariate polynomials. Let d

0

= deg(

�

f

0

(X; 0)), d

1

=

deg(

�

f

1

(X; 0)), and let S � K containing f1g be of cardinality at least d

0

d

1

+ �.

As described, if deg(�

1

) = deg(�

0

) the black box program for the GCD can
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terminate early only using r+

P

r

i=1

deg(f

i

) many oracle calls. Both the interpolation

and computation of �

1

(X) can be accomplished in polynomial time. The degree of



0

(X) is, with high probability (see Lemma 3), equal to �. Then, if deg(�

1

) = deg(�

0

)

the polynomial �

1

(X) is essentially the GCD described in Lemma 2 and is equal to

the homomorphic image of GCD

1�i�r

(f

i

).

At worst d

0

d

1

+ � elements from S are needed to compute �g. The GCD algo-

rithm needs � \lucky" values for Y to interpolate �g, since the coe�cients for Y = 0

are already available, and because there can be a maximum of d

0

d

1

\unlucky" values,

as we will argue below. There are deg(f

i

)+1 many oracle calls for each black box of

f

i

needed to interpolate

�

f

0

(X; e) and

�

f

1

(X; e), that for every e in S. Hence, since only

d

0

d

1

+ � values from S must be used at the worst, the number of required black box

oracle calls follows. Again both the interpolations of

�

f

0

(X; e) and

�

f

1

(X; e) and GCD

computations can be accomplished in polynomial time. The number of \unlucky"

values of Y = e is derived as follows. Let l(Y ) = ldcf

X

(S

�

(

�

f

0

(X; Y );

�

f

1

(X; Y ))).

The degree of l can be bounded by d

0

d

1

and hence only d

0

d

1

values can zero the

leading coe�cient of the subresultant, thus making the computed GCD invalid (cf.

Lemma 1).

All that remains is to analyze the failure probabilities. From Lemma 2 we

obtain that with probability at least 1� deg(f

1

)=card(R) we have

g = GCD(f

1

; : : : ; f

r

) = GCD(f

1

; f

2

+ c

3

f

3

+ � � �+ c

r

f

r

);

when the elements c

3

; : : : ; c

r

are chosen at random from the set R. Assuming

that this is the case, Lemma 3 then yields that with probability at least 1 �

2deg(f

0

)deg(f

1

)=card(R) we have GCD(

�

f

0

(X; 0);

�

f

1

(X; 0)) = �g(X; 0), where the

barred polynomials are de�ned in Step 1. Furthermore, the leading coe�cient of

�g(X; Y ) is independent of Y , since by Lemma 3 we also have deg(g) = deg(�g(X; 0)).

Since by virtue of homomorphic imaging we have that �

0

is a polynomial multiple of

(X; 0), these conditions imply that (X; Y ) = GCD(

�

f

0

(X; Y );

�

f

1

(X; Y )) = �g(X; Y )

and that the polynomial  as determined in Step B is the image of one and the same

associate of g, namely the one whose leading coe�cient in X has been preselected.

Both events occur with probability no less than the product of the stated bounds,
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p

1

; : : : ; p

n

2 K

��������������!

'(x

1

; : : : ; x

n

) 2 K(x

1

; : : : ; x

n

)

K a �eld of characteristic 0

'(p

1

; : : : ; p

n

) 2 K [ f1g

����������������!

Figure 3.4: Black box rational function

which yields the given estimate. 2

3.4 Numerator and Denominator Separation

A black box rational function '(x

1

; : : : ; x

n

) 2 K takes as input values for each

of the variables p

1

; : : : ; p

n

and produces the value of the rational function at that

point (see Figure x3.4). Furthermore, the rational function black box must be able

to handle situations where the input point is a zero of the denominator. In such

cases, it should return a \special" value or trigger an alarm.

The black box numerator and denominator algorithm takes as input a black

box that evaluates the rational function

'(x

1

; : : : ; x

n

) = f(x

1

; : : : ; x

n

)=g(x

1

; : : : ; x

n

) 2 K(x

1

; : : : ; x

n

)

where f; g 2 K[x

1

; : : : ; x

n

]; GCD(f; g) = 1;

a failure probability � � 1, and a degree bound �e � deg(g). Note that without a

degree bound for the denominator, there is a chance that the algorithm enters an

in�nite loop.

The output (see Figure x3.5) is an evaluation program which accepts �eld

elements p

1

; : : : ; p

n

and with high probability (1� �) returns the values of both the

numerator f(p

1

; : : : ; p

n

) and denominator g(p

1

; : : : ; p

n

) at the input point. It should

be noted that as with the factor and greatest common divisor black box algorithms,

the numerator and denominator construction algorithm chooses an associate for f

and g. Upon repeated probes, the algorithm returns a value of both the numerator

and denominator scaled by the previously chosen multiple.
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p

1

; : : : ; p

n

2 K

���������!

Precomputed data including deg(f), deg(g).

Program makes \oracle calls":

a

1

; : : : ; a

n

�������!

�(x

1

; : : : ; x

n

)

�(a

1

; : : : ; a

n

)

��������!

.

.

.

c

1

; : : : ; c

n

�������!

�(x

1

; : : : ; x

n

)

�(c

1

; : : : ; c

n

)

��������!

: : :

�(x

1

; : : : ; x

n

) =

f(x

1

;::: ;x

n

)

g(x

1

;::: ;x

n

)

; f; g 2 K[x

1

; : : : ; x

n

];GCD(f; g) = 1:

f(p

1

; : : : ; p

n

)

����������!

g(p

1

; : : : ; p

n

)

����������!

Figure 3.5: Black box numerator/denominator

Note that with probability at least 1��, the output program is correct and that

a correct program will always produce a valid associate for both the numerator and

denominator. The probability of success depends on the selection of random �eld

elements chosen during the construction phase of the algorithm. If the cardinality

of the set from which the random elements are chosen R is at least

max

�

2 (2deg(f) + 1)deg(g); 3m

2

�m

�.

�; m = max(deg(f); deg(g));

then the resulting program correctly evaluates the numerator and denominator with

probability no less than 1� �.

In what follows, we provide a description of our improvement to the black box

numerator and denominator separation algorithm originally described by Kaltofen

and Trager. It is necessary that the reader refer to [KT90] for a detailed exposi-

tion and full analysis of this algorithm since we describe our modi�cation utilizing

notations and concepts de�ned there.

Like the previous black box algorithms, the numerator and denominator algo-

rithm reduces the problem of computing with polynomials in n variables to that of
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two. A special overline operator

�

given by

�

h(X; Y ) = h(X; a

2

X + b

2

+ Y (p

2

� a

2

p

1

� b

1

); : : : ; a

n

X + b

n

+ Y (p

n

� a

n

p

1

� b

n

))

where a

i

; b

i

; p

i

2 K

maps both the numerator and denominator to the bi-variate polynomials

�

f(X; Y )

and �g(X; Y ) respectively. During the evaluation process, the images

�

f(X; y

i

) and

�g(X; y

i

) for 1 � i � j = max(deg(f); deg(g)) + 1 are computed. From these can-

didates, the full bi-variate polynomials

�

f and �g are interpolated. By virtue of the

overline operator, the value of f and g can be retrieved at a point p

1

; : : : ; p

n

by

evaluating

�

f(p

1

; 1) and �g(p

1

; 1) respectively. Our improvement follows from an ob-

servation that while computing image candidates for y

i

, we have for y

i

= 1 the poly-

nomials

�

f(X; 1) and �g(X; 1). At this stage if the degree of both

�

f(X; 1) and �g(X; 1)

are the same as the previously computed bounds for the numerator and denomina-

tor respectively, we can terminate early and simply return the values of

�

f(X; 1) and

�g(X; 1) atX = p

1

. In many cases, this improvement markedly increases performance

of the numerator and denominator algorithm since we can avoid max(deg(f); deg(g))

many Euclidean algorithm steps. A similar observation was employed to improve

the performance of our GCD algorithm detailed in x3.3. It turns out that in the

examples of Table 4.4 in Section 4 this shortcut is always taken.



CHAPTER 4

BENCHMARK PROBLEMS

We now report on the results of several benchmark problems which exercise each

of the components within FoxBox. For each benchmark problem, we provide the

total CPU time and total \work". Our work metric is measured in SPECint92-

hours[GA95]. SPEC (Standard Performance Evaluation Corporation) is a non-pro�t

corporation formed to, \establish, maintain and endorse a standardized set of rele-

vant benchmarks that can be applied to the newest generation of high-performance

computers". The results of each SPEC benchmark are expressed as the ratio of the

wall clock time to execute one single copy of the benchmark, compared to a �xed

SPEC reference time. The SPECint92 metric is a geometric mean of SPEC ratios

of 8 benchmarks which were compiled with aggressive optimizations.

Each of our benchmarks are problems which can not be solved by traditional

symbolic methods due to exponential intermediate expression swell. Hence, the

benchmark problems reported herein represent the �rst symbolic solutions of such

problems. In x4.1, we provide the results of computing the factors of a symmetric

Toeplitz determinant over a cluster of workstations. The timings of computing the

greatest common divisor of the determinant of two Vandermonde matrices which

share two variables in common are detailed in x4.2. Finally, in x4.3, we nest several

black box objects to attain a single factor of the numerator of a Cauchy determinant.

4.1 Factorization Benchmark

For n > 0 the Toeplitz matrix given by T

n

= (t

i�j

) = (a

i�j+n�1

); i; j =

1; : : : ; n is a matrix of the form:

82
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T

n

=

2

6

6

6

6

6

6

6

6

4

a

n�1

a

n�2

: : : a

1

a

0

a

n

a

n�1

: : : a

2

a

1

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

a

2n�3

a

2n�2

: : : a

n�1

a

n�2

a

2n�2

a

2n�3

: : : a

n

a

n�1

3

7

7

7

7

7

7

7

7

5

:

The elements along the leading diagonal or along any line parallel to the leading

diagonal are equal and T

n

is completely determined by its' �rst row and column. A

symmetric Toeplitz matrix S

n

can be de�ned as follows:

S

n

=

2

6

6

6

6

6

6

6

6

4

a

n�1

a

n�2

: : : a

1

a

0

a

n�2

a

n�1

: : : a

2

a

1

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

a

1

a

2

: : : a

n�1

a

n�2

a

0

a

1

: : : a

n�2

a

n�1

3

7

7

7

7

7

7

7

7

5

:

The determinant of a symmetric Toeplitz matrix, S

n

, has two factors over the

rational numbers Q. We selected the problem of computing a factor of a symmetric

Toeplitz matrix to benchmark FoxBox's symmetric Toeplitz common object, the

factors black box object, and the sparse conversion algorithm. The solution to

such a problem within the calculus of black boxes is to �rst construct a symmetric

Toeplitz common object and factors black box. This factors black box evaluates

both irreducible factors of the determinant of the aforementioned symmetric Toeplitz

common object.

Table 4.1 provides total CPU times and work measures for the construction of

the factors black box of 10 di�erent symmetric Toeplitz matrices. Our application

employs the SACLIB rational polynomial arithmetic wrapper/adaptor as the base

arithmetic and executes utilizing 60 megabytes of memory.

The second phase in the solution of the factorization benchmark problem is

to compute the homomorphic image of a factor black box object. The result of

such a map is a new black box object that evaluates the value of the pre-image

modulo a prime. Finally, we perform a parallel modular sparse conversion to retrieve
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N CPU Time Work

10 0

h

1

0

4

#

11 0

h

2

0

8

#

12 0

h

5

0

21

#

13 0

h

9

0

37

#

14 0

h

16

0

67

#

15 0

h

26

0

109

#

16 0

h

43

0

181

#

17 1

h

5

0

273

#

18 1

h

42

0

428

#

19 2

h

30

0

630

#

20 3

h

42

0

932

#

Table 4.1: Black box factorization benchmark results - construction

Total CPU times (hours

h

minutes

0

) required to construct a factors black box (over

Q) which can evaluate both irreducible factors of the determinant of a symmet-

ric Toeplitz matrix. The processor is a Sun Ultra1/170 (128MB) rated at 252

SPECint92. Total work is measured in units of (SPECint92-hours

#

).

the factor's distributed representation. This portion of the benchmark application

utilized the SACLIB modular polynomial arithmetic wrapper/adaptor and an MPI

compliant implementation of the parallel black box interface.

Table 4.2 provides the complete CPU times and work measures for the fac-

torization benchmark problem. This benchmark application performed the actual

sparse conversion algorithm on a Sun Ultra1/170 for the N = 10 case and on a Sun

20/50 for the remaining runs, each \driver" program executed with a resident set of

60 megabytes of memory. Each of the factor black box evaluations required by the

sparse conversion algorithm was dispatched as a \parallel task." All of the parallel

tasks performed modular evaluations utilizing only 10 megabytes of memory.

It appears from our empirical data that for even dimension Toeplitz matrices,

both factors of the determinant are of degree N=2 and have an identical number

of terms. For odd dimension Toeplitz matrix determinants, one factor is of degree

bN=2c and the other has degree dN=2e. It can be observed that for odd N the factor

with degree bN=2c has fewer terms than a factor of an N � 1 dimension Toeplitz
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N Task Degree # Terms

10 (6) Sun 20/50 2

h

54

0

5 931

(2) Sun 5/70 1

h

07

0

(6) Sun 5/110 2

h

27

0

(1) Ultra1/170 4

h

52

0

Total Work 1706

#

11 (9) Sun 20/50 28

h

25

0

5 847

(1) Sun 5/70 1

h

04

0

(2) Sun 5/110 1

h

33

0

(1) Sun 10/51 0

h

44

0

(1) Sun 10/20 1

h

58

0

(1) Ultra1/170 0

h

25

0

Total Work 2599

#

12 (9) Sun 20/50 130

h

15

0

6 5577

(1) Sun 5/70 5

h

19

0

(2) Sun 5/110 7

h

34

0

(1) Sun 10/51 3

h

45

0

(1) Sun 10/20 9

h

25

0

(1) Ultra1/170 2

h

10

0

Total Work 12080

#

13 (9) Sun 20/50 333

h

19

0

6 4982

(1) Sun 5/70 11

h

03

0

(2) Sun 5/110 15

h

53

0

(1) Sun 10/51 6

h

35

0

(1) Sun 10/20 17

h

34

0

(1) Ultra1/170 4

h

33

0

Total Work 29785

#

Table 4.2: Black box factorization benchmark results - sparse conversion

CPU times (hr

h

min

0

) to retrieve the distributed representation of the factors black

box of a symmetric Toeplitz determinant black box. Construction is over Q eval-

uation is in GF(10

8

+ 7). 15 nodes, each rated by SPECint92: Sun 20/50(64MB)

76.9, Sun 5/70(64MB) 57.0, Sun 5/110(40MB) 78.6, Sun 10/51(128MB) 65.2, Sun

10/20(64MB) 39.8, Ultra1/170(128MB) 252. Parallel work is in SPECint92-hrs

#

.

matrix determinant. Indeed, providing an exact formulation for the number of terms

and degree of each factor of an N dimensional Toeplitz matrix is a subject of future

work (see x5.2).

Our modi�cations to Zippel's sparse conversion algorithm proved quite use-

ful for our benchmark example. Figure 4.1 illustrates the number of evaluations

required by two di�erent sparse conversion algorithms for interpolating a factor of

our 10 by 10 benchmark problem. The SInterp plot details the number of evalu-

ations employed for each interpolation step of Kaltofen's version of Zippel's sparse
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Figure 4.1: Evaluations - sparse conversion vs. pruned sparse conversion
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conversion algorithm [Kal89]. The Pruned-SInterp plot details the same informa-

tion for our pruning sparse conversion algorithm. By pruning terms which have

been marked as \completed", the pruning sparse conversion algorithm was able to

dramatically reduce the overall size of the resulting linear systems and as a direct

consequence reduced the number of black box evaluations (see x3.1.1). Figure 4.2

depicts the number of black box calls required before (Bushy-Pruned-SInterp) and

after (Pruned-SInterp) the pruning phase for each interpolation step of our prun-

ing sparse conversion. Indeed, it was a combination of the concepts of black box

homomorphic maps, term pruning and parallel black boxes which provided the tools

necessary for the successful completion of our factorization benchmark problems.

4.2 Greatest Common Divisor Benchmark

For n > 0, Vandermonde's matrix V (P ) formed from elements of a list P =

fx

1

; : : : ; x

n

g is a square matrix which has as its' (i; j)-th entry P [i]

(j�1)

. In its'

expanded form, Vandermonde's matrix can be de�ned as follows:

V (x

1

; : : : ; x

n

) =

2

6

6

6

6

6

4

1 x

1

: : : x

n�1

1

1 x

2

: : : x

n�1

2

.

.

.

.

.

.

.

.

.

1 x

n

: : : x

n�1

n

3

7

7

7

7

7

5

:

The determinant of Vandermonde's matrix can be expressed by the following

equation:

det(V (x

1

; : : : ; x

n

)) =

Y

1�i<j�n

(x

j

� x

i

):

Let V

1

= det(V (x

1

; : : : ; x

n

)) and V

2

= det(V (x

1

; : : : ; x

k

; y

k+1

; : : : ; y

n

)), then

the greatest common divisor of V

1

and V

2

can be expressed as the following product:

G(x

1

; : : : ; x

k

) = GCD(V

1

; V

2

) =

Y

1�i<j�k

(x

j

� x

i

):

We selected the problem of computing the greatest common divisor of V

1

and

V

2

for k = 2 and n = 10; 15; 20; 25; 30. For all values of n, the �nal result of our
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benchmark problem is the polynomial G(x

1

; x

2

) = x1 � x2. These computations

provide benchmark timings for FoxBox's Vandermonde common object, greatest

common divisor black box object, and sparse conversion algorithm.

N Task Q GF(P)

10 total time 0

h

1

0

0

h

0

0

work 4

#

0

#

15 total time 0

h

14

0

0

h

0

0

work 59

#

0

#

20 total time 1

h

43

0

0

h

0

0

work 433

#

0

#

25 total time 8

h

42

0

0

h

2

0

work 2192

#

8

#

30 total time 35

h

36

0

0

h

5

0

work 8971

#

21

#

Table 4.3: Black box greatest common divisor benchmark results

Total CPU time (hours

h

minutes

0

) required to retrieve the distributed representation

of the GCD of two Vandermonde matrices with two variables in common, each

symbolic object is in black box representation. Timings are provided for arithmetic

over Q and in GF(10

16

+ 61). The processor is a Sun Ultra1/170(256MB) rated at

252 SPECint92. Total work is measured in units of (SPECint92-hours

#

).

The solution of this problem within the black box framework is �rst to con-

struct two Vandermonde black box objects, one representing V

1

and the other V

2

.

Second, we employ the greatest common divisor black box algorithm to create a

black box representing the greatest common divisor of the aforementioned Vander-

monde common objects. Finally, we perform a sparse conversion to retrieve the

distributed representation of the previously constructed greatest common divisor

black box.

Table 4.3 provides the complete CPU times and work measures for the greatest

common divisor benchmark problems. Timings for our arithmetic over Q and in

GF(10

16

+61) employed SACLIB's rational polynomial arithmetic wrapper/adaptor

and NTL's fast modular polynomial arithmetic wrapper/adaptor respectively. These

benchmark applications performed their computations on a Sun Ultra1/170 with a

resident set of 60 megabytes of memory.
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4.3 Numerator and Denominator Benchmark

For n > 0, Cauchy's matrix can be de�ned in its expanded form as follows:

C(n; n) =

2

6

6

6

6

6

4

1

x

1

+y

1

1

x

1

+y

2

: : :

1

x

1

+y

n

1

x

2

+y

1

1

x

2

+y

2

: : :

1

x

2

+y

n

.

.

.

.

.

.

.

.

.

1

x

n

+y

1

1

x

n

+y

2

: : :

1

x

n

+y

n

3

7

7

7

7

7

5

:

The determinant of Cauchy's matrix can be expressed by the following equa-

tion:

det(C(n; n)) =

Y

1�i<j�n

(x

j

� x

i

)(y

j

� y

i

)

.

Y

1�i;j�n

(x

i

+ y

j

):

We selected as a benchmark the problem of computing a factor of the reduced

numerator and denominator of det(C(n; n)) for n = 5 : : : 12. This particular problem

involves the nesting of the black boxes. First, a black box numerator and denomi-

nator is constructed from a Cauchy common object. Secondly, a factor black box is

constructed from the numerator of the previously computed numerator/denominator

black box. Finally, the factor is retrieved in its distributed format by employing our

sparse conversion algorithm. The sparse conversion algorithm probes the factor

black box for the purpose of interpolation. For each value provided, the factor black

box probes the numerator/denominator black box to compute its value; in turn, the

numerator/denominator black box evaluates the Cauchy common object to produce

the value for the factor black box.

Table 4.4 details the total CPU times and work measures for our benchmark

problem for n = 5 : : : 12. Each problem was executed on a Sun Ultra1/170, with all

arithmetic in GF(10

16

+61). The benchmark application utilized NTL's fast modular

polynomial arithmetic wrapper/adaptor. Our sparse conversion algorithm takes a

variable by variable approach for interpolation and is sensitive to variable order.

Since the black box factors object does not distinguish between factors, our results

vary in the number of required evaluations. The number of evaluations required

by the sparse conversion algorithm depends on which two variables are present in a
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N Total Time Work # Calls

5 1

h

29

0

374 18

6 3

h

47

0

953 22

7 3

h

44

0

940 10

8 24

h

42

0

6224 28

9 75

h

57

0

19139 38

10 52

h

30

0

13230 12

11 282

h

56

0

71299 30

12 684

h

25

0

172473 38

Table 4.4: Black box numerator/denominator benchmark results

Total CPU times (hours

h

minutes

0

) required to retrieve the distributed representation

of a factor of the numerator of a Cauchy matrix determinant, each symbolic object

is in black box representation. All arithmetic is in GF(10

16

+ 61). The processor

is a Sun Ultra1/170(256MB) rated at 252 SPECint92. Total work is measured in

units of (SPECint92-hours

#

).

particular factor. Clearly, another interpolation technique that does not depend on

variable order could reduce the number of required evaluations for this particular

example. It is expected that future enhancements to FoxBox will provide a suite

of interpolation routines from which a user can select an appropriate algorithm.

For this particular example where each of the factors are of small degree,

the factor box evaluator can be dramatically improved by probing the numerator

and denominator black box at truncated power series as values for the variables.

An extended domain version of the numerator and denominator algorithm would

provide this functionality and thus is a focus of future work as detailed in x5.2.



CHAPTER 5

RESEARCH CONTRIBUTIONS AND FUTURE

DIRECTIONS

5.1 Summary of Research Contributions

We now summarize the contributions of our research:

1. We provide improvements to several algorithms found in the literature for ma-

nipulating black boxes:

� Sparse Interpolation

We provide a full description of our Zippel based pruning sparse conversion

which employs a novel term pruning technique with the overall goal of reducing

the number of black box evaluations. Such evaluations being the most costly

portion of each black box algorithm.

� Factorization

We present two mechanisms for reducing the costly bi-variate interpolation

associated with factor box evaluation. First, we apply our term pruning tech-

nique to reduce by half the complexity and number of black box evaluation

points required by the bi-variate interpolation. Secondly, we describe the

notion of extended domain black boxes which can dramatically improve per-

formance of the bi-variate interpolation step for small degree factors.

� Greatest Common Divisor

We furnish a full algorithmic description and analysis of a new algorithm for

computing the greatest common divisor of polynomials in black box format.

� Reduced Numerator and Denominator Separation

We describe a technique �rst observed in our GCD algorithm which, in most

cases, markedly increases performance of the black box reduced numerator

and denominator algorithm.

2. Through the implementation of FoxBox, we demonstrate a new methodology

91



92

for designing \component" symbolic software as well as provide the �rst tool for

manipulating symbolic objects given by black boxes: Several features include:

{ Manipulation of symbolic objects as black boxes

{ An extensible component library for black box objects

{ E�ciency through compilation

{ Versatility of domain types and arithmetic

{ Parallelism via an MPI compliant layer

{ Conversion of black boxes to distributed representations

{ Native Maple implementation derived from our prototypical e�orts

{ Maple interface to the C

++

FoxBox server

3. Our benchmark computations represent the �rst ever symbolic solutions of such

problems and hence prove the viability of the black box representation in symbolic

computing. With FoxBox we provide solutions for the following challenge prob-

lems:

� Compute a factor of a 13 by 13 symmetric Toeplitz determinant.

� Provide the GCD of two 30 by 30 Vandermonde matrices with two variables

in common.

� Attain a single factor of the numerator of a Cauchy determinant of dimension

12 by 12.

5.2 Future Challenges

5.2.1 Open Problems

The most costly portion of the black box factorization algorithm is the bi-

variate interpolation step required for evaluation. While we provide two methods for

alleviating the cost associated with this step, the bi-variate interpolation still repre-

sents a bottleneck area. We have begun looking into the possibility of Hensel [Mus75]

lifting with respect to a non-standard basis. This would allow for the combination
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of the interpolation and lifting stages to occur in an optimal fashion. Also, alternate

factorization algorithms will be considered, for instance [RZ95].

Our current implementation of Kaltofen and Lakshman's algorithm for solv-

ing a transposed Vandermonde system does not take advantage of several arithmetic

optimizations necessary to achieve a quasi-linear running time. A potential bottle-

neck for our implementation of the pruning sparse conversion algorithm is the fact

that at each interpolation step we solve one large linear system instead of several

smaller systems as described in Zippel [Zip90]. Perhaps, a heuristic approach which

gauges the cost of black box evaluation and the cost of linear system solving could be

employed to dynamically \switch" interpolation techniques in order to further opti-

mize performance. Note that this heuristic approach is not advantageous when the

transposed Vandermonde system solver executes in quasi-linear time (see x3.1.1).

Clearly the black box representation of symbolic objects provides for comput-

ing with such objects which can not be manipulated by other means by alleviating

intermediate expression swell. Currently we are conducting research into the pos-

sibility of developing black box algorithms for computing derivatives and Gr�obner

bases [BW93].

Finally, drawing from the empirical data generated from our factorization

benchmark problem, we are currently attempting to provide an exact formulation

for the number of terms and degree of each factor of an N dimensional Toeplitz

matrix determinant.

5.2.2 System Enhancements

As for improvements and modi�cations to our FoxBox system, several out-

standing points remain. Most notably, the notion of extended domain black boxes.

The solution of our numerator and denominator benchmark problem can be greatly

improved with a extended domain version of this algorithm.

By virtue of the design of the FoxBox server, we can easily provide interfaces

to several di�erent \front-ends". In hopes of furnishing the functionality o�ered by

FoxBox to a more wide spread audience, the possibility of suppling \bridge" code

to di�erent computer algebra systems is currently under investigation. Furthermore,
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the \calculator-style" interface can be relaxed by providing for the transparent ex-

change of black box objects between the FoxBox server and a general purpose

computer algebra system. Our �rst attempt will be with Maple, where we already

have a complete native implementation of the calculus of black boxes.

In the realm of black box parallelization, there remains room for improvement.

We provide a simple API for distributing black boxes in a coarse grain fashion. How-

ever, drawing from our experiences with DSC, the parallel black box interface can be

enhanced to provide additional functionality such as a choice of distribution strate-

gies. Furthermore, the black box GCD and numerator/denominator algorithms can

greatly bene�t from the parallelization of their respective evaluation steps. Cer-

tainly, administering the many possible combinations of parallel tasks is an area of

research.

Both the factorization and numerator/denominator algorithm computes and

returns several values. Both algorithms can be modi�ed to produce, say, one factor

value or just the value of the numerator. In the case where just a single value

is required, the modi�ed factorization and numerator/denominator algorithms can

reduce the overall cost of evaluation.

Currently, we provide one improved method of converting black boxes into

sparse format. While this method optimizes the required number of black box

evaluations, its' e�ciency greatly depends on the order of variables in which one

interpolates. Perhaps, FoxBox can be extended to provide a suite of interpolation

algorithms targeted for di�erent applications.

Associated with each black box algorithm is a probability measure. With the

potential for nesting of black boxes, this measure can become unattainable. The

reliability of the outermost black box depends on the reliability of each internally

nested black box. A \self-tuning" feature that allows nested black boxes to \recon-

struct" utilizing a di�erent probability metric would alleviate the potential for an

unattainable probability.
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