
Abstract

LEE, WEN-SHIN. Early Termination Strategies in Sparse Interpo-

lation Algorithms. (Under the direction of Professor Erich Kaltofen.)

A black box polynomial is an object that takes as input a value for each variable

and evaluates the polynomial at the given input. The process of determining the

coefficients and terms of a black box polynomial is the problem of black box poly-

nomial interpolation. Two major approaches have been addressing such purpose:

the dense algorithms whose computational complexities are sensitive to the degree

of the target polynomial, and the sparse algorithms that take advantage of the

situation when the number of non-zero terms in a designate basis is small. In this

dissertation we cover power, Chebyshev, and Pochhammer term bases. However,

a sparse algorithm is less efficient when the target polynomial is dense, and both

approaches require as input an upper bound on either the degree or the number of

non-zero terms. By introducing randomization into existing algorithms, we demon-

strate and develop a probabilistic approach which we call “early termination.” In

particular we prove that with high probability of correctness the early termination

strategy makes different polynomial interpolation algorithms “smart” by adapting

to the degree or to the number of non-zero terms during the process when either



is not supplied as an input. Based on the early termination strategy, we describe

new efficient univariate algorithms that race a dense against a sparse interpolation

algorithm in order to exploit the superiority of one of them. We apply these racing

algorithms as the univariate interpolation procedure needed in Zippel’s multivari-

ate sparse interpolation method. We enhance the early termination approach with

thresholds, and present insights to other such heuristic improvements. Some po-

tential of the early termination strategy is observed for computing a sparse shift,

where a polynomial becomes sparse through shifting the variables by a constant.

Keywords: Sparse polynomial, black box polynomial, interpolation, sparse inter-

polation, randomized algorithm, Chebyshev basis, Pochhammer basis, early ter-

mination, racing two algorithms, sparse shift, Zippel’s algorithm, Ben-Or’s and

Tiwari’s algorithm.
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Chapter 1

Introduction

Interpolation has long been an extensively studied topic, for both its role as a basic

tool in approximating given functions and its wide applications. Our research

focuses on the problem of efficiently interpolating polynomials that have sparse

representations, or with respect to their sparse representations.

By introducing randomization into existing algorithms, we demonstrate and

develop a probabilistic approach, early termination. With high probability of cor-

rectness, the early termination strategy makes different polynomial interpolation

algorithms “smart” by adapting to the degree or the number of non-zero terms

during the process when neither is supplied as an input.

Derived from the early termination strategy, we describe new efficient interpo-

lation algorithms and present insights to other heuristic improvements as well as

certain related topics. Further potentials of the early termination strategy are also

observed based on its success in polynomial interpolations.
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1.1 Representations and interpolations of poly-

nomials

As the most commonly used representation, a polynomial representation represents

a polynomial f(x1, . . . , xn) as a sum of terms with their coefficients (in the power

basis)

f(x1, . . . , xn) =
t∑

j=1

cjx
ej,1

1 · · ·xej,n
n . (1.1)

In general, when a polynomial is represented as in (1.1) with total degree

d = deg(f), the number of its non-zero terms could be as many as

(
n + d

d

)
,

which grows exponentially with both n and d.

For the polynomials that have much fewer non-zero coefficient terms, or sparse

polynomials, not only their polynomial representations are more concise, thus oc-

cupy less space in representations, but also there are efficient algorithms that take

advantage of the sparsity in the polynomial representations.

Though many large scale problems tend to be sparse, it is also natural to ask

whether we can determine a representation basis such that it can represent a given

polynomial in a sparse manner. Notice that for any given polynomial, there are

different polynomial representations based on different bases, and as a result, the

sparsity of a polynomial depends on the choice of the bases.

Another method to represent a polynomial is the black box representation,

which is the object that takes as input a value for each variable and evaluates the
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polynomial being represented at the input point. The black box representations can

be manipulated efficiently [16], and it is useful to convert black box representations

to polynomial representations. The operation of recovering the coefficients and

terms of a black box polynomial from its values at given points is the black box

polynomial interpolation (see Figure 1.1.)

Black box polynomial f

p1, . . . , pn ∈ K f(p1, . . . , pn) ∈ K

Interpolation

f(x1, . . . , xn) =
t∑

j=1

cjx
ej,1

1 · · ·xej,n
n ∈ K[x1, . . . , xn],K is a field.

Figure 1.1: A black box polynomial f(x1, . . . , xn) and its interpolation.

When interpolating a polynomial from its evaluations, Newton interpolation

and Lagrange interpolation have been widely implemented. As univariate inter-

polation algorithms, both need deg(f(x)) + 1 evaluations, or black box probes, at

distinct points in order to recover a polynomial representation of the target poly-

nomial f(x). In the case the target polynomial is multivariate, both algorithms

can be implemented in a variable by variable manner and recover one variable at

a time until the target polynomial is fully interpolated. Such algorithms are called
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“dense” because they proceed regardless of the number of terms with zero coeffi-

cient, and do not take advantage of the sparsity in the target polynomial. It can

be easily observed the drawback as the inefficiency of a dense algorithm when the

target polynomial has much fewer non-zero monomials.

Interpolation algorithms whose computational complexities are sensitive to the

sparsity of their target polynomials are one of the major contributions of computer

algebra to computer science and mathematics. The first such result was obtained

by Richard Zippel in 1979 [24]. Zippel’s algorithm is efficient in the multivariate

case when the target polynomial is sparse than a variable by variable Lagrange or

Newton interpolation algorithm. Zippel’s algorithm requires randomization, and

in its variable by variable interpolation method each variable is still interpolated

densely.

In 1988 Michael Ben-Or and Prasoon Tiwari gave a different algorithm [1] that

is based on the Berlekamp/Massey algorithm from coding theory. This algorithm

interpolates all the variables at once and works equally well for sparse univariate

polynomials. In its original form, it does not require randomization, but for its

correctness it must be given an upper bound for the number of terms in the target

polynomial.

Since then, both approaches have been generalized and improved. The Vander-

monde techniques of Ben-Or and Tiwari can be applied to Zippel’s algorithm [25,

14]. Lakshman Y. N., B. David Saunders, and Dima Yu. Grigoriev extended

the Ben-Or/Tiwari approach to sparsity with respect to non-standard polyno-

mial bases, such as the Pochhammer, Chebyshev, and shifted power bases [17,

11, 18]. For polynomials over small finite fields both Zippel’s and Ben-Or’s and
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Tiwari’s algorithms require modification [10, 23, and the references given there].

And both Zippel’s and Ben-Or’s and Tiwari’s interpolation algorithms have been

implemented by several authors on both single and multi-processor computers,

among them [13, 20, 5].

Although a sparse algorithm takes into account the sparsity of the target poly-

nomial, it is less efficient than a dense algorithm when the target polynomial is

dense. Therefore, when the information of the sparsity in the target polynomial is

not provided, we encounter the problem of choosing a more efficient algorithm.

1.2 Early termination strategy and racing algo-

rithms

So far both the dense and sparse algorithms mentioned in Section 1.1 require a

bound as an input: a degree bound for the dense algorithms, and a bound on the

number of non-zero terms for the sparse algorithms. One question is easily raised:

can a polynomial f still be interpolated when no such bound is supplied? Or,

in other word, can we determine when to accurately finish proceeding with these

algorithms even though the required bound is not given?

We can guess an input bound, compute a candidate polynomial g with re-

spect to the guessed bound, and compare g and f at an additional random point.

Whenever g cannot be successfully computed or the values of f and g are different

at the additional random point, we double the guess for the bound. With this

probabilistic approach, we face the problem of guessing a bound that is “efficient.”

A better probabilistic approach, early termination strategy, is presented. It
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is observed that in the interpolation process, an already fully interpolated poly-

nomial does not change at more interpolation points. Based on the observation,

this strategy claims that after the interpolant stops changing at a random point,

the target polynomial is interpolated with high probability. Therefore, without a

bound supplied as an input, with high probability of correctness and within one sin-

gle interpolation run, the early termination provides a method determining when

to accurately finish proceeding with these algorithms. Austin Lobo suggested the

early termination phenomenon in the setting of the Wiedemann algorithm [22].

Chapter 2 addresses the early termination strategy in dense interpolations.

Chapter 3 and Chapter 4 present the early termination in sparse interpolation

algorithms with respect to the power basis (in Chapter 3) and certain non-standard

bases (the Pochhammer and Chebyshev bases in Chapter 4.)

Our early termination versions of algorithms are all randomized in the Monte

Carlo sense, that is, their results are correct with high probability. In our im-

plementation, we adopt another strategy of putting additional partial verification

computations into some of our procedures: the early termination is only triggered

after encountering a series of zero discrepancies, and passing a series of checks, in

a row. The length of the series is a threshold given as an optional argument to

the procedures. We prove the early termination strategy is correct with high prob-

ability for threshold one, and note that higher thresholds weed out bad random

choices from sets that are much smaller than the early termination theorem would

require. The further analysis is complicated and our early termination algorithms

then become heuristics that can interpolate polynomials of a size at the very edge

of what current software and hardware can reach.
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Without a bound for the target polynomial as an input, the early termination

enables us to terminate the interpolation procedure when necessary evaluations

required by the algorithm have been performed. However, knowing that the sparse

algorithms are less efficient when the target polynomial is dense, we are still in

a predicament of choosing an efficient algorithm for a target polynomial whose

sparsity is unknown.

To solve the above predicament, in the univariate case we propose racing al-

gorithms that are efficient to both dense and sparse polynomials. Based upon

the early termination, Chapter 5 presents how a racing algorithm “races” New-

ton interpolation against a sparse algorithm on a same set of evaluation points.

The overall racing algorithm requires no additional evaluations, and terminates as

either of the racer algorithms first terminates. In terms of black box probes, or

polynomial evaluations, the overall racing algorithm is in average the more efficient

algorithm with respect to the varying sparsity in different polynomials. Moreover,

when the target polynomial is sparse, the probability of correctness can be fur-

ther improved by utilizing the information obtained from both racer algorithms

via cross-checking a sparse answer for degree consistency with the partial Newton

interpolant.

1.3 Hybrids of Zippel and other improvements

Zippel’s algorithm has a shortcoming over Ben-Or’s and Tiwari’s in that it proceeds

one variable at a time, and each variable is still interpolated densely. On the other

hand, when the Ben-Or/Tiwari algorithm is implemented in a modular fashion [13],
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in the multivariate case to our knowledge the modulus must be large enough for the

recovery of all non-zero terms evaluated at prime numbers. Yet in the univariate

case, there are special tricks that can reduce the size of the modulus. Also, we

note that the implementation of Ben-Or’s and Tiwari’s algorithm with rational

number arithmetic causes extreme intermediate expression swell, while in Zippel’s

algorithm the modulus only needs to capture the coefficients, and large enough for

randomization.

In Chapter 6, we propose the hybrids of Zippel’s algorithm as the following:

when interpolating a multivariate polynomial, under Zippel’s variable by variable

scheme, each variable is interpolated through a racing algorithm that is based on

early termination. Therefore, we ameliorate the inefficiency of the dense univariate

interpolations embedded in the original Zippel’s algorithm, and in the case of the

multivariate power basis reduce the large size of the modulus required by the Ben-

Or/Tiwari sparse algorithm.

Refining the idea of prunings via homogenization as described in [5], permanent

prunings and temporary prunings are also presented and discussed in Chapter 6.

1.4 Maple implementation and further develop-

ments

Many of our ideas are implemented in a Maple package, ProtoBox, as a black box

polynomial sparse interpolation over the integers modulo a prime number. Chap-

ter 7 presents the performance of ProtoBox on a series of bench mark polynomials

and some heuristic examples. Clearly, there is a trade-off between the additional

8



arithmetic operations introduced by concurrently performing two univariate inter-

polation algorithms within the racing algorithm and the savings in the probes of

the target polynomial. We intend our algorithms for polynomials produced by the

calculus of black box polynomials [16, 5].

In Chapter 8, we conclude our contributions and comment on our prospective

further developments.
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Chapter 2

Early Termination in Dense Univariate

Interpolations

Many dense interpolation algorithms have been implemented for a long time. Two

widely known examples are Newton’s interpolation and Lagrange’s interpolation.

In order to proceed, these algorithms require as input the degree of the target poly-

nomial, or an upper bound on the degree. With high probability, early termination

strategy enables such algorithms to interpolate the target polynomial without any

knowledge on the degree.

Our research has been focusing on the algorithms which interpolate the target

polynomial merely from its evaluations, and that no other information about the

polynomial is assumed. Namely, those are the algorithms that can convert a black

box representation into a polynomial representation, or perform black box polyno-

mial interpolations. Therefore, for example, we do not consider algorithms such as

the Hermite polynomial interpolation for it also requires a set of derivative values

of the target polynomial.
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2.1 Dense univariate interpolations

In this section, we describe the attribute of a dense univariate interpolation algo-

rithm. When a univariate black box polynomial f(x) is being interpolated from

its evaluations on a sequence of distinct values p0, p1, p2, . . ., a dense interpolation

procedure updates the i-th interpolant f [i](x), i ≥ 0, where f [i](x) is a polynomial

satisfies both deg f [i](x) ≤ i and f [i](pj) = f(pj) for 0 ≤ j ≤ i. When i reaches the

degree of the target polynomial d, the updated interpolant represents the target

polynomial and the interpolation is complete.

It is observed that regardless the coefficient is zero or not, an i-th order term

in f(x) is being interpolated in order to update the i-th interpolant f [i](x). As

the target polynomial being constructed in a possibly most dense form, a dense

algorithm interpolates terms of every order until the supplied degree or degree

bound is reached. Two widely known dense algorithms are Newton’s interpolation

and Lagrange’s interpolation.

In the case of Newton’s interpolation, the i-th interpolant is updated from the

previous interpolant:

f [i](x) = f [i−1](x) + ci(x− p0)(x− p1) · · · (x− pi−1),

where f [0](x) = f(p0), i > 0, and ci the i-th divided difference.

In Newton’s interpolation, the target polynomial can be viewed as being in-

terpolated with respect to a mixed power basis: 1, (x− p0), (x− p0)(x− p1), (x−

p0)(x − p1)(x − p2), . . .. Notice that once the polynomial is interpolated, that is,

whenever f [d](x) = f(x) for some d, the interpolant f [d](x) does not change even
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if we keep interpolating f(x) at more distinct values pd+1, pd+2, pd+3, . . .. In other

word, f [d+j](x) = f [d](x) = f(x) for all j ≥ 0 and d = deg f(x).

2.2 Early termination in dense univariate inter-

polations

Based on the observation that an already interpolated polynomial does not changed

at more interpolation points, we implement the strategy of early termination in a

dense interpolation as the following: a positive integer η is given as a threshold,

the sequence p0, p1, p2, . . . are formed as random values, and the interpolant f [i](x)

is updated as i being increased. Whenever the interpolant f [i](x) stops changing

as many as η times in a row, f(x) is interpolated as f [i](x) with high probability.

Theorem 2.1 states and proves the early termination strategy in dense interpolation

algorithms.

Theorem 2.1. (Early Termination in Dense Univariate Interpola-

tions) Given are a black box univariate polynomial f(x) over a field and a positive

integer η as the threshold. Let p0, p1, p2, . . . be chosen randomly and uniformly from

a subset S of the domain of values, and let f [i](x) denote the i-th interpolant that

interpolates f(p0), . . . , f(pi). Note that the pi are not necessarily all distinct. If

there is a non-negative integer d such that

f [d](x) = f [d+1](x) = · · · = f [d+η](x). (2.1)

Then with probability no less than

1− η · deg f(x) ·
(

deg f(x)

#(S)

)η

12



f [d](x) correctly interpolates f(x).

Proof:

Suppose d is the smallest integer that satisfies (2.1) and if f [d](x) does not

correctly interpolate f(x), which implies f(x) − f [d−1](x) 6= 0, then both of the

following happen:

1. either d = 0, or pd is not a root of f(x)− f [d−1](x);

2. pd+1, . . . , pd+η are all roots of f(x)− f [d](x).

By the nature of a dense interpolation, we have deg f [d](x) < deg f(x) when-

ever f [d](x) 6= f(x). Therefore deg (f(x)− f [d](x)) = deg f(x), and there are at

most deg f(x) many distinct roots for f(x)− f [d](x). The probability of randomly

generating an element from a set S that happens to be a root of f(x)− f [d](x) is

no more than deg f(x)/#(S).

We define the probability function P (i) as follows.

When i = 0, P (i) is the probability that f [0](x) 6= f(x) but f [0](x) = f [1](x) =

· · · = f [η](x), that is, p1, . . . , pη are all roots of f(x)− f [0](x).

When i ≥ 1, P (i) is the probability that f [i](x) 6= f(x) and i is the smallest

number such that f [i](x) 6= f [i−1](x) and f [i](x) = f [i+1](x) = · · · = f [i+η](x), in

other word, pi+1, pi+2, . . ., pi+η are all roots of f(x)− f [i](x).

For each i ≥ 0, we have P (i) ≤ (deg f(x)/#(S))η. Because we need to at least

hit a root of f(x) − f [i](x) as many as η times so that pi+1, . . ., pi+η are all roots

of f(x)− f [i](x).

When f(x) is interpolated correctly, at most η · deg f(x) many values can

be interpolated before the target polynomial is obtained. Such a case happens

only when each newly updated interpolant stops changing for exactly η − 1 many

13



times. The sum
∑η·deg f(x)−1

i=0 P (i) covers all the possibilities of f(x) being falsely

interpolated.

Therefore, f [d](x) correctly interpolates f(x) with probability no less than

1−
η·deg f(x)−1∑

i=0

P (i) ≥ 1− η · deg f(x) ·
(

deg f(x)

#(S)

)η

. £

In Theorem 2.1, we are permissive toward the worst case in estimating the

probability. Notice that whenever f [i](x) 6= f [i−1](x), f(x) cannot be falsely inter-

polated as any of the interpolants from f [i+1](x), . . ., f [i+η−1](x).

The size of S, which is the subset where pi are picked, affects the probability of a

correct interpolation. The following lemma shows that when #(S) is large enough,

the increasing of threshold η can improve the lower bound of the probability of

correctness.

Lemma 2.1. In theorem 2.1, the lower bound of the probability of correctness

can be improved when the threshold η is increased to η + ∆η if

(deg f(x)

#(S)

)∆η

<
η

η + ∆η
(2.2)

where ∆η is a positive integer.

Proof:

From inequality (2.2) we have

η · deg f(x) ·
(deg f(x)

#(S)

)η

> (η + ∆η) · deg f(x) ·
(deg f(x)

#(S)

)η+∆η

.
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Which implies

1− η · deg f(x) ·
(

deg f(x)

#(S)

)η

< 1− (η + ∆η) · deg f(x) ·
(

deg f(x)

#(S)

)η+∆η

. £

Notice the lower bound discussed in Lemma 2.1 does not exactly reflect how

the performance being improved by a higher threshold, whose effects are evident

when the size of S is relatively small (see Chapter 7 for test results.)

In Theorem 2.1, the elements in the random value sequence p0, p1, . . . are not

necessarily all distinct. In our implementation, instead of computing f [i](x) that

interpolates all the first i+1 elements from the sequence p0, p1, . . ., we compute the

interpolant f {k}(x) that interpolates the first k+1 distinct elements from the same

sequence. The interpolant f {k}(x) is only updated when a non-repeated point is

introduced in the evaluation and we still have deg f {k}(x) ≤ k. This modification

avoids unnecessary false early terminations due to interpolating on repeated points

and further improves the probability of correctness.

Without the degree or a degree bound as an input, the early termination allows

a dense algorithm to proceed with interpolation merely from polynomial evalua-

tions. In order to interpolate the target polynomial at enough distinct points,

the size of the interpolation domain S needs to be large enough to construct the

highest order term in the target polynomial, that is, at least deg(f(x)) + 1. In the

case of early termination, for passing the threshold test, #(S) needs to be at least

deg f(x) + 1 + η.
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Chapter 3

Early Termination in Sparse

Interpolations with respect to the Power

Basis

There are interpolation algorithms whose computational complexities are sensi-

tive to the sparsity of the target polynomials. Instead of constructing a term for

each order, the sparse interpolation algorithms focus on the recovery of all the

monomials with non-zero coefficients.

In this chapter, we describe the Ben-Or/Tiwari interpolation algorithm that

is based on the Berlekamp/Massey algorithm from coding theory. This sparse

algorithm recovers all the non-zero terms at once and works in the multivariate

case as well as in the univariate case.

We notice the sparsity of a polynomial depends on the basis in its polynomial

presentation. While the sparsity of a polynomial might change under different

bases, the degree remains the same. The Ben-Or/Tiwari algorithm is a sparse

interpolation algorithm with respect to a multivariate power basis. In addition to

describing the Ben-Or/Tiwari algorithm, we present the early termination version
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of this algorithm. Later in Chapter 4, we will demonstrate the early termination

strategy in sparse interpolations with respect to some non-standard bases, which

can be viewed as generalizations of the Ben-Or/Tiwari algorithm in the univariate

case.

3.1 The Berlekamp/Massey algorithm

Consider a vector space V over a field K and a sequence {ai}∞i=0 in V . {ai}∞i=0 is

linearly generated if and only if there exist c0, . . . , cm ∈ K with cm 6= 0 such that

for all j ≥ 0,

c0aj + c1aj+1 + · · ·+ cmaj+m = 0.

Therefore, for all j ≥ 0 we have

aj+m = −cm−1

cm

· aj+m−1 − · · · − c0

cm

· aj.

Let z be an indeterminate, we call cmzm + cm−1z
m−1 + · · · + c0 the generating

polynomial for {ai}∞i=0, and the polynomial

zm +
cm−1

cm

· zm−1 +
cm−2

cm

· zm−2 + · · ·+ c0

cm

its monic associate.

When {ai}∞i=0 is a linearly generated sequence, the set of all its generating

polynomials, together with zero, form an ideal in K[z]. Since K[z] is a principal

ideal domain, the unique monic Λ in K[z] generates this domain is the minimal

polynomial of {ai}∞i=0.
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The Berlekamp/Massey algorithm [19] processes a stream of elements a0, a1, . . .

from a field K. If the sequence is linearly generated, the algorithm can determine

its minimal polynomial Λ(z) = zt +λt−1z
t−1 + · · ·+λ0 after processing 2t elements

from the stream.

The stream can be unbounded, however, and the algorithm can update the

current guess for the minimal polynomial appropriately whenever the next stream

element ai does not fit the current linear recursion, which occurs when a non-

zero discrepancy, ∆ 6= 0, is detected. When the linear generator, or the minimal

polynomial, is updated, either the generator jumps in degree (Step 3 below,) or

the coefficients of the lower degree terms in the generator get adjusted (Step 4

below.) Notice that the algorithm computes the reverse of the minimal generating

polynomial Λ(z), that is, Λ(rev)(z).

The Berlekamp/Massey algorithm

Input:

a0, a1, . . . ∈ K

1. (Initialization.)

Λ
(rev)
0 ← 1;

B0 ← 0;

L0 ← 0;

∆ ← 1;

For i = 1, 2, . . . Do

2. (Compute the discrepancy ∆i. At this point, Λ
(rev)
i−1 (z) = λ0z

s+λ1z
s−1+· · ·+λs,

where s = deg(Λ
(rev)
i−1 ) and λ0, . . . , λs ∈ K with λ0 6= 0. Note that we always

18



have λs = 1.)

∆i ← λsai−1 + λs−1ai−2 + · · ·+ λ0ai−s−1;

If ∆i = 0 then

Λ
(rev)
i ← Λ

(rev)
i−1 ;

Bi ← z ·Bi−1;

Li ← Li−1;

3. If ∆i 6= 0 and 2Li−1 < i then

Bi ← Λ
(rev)
i−1 ;

Λ
(rev)
i ← Λ

(rev)
i−1 − (∆i/∆) · z ·Bi−1;

Li ← i− Li−1;

∆ ← ∆i;

4. If ∆i 6= 0 and 2Li−1 ≥ i then

Λ
(rev)
i ← Λ

(rev)
i−1 − (∆i/∆) · z ·Bi−1;

Bi ← z ·Bi−1;

Li ← Li−1;

End For;

End.

3.2 The Ben-Or/Tiwari interpolation algorithm

Let f be a multivariate polynomial over a field, t the number of its terms with

non-zero coefficients. Suppose cj 6= 0 are the coefficients of the non-zero terms
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βj(x1, . . . , xn) = x
ej,1

1 x
ej,2

2 · · · xej,n
n , then

f(x1, . . . , xn) =
t∑

j=1

cjx
ej,1

1 · · ·xej,n
n =

t∑
j=1

cjβj, cj 6= 0.

Suppose p1, p2, . . . , pn are distinct primes from the corresponding domains,

and bj the evaluations of βj at (p1, p2, . . . , pn), namely, bj = βj(p1, p2, . . . , pn) =

p
ej,1

1 · · · pej,n
n . We have bi 6= bj whenever i 6= j. The evaluations of βj at the powers

of (p1, p2, . . . , pn) can be viewed as the powers of bj:

βj(p
i
1, p

i
2, . . . , p

i
n) = (pi

1)
ej,1 · · · (pi

n)ej,n = (p
ej,1

1 · · · pej,n
n )i = bi

j.

Evaluate f at a sequence of powers of (p1, p2, . . . , pn) and define ai = f(pi
1, . . . , p

i
n),

we have

ai = f(pi
1, . . . , p

i
n) =

t∑
j=1

cjb
i
j.

Consider an auxiliary polynomial Λ(z) defined as the following:

Λ(z) =
t∏

j=1

(z − bj) = zt + λt−1z
t−1 + · · ·+ λ0. (3.1)

By definition, the roots of Λ(z) are bj, which are the non-zero terms in f evaluated

at (p1, p2, . . . , pn). When f is a polynomial and ai = f(pi
1, . . . , p

i
n), Theorem 3.1

shows that the sequence {ai}i≥0 is linearly generated and the auxiliary polynomial

Λ(z) is its minimal generating polynomial.

Theorem 3.1. Let f(x1, . . . , xn) =
∑t

j=1 cjx
ej,1

1 · · · xej,n
n , where cj 6= 0, and ai

= f(pi
1, . . . , pi

n) for i ≥ 0, pi distinct primes. The sequence of {ai}i≥0 is linearly

generated by the polynomial Λ(z). Furthermore, Λ(z) is the minimal polynomial
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of {ai}i≥0.

Proof:

As defined in (3.1), Λ(z) =
∏t

j=1(z−bj), we have Λ(bj) = 0 for j = 1 . . . t. And

for any integer i ≥ 0 we have

0 =
t∑

j=1

cjb
i
jΛ(bj) =

t∑
j=1

cjb
i
j(b

t
j + λt−1b

t−1
j + · · ·+ λ0)

= (c1b
i+t
1 + · · ·+ ctb

i+t
t ) +

t−1∑

k=0

λk(c1b
i+k
1 + · · ·+ ctb

i+k
t )

= at+i +
t−1∑

k=0

λkak+i.

Thus, Λ(z) generates {ai}i≥0.

Consider the Hankel matrix:

At =




a0 a1 . . . at−1

a1 a2 . . . at

...
...

. . .
...

at−1 at−2 . . . a2t−2




.

If Λ(z) is not the minimal polynomial of {ai}i≥0, then there exists at least

one column that is a linear combination of other columns within matrix At and

det(At) = 0. In order to prove Λ(z) is the minimal polynomial, we show det(At)
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6= 0 by factoring At into non-singular matrices,

At = Bt




c1 0 . . . 0

0 c2 . . . 0

...
...

. . .
...

0 0 . . . ct




︸ ︷︷ ︸
Ct

BTr
t ,

where

Bt =




1 1 . . . 1

b1 b2 . . . bt

...
...

. . .
...

bt−1
1 bt−1

2 . . . bt−1
t




.

Since whenever i 6= j we have bi 6= bj, the transposed Vandermonde matrix Bt is

non-singular. The matrix Ct is also non-singular due to all the nonzero diagonal

ci. £

In Section 3.1, we give the Berlekamp/Massey algorithm that can compute Λ(z)

from {ai}i≥0. As a consequence of the definition in (3.1), bj can be obtained by

way of finding the roots of Λ(z). If pi are different primes and the evaluations are

done over a coefficient field of characteristic zero, then each term βj = x
ej,1

1 · · ·xej,n
n

can be recovered through repeatedly dividing bj by p1, . . . , pn. The coefficients cj

can be determined via solving the linear system ai =
∑t

j=1 cjb
i
j with 0 ≤ i ≤ t− 1,
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which turns out to be a t× t transposed Vandermonde system:




1 1 . . . 1

b1 b2 . . . bt

b2
1 b2

2 . . . b2
t

...
...

. . .
...

bt−1
1 bt−1

2 . . . bt−1
t







c1

c2

c3

...

ct




=




a0

a1

a2

...

at−1




. (3.2)

Efficient algorithms for solving transposed Vandermonde systems can be found

in [14, 25].

The Ben-Or/Tiwari interpolation algorithm

Input:

f : a multivariate black box polynomial.

τ : τ ≥ t, t is the number of the terms with non-zero coefficients in f .

Output:

cj and βj: f =
∑t

j=1 cjβj and cj 6= 0.

1. (The Berlekamp/Massey algorithm.)

ai = f(pi
1, . . . , p

i
n), 0 ≤ i ≤ 2τ − 1, where pi are distinct primes.

Compute Λ(z) from {ai}2τ−1≥i≥0.

2. (Determine βj.)

Find all t distinct roots of Λ(z), which are bj.

Determine each βj through repeatedly dividing every bj by p1, . . . , pn.

3. (Compute the coefficients cj.)

Solve a transposed Vandermonde system as in (3.2).
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End.

We use an example to elucidate the steps of the Ben-Or/Tiwari algorithm.

Example 3.1. Suppose p1 = 2, p2 = 3, and we interpolate the polynomial

f = x12 + 5x3y + y4 − 3.

The sequence {ai}i≥0, where ai = f(2i, 3i), is formed as the following sequence

of values: {4, 4294, 16786654, 68720077294, 281475021416254,

1152921508133444494, 4722366483153030265054, 19342813113856966520110894,

. . .}. Since there are four non-zero terms in f , after performing the Berlekamp/

Massey algorithm on the first eight values of this sequence, the auxiliary polynomial

Λ(z) = z4 − 4202z3 + 436225z2 − 8394648z + 7962624 is obtained.

All the terms in f are determined from the roots of Λ(z):

Λ(z) = (z − 1)(z − 24)(z − 81)(z − 4096),

where 1 = 20 · 30 → x0y0, 24 = 23 · 3 → x3y, 81 = 34 → y4, and 4096 = 212 → x12.

The polynomial f is fully interpolated after the corresponding coefficients ci are

computed by solving the transposed Vandermonde system,




1 1 1 1

1 24 81 4096

12 242 812 40962

13 243 813 40963







c1

c2

c3

c4




=




a0 = 4

a1 = 4294

a2 = 16786654

a3 = 68720077294




,

with solution 


c1

c2

c3

c4




=




−3

5

1

1




. £
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When the Ben-Or/Tiwari algorithm is implemented in a modular fashion, ig-

noring the size of the coefficients, the modulus must be large enough for the re-

covery of all the terms, that is, no less than pd1
1 pd2

2 · · · pdn
n , where n is the number

of variables, di the degrees in different variables such that d1 ≥ d2 ≥ · · · ≥ dn,

and pi the i-th prime. Such an exponentially increasing figure can be perceived in

Example 3.1.

The modulus can be reduced if we only interpolate few variables at a time

through the Ben-Or/Tiwari algorithm. Then we keep interpolating the partially

interpolated result with respect to a subset from the yet-interpolated variables until

the target polynomial is fully interpolated. Certainly, there is a trade-off between

the reduced modulus and the additional interpolations for every term that consists

of variables from the different subsets. Since such a term needs to be interpolated

with respect to all the subsets that contain a variable in the term.

In the case of interpolating one variable at a time, in order to recover all the

terms, instead of a modulus larger than 2d1 , where d1 is the maximum among the

degrees in different variables, there are tricks reducing the modulus to a prime only

larger than d1 (see Section 6.3.) Similarly, the trade-off is between the reduced

modulus and the additional interpolations for every multivariate term. Because a

multivariate term needs to be interpolated with respect to each variable involved.
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3.3 Early termination in the Ben-Or/Tiwari in-

terpolation algorithm

Both the Ben-Or/Tiwari [1] and the Kaltofen et al. [13] algorithms need to know

the number of non-zero terms t, or an upper bound τ on t, τ ≥ t. Otherwise,

we can guess t, if there is no failure in finding the roots of Λ, compute a sparse

candidate polynomial g for f , and compare g and f at an additional random point.

If the values are different, or it fails in finding the roots of Λ, we can double the

guess for t. This scheme is randomized in the Monte Carlo sense.

Based on the early termination strategy, we present a more efficient probabilis-

tic approach, which requires only one single interpolation run. The idea is simple:

pick a random point coordinates p for the Ben-Or/Tiwari algorithm and show that

with high probability the embedded Berlekamp/Massey algorithm of Section 3.1

does not encounter a zero discrepancy ∆ at i > 2L1 until i > 2t (in Step 2 for the

case that i > 2L, i.e., by which would be divided in Step 3 if the discrepancy were

non-zero.)

However, this is not generally true: for any polynomial f(x) =
∑t

j=1 cjx
ej

satisfying f(p0) = a0 = c1 + · · ·+ct = 0, we always have the first discrepancy ∆1 =

0. We suggest two schemes to fix this problem: either pick an additional random

value pc, so that we can claim f(p0)+pc is non-zero with high probability and then

proceed the interpolation with f + pc (see Section 4.4 for the application in the

sparse interpolation under the Chebyshev basis;) or, through shifting the sequence

by 1 element, the early termination property can be proved as the following.

1Clearly, the shift register length can be stored in a single integer variable without a subscript.
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We first show that for symbolic values, or variables x1, . . . , xn, the first zero

discrepancy for i > L appears at i = 2t + 1. Let βj = x
ej,1

1 · · · xej,n
n be the j-th

non-zero term in f , and αi = f(xi
1, . . . , x

i
n), we have

Ai =




α1 α2 . . . αi

α2 α3 . . . αi+1

...
...

. . .
...

αi αi+1 . . . α2i−1




= BiCtB̄Tr
i , (3.3)

where

Bi =




1 1 . . . 1

β1 β2 . . . βt

...
...

. . .
...

βi−1
1 βi−1

2 . . . βi−1
t




, Ct =




c1 0 . . . 0

0 c2 . . . 0

...
...

. . .
...

0 0 . . . ct




,

and

B̄i =




β1 β2 . . . βt

β2
1 β2

2 . . . β2
t

...
...

. . .
...

βi
1 βi

2 . . . βi
t




.

The singularity of the Hankel matrix Ai in (3.3) is directly related to the van-

ishing of discrepancies when computing a linear generator of α1, α2, . . . through the

Berlekamp/Massey algorithm (Section 3.1.) The argument makes use of the inter-

pretation of the Berlekamp/Massey algorithm as the extended Euclidean algorithm

on the polynomials F−1 = XN and F0 = α1X
N−1+α2X

N−2+· · · [6] combined with

the fundamental theorem on subresultants [2]. Here N is the number of elements
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that are considered for determining the linear generator. Dornstetter shows that

∆i in Step 3 of the Berlekamp/Massey algorithm of Section 3.1 is the leading coeffi-

cient in a remainder, Fi, in a polynomial remainder sequence (PRS) of F−1 and F0.

The discrepancies in Step 4 are the trailing coefficients in Fi. Step 2 processes both

trailing coefficients that are zero and the search for the non-zero leading coefficient

of the next remainder. The former can be diagnosed by the shift-register length

2L ≥ i. The remainder polynomials Fi in the PRS, which yields the polynomials

Bi and Λi at 2L = i as the reverse polynomials of the consecutive Bezout coeffi-

cients Ti−1 and Ti in the extended Euclidean scheme Fi = SiF−1 + TiF0 ≡ TiF0

(mod XN), are adjusted by non-zero scalar multipliers, namely −∆i/∆ of Step 3.

Dornstetter’s analysis yields the following fact.

Fact 1. If the PRS is normal, i.e., deg(Fi) = deg(Fi−1) − 1 = N − i − 1,

where i ≥ 0, then ∆i 6= 0 whenever 2L < i and L < t, where t is the degree of the

linear generator.

Appealing now to the fundamental theorem of subresultants, the PRS is normal

if and only if the leading coefficient of the N − i− 1’st subresultant of F−1 and F0

does not vanish. By definition in [2], this is the determinant of a (2i+1)× (2i+1)

matrix shown in Figure 3.1.

From the proof of Theorem 3.1, we always have det(Ai) = 0 for all i > t.

The early termination strategy is correct if the determinant of Ai is non-zero for

i = 1 . . . t in symbolic evaluations. This is our next theorem.
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det




1 0 · · · 0 0
. . . . . .

...
1 0

. . .
...

0 · · · 1 0 · · · 0
α1 · · · αi αi+1 α2i+1

. . .

α1
...

. . .
...

. . .

α1

0 0 α1 · · · αi+1




= ± det(Ai+1).

Figure 3.1: Subresultant coefficient

Theorem 3.2. The determinant of Ai is non-zero for i = 1, . . . , t.

Proof:

Let MJ,K be the determinant of the submatrix of M consisting of the rows listed

in the set J and the columns listed in the set K. The Binet-Cauchy formula [8]

states for the determinant of a matrix product AB that

(AB)J,L =
∑

1≤k1<k2<···<ki≤n

AJ,{k1,...,ki}B{k1,...,ki},L, (3.4)

where n is the number of columns of A, and J and L are sets of row and column

indices with i elements each.

Applying (3.4) to (3.3) with I = {1, . . . , i}, the determinant of Ai is a poly-

nomial in βj as (3.5). The rest of our proof shows Ai is non-singular for every

i = 1, . . . , t since every such polynomial is a non-zero polynomial.
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det(Ai) = (BiCtB̄Tr
i )I,I

=
∑

J

∑
K

(Bi)I,J(Ct)J,K(B̄Tr
i )K,I

=
∑

J

(Bi)I,J(Ct)J,J(B̄Tr
i )J,I

=
∑

J={j1,...,ji}
cj1 · · · cji

βj1βj2 · · · βji
· det

(




1 1 . . . 1

βj1 βj2 · · · βji

...
...

. . .
...

βi−1
j1

βi−1
j2

. . . βi−1
ji




)2

=
∑

J={j1,...,ji}
cj1 · · · cji

βj1βj2 · · · βji
·

∏
1≤v<u≤i

(βju − βjv)
2. (3.5)

Now let the terms β1 Â β2 Â · · · Â βt be ordered lexicographically. Then the

summand

c1 · · · ci β1β2 · · · βi

∏
1≤v<u≤i

(βv − βu)
2

has the term

β2i−1
1 β2i−3

2 · · · βi

which occurs nowhere else,2 hence det(Ai) does not vanish. £

We make the transition from symbolic point coordinates x1, . . . , xn to ran-

dom field elements p1, . . . , pn in the customary fashion via the the Schwartz-Zippel

lemma [24, 21], also see [4].

Theorem 3.3. If p1, . . . , pn are chosen randomly and uniformly from a subset

2In this argument we make use of the shift by 1 element. We do not know if shifting is actually
needed if one were to exclude the first discrepancy from the termination test.
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S of the domain of values, which is assumed to be an integral domain, then for

the sequence {ai}i≥1, where ai = f(pi
1, . . . , p

i
n), the Berlekamp/Massey algorithms

encounters ∆ = 0 and i > 2L the first time at i = 2t + 1 with probability no less

than

1− t(t + 1)(2t + 1) deg(f)

6 ·#(S)
,

where #(S) is the number of elements in S.

Proof:

By (3.5) we obtain deg(detAi) ≤ i2 deg(f). We have to avoid all the possible

zeroes of the product
∏t

i=1 detAi, whose degree is no more than t(t + 1)(2t +

1) deg(f)/6. The estimate of the probability follows from Lemma 1 in [21]. £

The estimate in Theorem 3.3 is, like the Zippel-Schwartz estimate, somewhat

pessimistic. The following argument attempts to shed further light on the situation.

Over a finite field of q elements we may choose the set S to be the entire field, that

is, q = #(S). If we make the assumption that ai = f(pi
1, . . . , p

i
n) are randomly

uniformly distributed, the probability that

0 6= (det(A1) · · · det(At))α1←a1,...,α2t−1←a2t−1

is exactly (1 − 1/q)t ≥ 1 − t/q; cf. [15]; the proof is by induction on i, viewing

det(Ai+1) as a linear polynomial in α2i+1 whose coefficient is det(Ai). Even then,

the probability of premature false termination can become unacceptably high,

especially when q is small. In our implementation, we therefore make a further

modification: the user can supply a threshold ζ ≥ 1. Then early termination

strategy requires ζ many times in a row the zero discrepancies with i > 2L. Clearly,
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for a random ai then there are more acceptable At, where Ai are matrices Ai

evaluated at αj = aj. The precise analysis on the effects of a threshold ζ > 1

depends on the conditional probabilities P (det(Ai+1) = 0| det(Ai) = 0) for i ≥ 1.

Nevertheless, in Chapter 7, we test and demonstrate heuristic examples for some

small moduli with thresholds larger than 1.

The early termination version of the Ben-Or/Tiwari algorithm does not need

an upper bound on the numbers of non-zero terms as an input.

The Ben-Or/Tiwari algorithm with early termination

Input:

f : a multivariate black box polynomial.

ζ: a positive integer, the threshold for early termination.

Output:

cj and βj: f =
∑t

j=1 cjβj with high probability.

Or an error message: if the procedure fails to complete.

1. (The early termination within the Berlekamp/Massey algorithm.)

Pick random elements: p1, . . . , pn, and pj /∈ {0, 1}.
For i = 1, 2, . . .

Perform the Berlekamp/Massey algorithm on {f(pj
1, . . ., pj

n)}1≤j≤i.

If ∆i = 0 and i > 2L happens ζ many times in a row, then

break out of the loop;

set Λ(z) to the reverse of Λ
(rev)
r (z) that was computed inside the algorithm;

2. (Determine βj.)

Compute all the roots of Λ(z) in the domain of pi.

If Λ(z) does not completely factor, or not all the roots are distinct, then
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the early termination was false.

Otherwise, determine the terms βj from the roots bj:

repeatedly divide bj by p1, . . . , pn. Again, the term recovery might fail for

unlucky pi.

3. (Determine cj.)

Recover the coefficients cj of the corresponding terms βj:

solve a transposed Vandermonde system as in (3.2).

End.

Remark: If the coefficient field is a subfield of the real numbers and ci > 0 for

all i, no randomization is necessary. The following argument is standard for the

least squares problem with a weighted inner product:

BiCtB
Tr
i y = 0 =⇒ yTrBiCtB

Tr
i y = 0

=⇒ (BTr
i y)TrCt(B

Tr
i y) = 0

=⇒ BTr
i y = 0,

because 0 = zTrCtz =
∑

cjz
2
j =⇒ z = 0. Therefore y = 0, and BiCtB

Tr
i is

non-singular.
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Chapter 4

Early Termination in Sparse

Interpolations with respect to

Non-standard Bases

As we have noticed, while the order of a polynomial remains the same, the bases

in the polynomial representations define the sparsity of a polynomial. Therefore, a

sparse interpolation algorithm depends on the construction of the designate basis

in which the target polynomial is being interpolated.

As generalizations of the Ben-Or/Tiwari algorithm in the univariate case, Lak-

shman and Saunders [17] proposed sparse interpolation algorithms in the Poch-

hammer and Chebyshev bases. In this chapter, we will show the early termination

versions of these algorithms.
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4.1 Univariate sparse interpolations in the Poch-

hammer basis

For any integer n ≥ 0, the Pochhammer symbol xn denotes the rising factorial

power

x(x + 1) . . . (x + n− 1).

A univariate polynomial f(x) over a field K is t-sparse in the Pochhammer

basis if and only if for j = 1, . . . , t, cj 6= 0 and cj ∈ K, ej ∈ Z≥0, such that

f(x) =
t∑

j=1

cjx
ej , e1 < e2 < · · · < et.

For k = 0, 1, . . ., define f (k)(x) as the following:

f (k)(x) =
t∑

j=1

ek
j cjx

ej . (4.1)

The finite difference operator ∆(f(x)) = f(x+1)−f(x) behaves like the derivative

on the Pochhammer symbol: that is, ∆(xk) = (x + 1)k − xk = k(x + 1)k−1 and

x ·∆(f (k)(x)) = f (k+1)(x). (4.2)

Therefore, f (k)(p) with k = 0, 1, . . . , 2t − 1 can be computed by repeatedly ap-

plying the recurrence from the subsequent polynomial evaluations f(p + k), k =

0, 1, . . . , 2t− 1.

Lemma 1 in [17] shows that the sequence {f (k)(p)}2t−1≥k≥0 is linearly generated
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by an auxiliary polynomial Λ(z) defined as:

Λ(z) =
t∏

j=1

(z − ej) = λtz
t + λt−1z

t−1 + · · ·+ λ1z + λ0. (4.3)

Which means that for t− 1 ≥ k ≥ 0, we have
∑t

j=0 λjf
(j+k)(p) = 0. Furthermore,

Theorem 1 in [7] shows the following t× t matrix is non-singular for any p > 0:




f (0)(p) f (1)(p) . . . f (t−1)(p)

f (1)(p) f (2)(p) . . . f (t)(p)

...
...

. . .
...

f (t−1)(p) f (t)(p) . . . f (2t−2)(p)




. (4.4)

Lakshman and Saunders gave the following univariate sparse interpolation in

the Pochhammar basis [17].

The sparse interpolation in the Pochhammer basis

Input:

f(x): a univariate black box polynomial.

t: the number of non-zero terms in f , in the Pochhammer basis.

Output:

cj and ej: f(x) =
∑t

j=1 cjx
ej .

1. (The Berlekamp/Massey algorithm.)

Compute f (k)(p) from the evaluations f(p+ k), where 0 ≤ k ≤ 2t− 1 and p > 0.

Determine Λ(z) from {f (k)(p)}0≤k≤2t−1.

2. (Determine ej.)
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Find all t distinct roots ej of Λ(z), which are the Pochhammer term exponents

in f(x).

3. (Compute the coefficients cj.)

Solve a transposed Vandermonde system:

cjp
ej can be obtained from solving a transposed Vandermonde system.

Compute cj from cjp
ej since p and ej are known.

End.

4.2 Early termination of sparse interpolations in

the Pochhammer basis

The sparse interpolation in the Pochhammer basis [17] needs an input t as the

number of non-zero Pochhammer terms in the target polynomial f(x). Then in

order to form the sequence {f (k)(p)}0≤k≤2t−1, f(x) is queried as many as 2t times

at p + k, where k = 0 . . . 2t− 1 and p > 0.

Notice that during the evaluation step: rather than a sequence of powers of

a value p as in the Ben-Or/Tiwari algorithm, f(x) is evaluated at a sequence of

subsequent numbers of a positive value p, which are p, p+1, . . .. The difference in

the sequences of evaluation points reflects the construction of the varying bases.

Recall that Λ(z) in (4.3) generates {f (k)(p)}2t−1≥k≥0. In order to implement

early termination in the sparse interpolation under the Pochhammer basis, we need

to show Λ(z) generates {f (k)(p)}k≥0 as well.

Theorem 4.1. For p > 0, Λ(z) generates {f (k)(p)}k≥0.
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Proof:

From Lemma 1 in [17], we have

t∑
j=0

λjf
(j+k)(p) = 0 and

t∑
j=0

λjf
(j+k)(p + 1) = 0.

By (4.2) and the induction on k,

p·
( t∑

j=0

λjf
(j+k)(p + 1)−

t∑
j=0

λjf
(j+k)(p)

)

=
t∑

j=0

λj · p ·
(
f (j+k)(p + 1)− f (j+k)(p)

)

=
t∑

j=0

λjf
(j+k+1)(p) = 0. £

Now, if Λ(z) is the minimal polynomial of {f (k)(p)}k≥0, Λ(z) can be obtained

through the Berlekamp/Massey algorithm. Similar to the discussion in Section 3.3,

the occurrence of a zero discrepancy at i > 2L on sequence {f (k)(x)}k≥0 is directly

related to the singularity of the following Hankel matrix:

Ak =




f (0)(x) f (1)(x) . . . f (k−1)(x)

f (1)(x) f (2)(x) . . . f (k)(x)

...
...

. . .
...

f (k−1)(x) f (k)(x) . . . f (2k−2)(x)




.

Theorem 4.2. The determinant of Ak is nonzero for k = 1, . . . , t.

Proof:

Recall the definition of f (k)(x) in (4.1) for 2t − 2 ≥ k ≥ 0. The following
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factorizations of Ak can be verified via matrix multiplications:

Ak =




f (0)(x) f (1)(x) . . . f (k−1)(x)

f (1)(x) f (2)(x) . . . f (k)(x)

...
...

. . .
...

f (k−1)(x) f (k)(x) . . . f (2k−2)(x)




=




1 1 . . . 1

e1
1 e1

2 . . . e1
t

...
...

. . .
...

ek−1
1 ek−1

2 . . . ek−1
t







c1x
e1 0 . . . 0

0 c2x
e2 . . . 0

...
...

. . .
...

0 0 . . . ctx
et







1 e1
1 . . . ek−1

1

1 e1
2 . . . ek−1

2

...
...

. . .
...

1 e1
t . . . ek−1

t




= BkCtBTr
k . (4.5)

Apply the Binet-Cauchy formula [8] in (3.4) to (4.5) with K = {1,. . .,k} we

have

det(Ak) = (BkCtBTr
k )K,K

=
∑

J

∑
L

(Bk)K,J(Ct)J,L(BTr
k )L,K

=
∑

J

(Bk)K,J(Ct)J,J(BTr
k )J,K

=
∑

J={j1,...,jk}
cj1 · · · cjk

xej1xej2 · · · xejk · det
(




1 1 . . . 1

e1
j1

e1
j2

. . . e1
jk

...
...

. . .
...

ek−1
j1

ek−1
j2

. . . ek−1
jk




)2

=
∑

J={j1,...,jk}
cj1 · · · cjk

xej1xej2 · · · xejk ·
∏

1≤v<u≤k

(eju − ejv)
2. (4.6)
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In polynomial (4.6), the highest order term ct · · · ct−k+1 xet · · · xet−k+1
∏

1≤v<u≤k(eu−

ev)
2 appears nowhere else, hence the polynomial does not vanish and det(Ak) is

nonzero for t ≥ k ≥ 1. £

From Theorem 4.2 and the following lemma, we conclude that with high prob-

ability when performing the Berlekamp/Massey algorithm on {f (k)(p)}k≥0 a zero

discrepancy at i > 2L occurs the first time when i = 2t + 1 (that is, at f (2t)(p).)

Lemma 4.1. det(Ak) = 0 if and only if k > t.

Proof:

For k = 1, . . . , t, det(Ak) 6= 0, therefore det(Ak) = 0 implies k > t.

Since Λ(z) generates {f (k)(x)}k≥0, when k > t, the k-th row (or column) of

Ak is a linear combination of (k − t)-th through (k − 1)-th rows (or columns.)

Therefore, det(Ak) = 0 when k > t. £

Again, following the transition from a symbolic point x to a random value p via

the the Schwartz-Zippel lemma [24, 21] (also see [4],) the early termination strategy

is implemented in the univariate sparse interpolation under the Pochhammer basis.

Theorem 4.3. Let S be a subset of the domain of values, which is assumed to

be an integral domain, and that all the elements in S are positive. If p is chosen

randomly and uniformly from S, suppose

f (k)(x) =
t∑

j=1

ek
j cjx

ej ,

where f(x) =
∑t

j=1 cjx
ej and xej the Pochhammer terms. Then on the sequence of

{f (k)(p)}k≥0, the Berlekamp/Massey algorithm encounters ∆ = 0 and i > 2L the
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first time at i = 2t + 1 with probability no less than

1− t(t + 1)(3 deg(f) + 1− t)

6 ·#(S)
,

where #(S) is the number of elements in S.

Proof:

Through (4.6), we have deg(detAk) ≤
∑k−1

j=0

(
deg(f)− j

)
= k deg(f) + k/2−

k2/2. We need to avoid all the possible zeroes in the product
∏t

k=1 detAk, whose

degree is no more than

t∑

k=1

(
k deg(f) +

k

2
− k2

2

)
=

t(t + 1)(3 deg(f) + 1− t)

6 ·#(S)
.

The estimate of the probability follows from Lemma 1 in [21]. £

As a similar modification to the early termination of the Ben-Or/Tiwari al-

gorithm in Section 3.3, to improve the probability of correctness, we introduce

threshold ζ to our early termination version of the sparse interpolation in the Poch-

hammer basis. The early termination is only triggered after a zero discrepancy with

i > 2L occurs ζ many times in a row. Again, the analysis of the probability with

higher thresholds requires further investigations on the conditional probabilities

P (det(Ak+1) = 0| det(Ak) = 0), where Ak are Ak evaluated at x = p.

The sparse interpolation with early termination in the Pochhammer

basis

Input:

f(x): a univariate black box polynomial.

ζ: a positive integer, the threshold for early termination.

41



Output:

cj and ej: f(x) =
∑t

j=1 cjx
ej with high probability.

Or an error message: if the procedure fails to complete.

1. (The early termination within the Berlekamp/Massey algorithm.)

Pick a random positive value p > 0.

For i = 1, 2, . . .

Perform the Berlekamp/Massey algorithm on the sequence {f (k)(p)}i−1≥k≥0,

where f (k)(p) are computed from the evaluations f(p + k) for k = 0, . . . , i− 1.

If both ∆i = 0 and i > 2L happen ζ many times in a row, then

break out of the loop;

set Λ(z) to the reverse of Λ
(rev)
r (z) that was computed inside the algorithm.

2. (Determine ej.)

Compute all the roots of Λ(z).

If Λ(z) does not completely factor, or not all the roots are distinct non-negative

integers, then

the early termination was false;

else,

the roots are ej, the exponents of Pochhammer terms in f(x).

3. (Compute the coefficients cj.)

Solve a transposed Vandermonde system:

cjp
ej can be obtained from solving a transposed Vandermonde system.

Compute cj from cjp
ej since p and ej are known.

End.
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4.3 Univariate sparse interpolations in the Che-

byshev basis

Let Ti(x) denote the i-th Chebyshev polynomial of the first kind:

T0(x) = 1, T1(x) = x, Ti(x) = 2xTi−1(x)− Ti−2(x) for i ≥ 2.

A polynomial f(x) over a field K is t-sparse in the Chebyshev basis if and only

if for j = 1, . . . , t, cj 6= 0 and cj ∈ K, δj ∈ Z≥0, such that

f(x) =
t∑

j=1

cjTδj
(x), δ1 < δ2 < · · · < δt.

Consider for some p > 1, ak = f(Tk(p)) for k = 0, 1, . . . , 2t − 1, and define an

auxiliary polynomial Λ(z) of degree t as the following:

Λ(z) =
t∏

j=1

(z − Tδi
(p)) = λtTt(z) + λt−1Tt−1(z) + · · ·+ λ0T0(z)

= Tt(z) + λt−1Tt−1(z) + · · ·+ λ0T0(z). (4.7)

Lakshman and Saunders showed that for i ≥ 0, we have the following linear

relations (see Lemma 5 in [17]:)

t−1∑
j=0

λj(aj+i + a|j−i|) = −(at+i + a|t−i|). (4.8)
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The linear relations (4.8) form the following system of equations:




2a0 2a1 . . . 2at−1

2a1 a2 + a0 . . . at + at−2

...
...

. . .
...

2at−1 at + at−2 . . . a2t−2 + a0







λ0

λ1

...

λt−1




= −




2at

at+1 + at−1

...

a2t−1 + a1




. (4.9)

Consider the t× t symmetric Hankel-plus-Toeplitz matrix At in (4.9):

At =




2a0 2a1 . . . 2at−1

2a1 a2 + a0 . . . at + at−2

...
...

. . .
...

2at−1 at + at−2 . . . a2t−2 + a0




. (4.10)

By showing that At is non-singular (Lemma 6 in [17],) Lakshman and Saun-

ders proposed the following univariate sparse interpolation in the Chebyshev basis

(see [17] for more details.)

The sparse interpolation in the Chebyshev basis

Input:

f(x): a univariate black box polynomial.

t: the number of non-zero terms in f , in the Chebyshev bases.

Output:

cj and δj: f(x) =
∑t

j=1 cjTδj
(x).

1. (Solve the symmetric Hankel-plus-Toeplitz system in (4.9).)

p > 1, ak = f(Tk(p)) for k = 0, 1, . . . , 2t− 1.
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Determine Λ(z):

λt = 1, and for 0 ≤ j ≤ t − 1, the coefficients λj are obtained by solving the

symmetric Hankel-plus-Toeplitz system in (4.9).

2. (Determine δj.)

Find all t distinct roots of Λ(z), which are Tδj
(p).

Determine the Chebyshev term exponents δj from Tδj
(p).

3. (Compute the coefficients cj.)

Recover the coefficients cj of the Chebyshev terms Tδj
(p):

solve a transposed Vandermode-like system (see the discussion in [17].)

End.

Remark: By proving At is non-singular, Lakshman and Saunders assured the

solution to system (4.9) in Step 1. Nevertheless, in general it does not promise the

system being solved in O(t2) field operations. Gohberg and Koltracht presented

an algorithm that can solve a symmetric Hankel-plus-Toeplitz matrix in O(t2), yet

it requires all principal leading submatrices being non-singular. More details are

carried out in Section 4.4.

4.4 Early termination of sparse interpolations in

the Chebyshev basis

Gohberg and Koltracht [9] presented an efficient O(n2) algorithm for solving an

n× n symmetric Hankel-plus-Toeplitz matrix with non-singular principal leading

submatrices.
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In order to apply the efficient O(n2) algorithm to our symmetric Hankel-plus-

Toeplitz matrix, we need to assure that for a random value p > 1, with high

probability, the corresponding matrix At defined as in (4.10) and all its principal

leading submatrices are non-singular. Yet, this is not true in general: for any

polynomial f(x) =
∑t

j=1 cjTδj
(x) with cj 6= 0 and c1 + c2 + · · · + ct = 0, we have

a0 = f(T0(p)) = f(1) =
∑t

j=1 cj = 0 and the first leading submatrix

A1 =

[
2a0

]
=

[
0

]

singular.

We fix this problem by adding an additional random value to the constant term

of f(x): pick a random value pc, instead of f(x), we proceed with the interpolation

on f̃(x) = f(x) + pc. With the additional random value included, the sum of all

coefficients in f̃(x) is non-zero with high probability. (In case that f̃(T0(p)) = 0 is

encountered, we can pick another non-zero random value p̃c and reassign pc as pc

+ p̃c. Thus, we always start with a 1 × 1 non-singular leading submatrix.) After

the interpolation is done, the original target polynomial f(x) can be recovered by

simply removing the additional random value from f̃(x). In Theorem 4.4, this

additional random number also provides all other principal leading submatrices

non-singular with high probability.

Consider f̃(x) =
∑t̃

j=1 c̃jTδj
(x) with δ1 < δ2 < · · · < δt̃ whose constant term has

already been “randomized,” and let the symbol y represent the random component

in the constant term of f̃(x). Therefore, we have
∑t

j=1 cj + y =
∑t̃

j=1 c̃j. Our

purpose is to prove that in symbolic values, or variables x and y, the symmetric
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Hankel-plus-Toeplitz matrices Ai are non-singular for i = 1, . . . , t̃ and that At̃+1 is

singular.

Let αk = f̃(Tk(x)) for k = 0, 1, . . . , 2t̃ − 1, and consider the i × i symmetric

Hankel-plus-Toeplitz matrix Ai for i ≥ 1 whose entries are polynomials in variables

x and y:

Ai =




2α0 2α1 . . . 2αi−1

2α1 α2 + α0 . . . αi + αi−2

...
...

. . .
...

2αi−1 αi + αi−2 . . . α2i−2 + α0




. (4.11)

The singularity of Ai for i ≥ t̃ + 1 can be concluded through Lemma 5 in [17],

which states any p > 1 satisfies the corresponding linear relations
∑t̃

j=0 λj(aj+i +

a|j−i|) = 0 for i = 0, 1, . . ..

As for 1 ≤ i ≤ t̃, via matrix multiplications (also see Lemma 6 in [17],) the

factorization Ai = ViCVTr
i can be verified, where

Vi =




Tδ1(T0(x)) Tδ2(T0(x)) . . . Tδt̃
(T0(x))

...
...

. . .
...

Tδ1(Ti−1(x)) Tδ2(Ti−1(x)) . . . Tδt̃
(Ti−1(x))




,

C =




2c1 0 . . . 0

0 2c2 . . . 0

...
...

. . .
...

0 0 . . . 2ct̃




.

The Chebyshev polynomials commute with respect to composition: that is, for
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m,n ≥ 0, Tn(Tm(x)) = Tmn(x) = Tm(Tn(x)), and

Vi =




Tδ1·0(x) Tδ2·0(x) . . . Tδt̃·0(x)

...
...

. . .
...

Tδ1·(i−1)(x) Tδ2·(i−1)(x) . . . Tδt̃·(i−1)(x)




. (4.12)

Lemma 4.2. For n ≥ 1, Tn·δ(x) =
∑n

i=0 γn,iTδ(x)i and γn,n = 2n−1.

Proof:

When n = 1, 2, the above statement is true.

Assume for some k the statement is true for all n ≤ k, and consider n = k + 1,

T(k+1)·δ(x) = T(k·δ+δ)(x) = 2Tδ(x) · Tk·δ(x)− T(k−1)·δ(x)

= 2Tδ(x) · Tk·δ(x)−
(
2k−2Tδ(x)k−1 +

k−2∑
i=0

γk−1,iTδ(x)i
)

= 2Tδ(x) ·
(
2k−1Tδ(x)k +

k−1∑
i=0

γk,iTδ(x)i
)
−

k−1∑
i=0

γk−1,iTδ(x)i

= 2kTδ(x)k+1 +
k∑

i=0

γk+1,iTδ(x)i

=
k+1∑
i=0

γk+1,iTδ(x)i.

By mathematical induction, T(k+1)·δ(x) =
∑k+1

i=0 γk+1,iTδ(x)i with γk+1,k+1 = 2k,

and that Lemma 4.2 is proved. £

Through Lemma 4.2, we can factorize Vi in (4.12) as a product of an i × i

lower triangular matrix Li and an i× t̃ rectangular Vandermonde matrix Bi as the
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following:

Vi =




1 0 0 0 . . . 0

0 1 0 0 . . .
...

∗ ∗ 2 0 . . .
...

∗ ∗ ∗ 4 . . .
...

...
...

...
...

. . .
...

∗ ∗ ∗ ∗ . . . 2i−2







Tδ1(x)0 Tδ2(x)0 . . . Tδt̃
(x)0

Tδ1(x)1 Tδ2(x)1 . . . Tδt̃
(x)1

...
...

. . .
...

Tδ1(x)i−1 Tδ2(x)i−1 . . . Tδt̃
(x)i−1




= LiBi. (4.13)

Therefore, for 1 ≤ i ≤ t̃, Ai can be factorized as

Ai = ViCVTr
i = LiBiC(LiBi)

Tr = Li(BiCBTr
i )LTr

i . (4.14)

In [17], Lakshman and Saunders showed At̃ is non-singular (see Lemma 6.) Our

next theorem shows all its principal leading submatrices are also non-singular.

Theorem 4.4. The determinant of Ai is non-zero for i = 1, . . . , t̃− 1.

Proof:

For i with 1 ≤ i < t̃, from Ai = Li(BiCBTr
i )LTr

i in (4.14) we have

det(Ai) = det(Li) · det(BiCBTr
i ) · det(LTr

i ).

Assume that det(BiCBTr
i ) = 0 for some 1 ≤ i < t̃, which implies all the terms

in det(BiCBTr
i ) are zero. In other word, for every ordered list I from {1, 2, . . . , t̃}

such that #(I) = i − 1 and jk ∈ I with index k = 1, . . . , i − 1, the coefficient of
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term
∏

jk∈I

(
Tδj

(x)
)2k

is zero, that is,

2i ·
∏
jk∈I

c̃jk
·

∑

j∈{1,2,...,t̃}−I

c̃j = 0.

Knowing that both 2i and
∏

jk∈I c̃jk
are non-zero, it has to be that

∑

j∈{1,2,...,t̃}−I

c̃j = 0. (4.15)

Adding all the possible sums in (4.15), we have

∑

#(I)=i−1

( ∑

j∈{1,2,...,t̃}−I

c̃j

)
= (t̃− 1) · (t̃− 2) · · · (t̃− i + 1) ·

t̃∑
j=1

c̃j = 0. (4.16)

The sum in (4.16) implies that
∑t

j=1 c̃j = y+
∑t

j=1 cj = 0, which is a contradic-

tion since the variable y cannot be cancelled in y+
∑t

j=1 cj. Hence, det(BiCBTr
i ) 6= 0

for all 1 ≤ i < t̃.

We conclude det(LTr
i ) = det(Li) 6= 0 from their non-zero diagonals. Therefore,

detAi 6= 0 for 1 ≤ i < t̃. £

We have Ai being non-singular in symbolic values x and y for i = 1, . . . , t̃ and

singular for i ≥ t̃ + 1. Now make a transition from symbolic values x and y to

random numbers p and pc, and evaluate Ai in (4.11) at x = p and y = pc as matrix

values Ai. With high probability, when i is being increased, matrix Ai is singular

the first time at i = t̃ + 1.

The original Gohberg/Koltracht algorithm [9] solves for Ax = c when A and c

are given and that A is provided as a non-singular symmetric Hankel-plus-Toeplitz
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matrix with all its principal leading submatrices non-singular. In our implementa-

tion, which is presented as the following modified Gohberg/Koltracht algorithm,

we look for λj, 0 ≤ j ≤ t̃, that satisfy the relations as in (4.8). In other word,

with the first non-singular 1× 1 matrix provided, we find the solution to the first

singular system At̃+1λ = 0 such that λ = [λ0, λ1, . . . , λt̃]
Tr and λt̃ = 1.

We use ãi,j to represent the entry at i-th row and j-th column in the given

symmetric Hankel-plus-Toeplitz matrix, and underline vector variables to distin-

guish them from their indexed components, for example γ = [γ1, γ2, . . . , γi]
Tr. The

matrix Ii is the i× i identity matrix, and Li is the i× i matrix defined as:

Li =




0 . . . . . . . . . 0

1 0 . . . 0
...

0 1
. . .

...
...

...
. . . . . . 0

...

0 . . . 0 1 0




.

The modified Gohberg/Koltracht algorithm

Input:

hk and tk, k ∈ Z≥0: ãi,j = hi+j−2 + t|i−j| define the entries in the given symmet-

ric Hankel-plus-Toeplitz system and that ã1,1 6= 0.

Output:

λ = [λ0, λ1, . . . , λt]
Tr: At+1λ = 0 with λt = 1, where t ≥ 1 is the smallest integer

such that the given symmetric Hankel-plus-Toeplitz system At+1 is singular.

1. (We have ã1,1 6= 0, the discrepancy ∆ checks whether A2 is singular. If ∆ = 0,
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return λ such that A2λ = 0 and λ1 = 1; otherwise, proceed with the initializa-

tion.)

∆ ← ã1,1ã2,2 − ã1,2ã2,1;

If ∆ = 0 then

Return λ = [−ã1,2/ã1,1, 1]Tr;

Else

γ ← [1/ã1,1];

i ← 1;

ψ ← [1/ã1,1];

φ ← [t1/ã1,1];

α ← ã2,1/ã1,1;

γnew ← (1/∆) · [−ã1,2, ã1,1]
Tr;

2. (As i being increased, if ∆ 6= 0, follow the Gohberg/Koltracht algorithm [9]

and update γnew such that Ai+1γ
new = [0, . . . , 0, 1]Tr. If ∆ = 0, than Ai+1 is

singular (see Theorem 4.5,) we assign λt = 1 and update the rest of λ so that

Ai+1λ = 0.)

While ∆ 6= 0 do

i ← i + 1;

κ ← (ti + hi−2)−
∑i−1

j=1 ãi,j · φj;

µ ← −∑i−1
j=1 ãi,j · ψj;

φnew ← [φTr, 0]Tr + κ · γnew;

ψnew ← [ψTr, 0]Tr + µ · γnew;

αnew ← ∑i
j=1 ãi+1,j · γnew

j ;

b ← (
(α− αnew)Ii + Li + LTr

i

) · γnew − [γTr, 0]Tr + ψnew
i · φnew − φnew

i · ψnew;

ν ← (
γnew

i

)−1 ·∑i
j=1 ãi+1,j · bj;

∆ ← ν + ãi+1,i+1;

If ∆ = 0 then
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λi ← 1;

For j = 0 . . . i− 1 do

λj ← bj+1/γ
new
i ;

Return λ = [λ0, λ1, . . . , λi]
Tr;

Else

γ ← γnew;

γnew
i+1 ← 1/∆;

For j = 1, . . . , i do

γnew
j ← (

γnew
i+1 /γi

) · bj;

(At the end of Step 2, update variables for next i.)

φ ← φnew;

ψ ← ψnew;

α ← αnew;

End.

Notice that in our modified Gohberg/Koltracht algorithm, instead of checking

the value of a determinant, we check the discrepancy ∆. Theorem 4.5 shows the

discrepancy ∆ in the modified Gohberg/Koltracht algorithm reflects the singularity

a corresponding matrix.

We need the following lemma for Theorem 4.5.

Lemma 4.3. In the modified Gohberg/Koltracht algorithm, if we encounter

∆ = 0 for some i ≥ 1, then at the end of Step 2, we have

Ai+1λ = [0, · · · , 0]Tr.
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Proof:

If ∆ = 0, we have λi = 1 and λj = bj/γ
new
i+1 for 0 ≤ j ≤ i − 1. The matrix

multiplication of the (i + 1)-th row in Ai+1 and λ is the following:

[ãi+1,1, · · · , ãi+1,i+1]λ = ãi+1,i+1 +
i∑

j=1

ãi+1,j ·
( bj

γnew
i

)

︸ ︷︷ ︸
ν

= ∆ = 0.

The products of the matrix multiplication between the j-th row and λ for 1 ≤ j ≤ i

are all zero by the definitions of λj for 0 ≤ j ≤ i− 1 (see page 139–140 in [9].) £

Theorem 4.5. In the modified Gohberg/Koltracht algorithm, for any i ≥ 1,

if det(Aj) 6= 0 for all 1 ≤ j ≤ i, then the discrepancy ∆ is zero if and only if

det(Ai+1) = 0.

Proof:

If det(Aj) 6= 0 for all 1 ≤ j ≤ i and ∆ is non-zero, Ai+1 can be inverted through

Gohberg/Koltracht algorithm. Therefore, det(Ai+1) 6= 0.

To prove another direction, we assume the discrepancy ∆ to be zero. From

Lemma 4.3, we have a non-zero solution to Ai+1λ = 0 and det(Ai+1) = 0. £

In Theorem 4.5, we show the vanishing of discrepancies indicates the singulari-

ties of Ai+1. Now back to our sparse interpolation in the Chebyshev basis, without

the input t̃, the number of non-zero terms in the Chebyshev basis, the coefficients

λj in Λ(z) can be determined at the zero discrepancy ∆ = 0 with high probability.

Using the discrepancy ∆ = 0 as the termination test, the early termination strategy

can be implemented to the sparse interpolation under the Chebyshev basis.

It is questionable whether we can directly implement a threshold ζ > 1 in a
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similar manner as in the early termination versions of the Ben-Or/Tiwari algo-

rithm and the sparse interpolation in the Pochhammer basis. Since the embedded

modified Gohberg/Koltracht algorithm requires ∆ 6= 0 for all the principal leading

matrices in order to proceed with the next i. To exploit the threshold implementa-

tion, we refer to the approach of [3]. We also mention another strategy to further

check λj: when λj are determined from Ai+1, check whether
∑i−1

j=0 λj(aj+k +a|j−k|)

= −(ai+k + a|i−k|) at additional k = i, i + 1, . . ..

Theorem 4.6. If p is chosen randomly and uniformly from a subset S of

the domain of values, which is assumed to be an integral domain, and that all the

elements in S are larger than 1, then for the sequence ak = f̃(Tk(p)) with k ≥ 0

the determinant of the matrix

Ai =




2a0 2a1 . . . 2ai−1

2a1 a2 + a0 . . . ai + ai−2

...
...

. . .
...

2ai−1 ai + ai−2 . . . a2i−2 + a0




encounters 0 the first time at i = t̃ + 1 with probability no less than

1− (t̃− 1)(2t̃2 + 5t̃ + 6) deg(f̃)

6 ·#(S)
,

where f̃(x) is a polynomial whose constant has been “randomized” and t̃ the number

of non-zero terms in f̃(x) with respect to the Chebyshev basis.

Proof:

Through (4.13) and (4.14), we obtain deg(detAi) ≤ i2 · deg(f̃(x)). If det Ai

does not encounter a zero until i = t̃ + 1 and that det A1 6= 0 is provided, we

need to avoid hitting a root of the product
∏t̃

i=2 det(Ai), whose degree is no more
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than (t̃ − 1)(2t̃2 + 5t̃ + 6) deg(f̃)/6. The estimate of the probability follows from

Lemma 1 in [21]. £

Since deg(f) = deg(f̃), we can use deg(f) for the probability estimate in The-

orem 4.6. Now we are ready to present the early termination version of the sparse

interpolation in the Chebyshev basis.

The sparse interpolation with early termination in the Chebyshev basis

Input:

f(x): a univariate black box polynomial.

Output:

cj and δj: f(x) =
∑t

j=1 cjTδj
(x) with high probability.

Or an error message: if the procedure fails to complete.

1. (The first leading principal submatrix is always non-singular.)

Pick a random element p with p > 1 and another random element pc.

If a0 = f(T0(p)) + pc = 0 then

pick a random p̃c 6= 0;

a0 ← p̃c;

pc ← pc + p̃c;

f(x) ← f(x) + pc;

else

f(x) ← f(x) + pc;

2. (The early termination in the modified Gohberg/Koltracht algorithm.)

For i = 1, 2, . . .

56



Perform the modified Gohberg/Koltracht algorithm on the matrix whose en-

tries are defined as ãi,j = ai+j−2 + a|i−j|, where 1 ≤ j ≤ i and ai = f(Ti(p)).

If ∆ = 0, then

the modified Gohberg/Koltracht algorithm returns λj, which define Λ(z)

through its coefficients;

break out of the loop.

3. (Determine δj.)

Compute all the roots of Λ(z) in the domain of p.

If Λ(z) does not completely factor, or not all the roots are distinct, then

the early termination was false.

else determine δj from Tδj
(p), Tδj

(p) are the roots of Λ(z):

again, the recovery of δj might fail.

4. (Compute the coefficients cj.)

Recover the coefficients cj of the Chebyshev terms Tδj
(p):

solve a transposed Vandermode-like system (see the discussion in [17].)

Recover the original input f(x) by removing pc from the result.

End.

Remark: By adding a random value pc or pc + p̃c to the constant term of f(x),

we might introduce one more term (the constant term) to f(x). Namely, t̃ = t

when there is a non-zero constant in f(x), and t̃ = t + 1 when the constant in

f(x) is zero, in which case certainly the overhead interpolations are introduced in

a sparse algorithm. Nevertheless, we consider such added overhead limited.
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Chapter 5

Early Termination in Racing Algorithms

We have implemented the early termination strategy to different existing inter-

polation algorithms. Now suppose a given univariate black box polynomial f(x)

has t as the number of its non-zero terms in a designate basis, η and ζ the given

thresholds, without an input as a bound on either deg(f) or t, with high proba-

bility the early termination strategy enables a dense algorithm to interpolate f in

deg(f) + η + 1 black box queries, and a sparse algorithm to interpolate f in 2t + ζ

queries.

Although a dense algorithm does not take advantage of the sparsity in the tar-

get polynomial, it is more efficient than a sparse algorithm in interpolating a dense

polynomial. Therefore, even though without a bound as an input we can interpo-

late the target polynomial through early termination, we still face the predicament

of selecting a more efficient algorithm which is derived from the sparsity of the tar-

get polynomial.

Based on the early termination, we propose the racing interpolation algorithms.

A racing algorithm races an early termination sparse algorithm against an early
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termination dense interpolation on a same set of evaluation points. Without in-

troducing more polynomial evaluations, it performs two interpolation algorithms

in parallel and terminates when either of the racers finishes interpolation first.

Therefore, the overall racing algorithm is superior than either of the racers be-

cause it takes advantage of both algorithms and compensates for the disadvantage

of either one. We prove the early termination property also exists in the overall

racing algorithm.

5.1 Race dense against sparse interpolations in

early termination

A dense interpolation algorithm requires the evaluations of the target polynomial

on a set of sufficiently many distinct points. Performing a sparse interpolation

algorithm does not prevent us from interpolating on the same set of points via a

dense one in parallel. As a result, we propose an algorithm that races the early

termination versions of a dense interpolation against a sparse interpolation as the

following: on the same set of evaluation points, for every black box probe, we

implement and keep track of both algorithms; whenever either one of the racer

algorithms first terminates via early termination, the overall algorithm terminates.

This is our racing algorithm.

When there is not much, or even without, information on the sparsity of the

target polynomial, the overall racing algorithm is superior in average: the sparse

racer provides the more efficient early termination whenever it is possible; while at

the same time the dense racer guarantees the overall algorithm being terminated
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with respect to the degree of the target polynomial.

However, instead of a sequence of random numbers, the early termination sparse

algorithms need to interpolate on a sequence of numbers constructed by a random

number p. And such construction depends on the designate bases in the sparse

algorithms: p, p2, p3, . . . for the power basis; p, p+1, p+2, . . . for the Pochhammer

basis; and T0(p), T1(p), T2(p), . . . for the Chebyshev basis.

The values in a sequence constructed by a random number p might be dis-

tinct. Yet, in Theorem 2.1, the early termination of dense interpolations requires

polynomial evaluations on a sequence of random numbers, p0, p1, p2, . . ., and that

each pi is randomly generated. Therefore, in order to show the overall racing al-

gorithm is correct with high probability, we need to show the early termination

property for dense interpolations is true when the sequences of evaluation points

are constructed by a random number p.

Suppose i ∈ Z≥0, let bi form a generic basis for a polynomial ring K[p] such

that deg(bi) = i and deg (bi · bj) = i+ j. We use x{n}, n ∈ Z≥0, to denote a generic

rising factorial power in x:

x{n} = (x− b0)(x− b1) · · · (x− bn−1).

A polynomial f(x) with degree n interpolated through Newton on a sequence

of elements constructed by p can be viewed as f(x) interpolated at b0, b1, . . ., and

f(x) represented as:

f(x) =
n∑

i=0

aix
{i}, (5.1)

where ai depend on p and are polynomials in K[p].
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Our purpose is to show ai are nonzero polynomials in K[p] for 0 ≤ i ≤ n

(Theorem 5.4,) so that we can claim when p is a random value, we encounter

ai = 0 first time at i = n + 1 and that f(x) is interpolated as (5.1) with high

probability.

When deg(f) = n, comparing the representations of f(x) in the power basis

and in the generic rising factorial power basis, we have

f(x) =
n∑

i=0

aix
i =

n∑
i=0

aix
{i}, (5.2)

with both an and an nonzero.

Now consider the transformations from the generic factorial power basis to

the power basis. For all n, the coefficients c
(n)
i , which depend on bj, define the

transformation:

xn =
n∑

i=0

c
(n)
i x{i}. (5.3)

We need the following lemma for proving Theorem 5.1.

Lemma 5.1. For any integer k > 1 and every k − 1 ≥ j ≥ 1,

x ·
j∑

s=0

c(k−1)
s x{s} = c

(k−1)
j x{j+1} + bjc

(k−1)
j x{j} + x ·

j−1∑
s=0

c(k−1)
s x{s}.

Proof:
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Replace x as (x− bj + bj):

x ·
j∑

s=0

c(k−1)
s x{s} =(x− bj + bj)

j∑
s=0

c(k−1)
s x{s}

=(x− bj)

j∑
s=0

c(k−1)
s x{s} + bj

j∑
s=0

c(k−1)
s x{s}

=(x− bj)
(
c
(k−1)
j x{j} +

j−1∑
s=0

c(k−1)
s x{s}

)

+ bj

j∑
s=0

c(k−1)
s x{s}

=c
(k−1)
j x{j}(x− bj) + x ·

j−1∑
s=0

c(k−1)
s x{s}

− bj

j−1∑
s=0

c(k−1)
s x{s} + bj

j∑
s=0

c(k−1)
s x{s}

=c
(k−1)
j x{j+1} + x ·

j−1∑
s=0

c(k−1)
s x{s}

+ bj

(
−

j−1∑
s=0

c(k−1)
s x{s} +

j∑
i=0

c(k−1)
s x{s}

)

=c
(k−1)
j x{j+1} + bjc

(k−1)
j x{j} + x ·

j−1∑
s=0

c(k−1)
s x{s}. £

The following theorem shows how to update c
(n)
i from c

(n−1)
j and bj.

Theorem 5.1. For n ≥ 1, c
(n)
n = 1, c

(n)
0 = b0c

(n−1)
0 , and for n > s > 0,

c(n)
s = bsc

(n−1)
s + c

(n−1)
s−1 .

Proof:
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Repeatedly apply Lemma 5.1 for j from n− 1 to 1 to

x ·
n−1∑
s=0

c(n−1)
s x{s} :

xn =x · xn−1 = x ·
n−1∑
s=0

c(n−1)
s x{s}

=c
(n−1)
n−1 x{n} + bn−1c

(n−1)
n−1 x{n−1} + x ·

n−2∑
s=0

c(n−1)
s x{s}

=c
(n−1)
n−1 x{n} +

(
bn−1c

(n−1)
n−1 + c

(n−1)
n−2

)
x{n−1} + · · ·+

(
bsc

(n−1)
s + c

(n−1)
s−1

)
x{s}

+ · · ·+
(
b1c

(n−1)
1 + c

(n−1)
0

)
x{1} + b0c

(n−1)
0 x{0}

=
n∑

s=0

c(n)
s x{s}.

Compare the coefficients in c
(n)
s and c

(n−1)
s , we have c

(n)
0 = b0c

(n−1)
0 and c

(n)
s =

bsc
(n−1)
s + c

(n−1)
s−1 for 0 < s < n.

We still need to prove 1 = c
(n)
n . This is easy because c

(n)
n = c

(n−1)
n−1 and c

(0)
0 = 1.

£

Now we define c
(n)
s = 0 for all s > n and consider c

(n)
s in terms of bj and p,

where bj are univariate polynomials in p. Next theorem is on the degree of c
(n)
s in

the variable p.

Theorem 5.2. For any integer n > 0, and any integer s such that n > s > 0,

deg (c(n)
s (p)) = s · (n− s).

Proof:

63



Repeatedly apply Theorem 5.1,

c(n)
s = bsc

(n−1)
s + c

(n−1)
s−1

= bs

(
bsc

(n−2)
s + c

(n−2)
s−1

)
+

(
bs−1c

(n−2)
s−1 + c

(n−2)
s−2

)

=
(
bs

)2
c(n−2)
s + bsc

(n−2)
s−1 + bs−1c

(n−2)
s−1 + c

(n−2)
s−2

=
(
bs

)2
(
bsc

(n−3)
s + c

(n−3)
s−1

)
+ bs

(
bsc

(n−3)
s−1 + c

(n−3)
s−2

)
+ · · ·

=
(
bs

)n−s
c(s)
s + lower degree terms in p.

Since deg(bi · bj) = i + j and c
(s)
s = c

(s−1)
s−1 = 1, when n > s > 0,

deg (c(n)
s (p)) = s · (n− s). £

Based on Theorem 5.2, next theorem compares the degrees between c
(n+1)
s (p)

and c
(n)
s (p) in the variable p.

Theorem 5.3. For any integer n > 0, and any integer s such that n > s > 0,

deg (c(n+1)
s (p)) > deg (c(n)

s (p)).

Proof:

When n > s > 0, through Theorem 5.2,

deg (c(n+1)
s (p)) = s · (n + 1− s) > s · (n− s) = deg (c(n)

s (p)). £

For a polynomial f(x) represented in the power basis and the generic factorial

power basis in (5.2), deg(f) = n implies an 6= 0. Next theorem shows that for
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every 0 < i ≤ n, ai is a nonzero polynomial in variable p.

Theorem 5.4. Let f(x) =
∑n

i=0 aix
i =

∑n
i=0 aix

{i}. If an 6= 0, for every

0 < i ≤ n, ai is a non-zero polynomial in p. Moreover, an = an.

Proof:

Expand f(x) and collect all the terms with respect to the generic bases x{i}:

f(x) =
n∑

i=0

aix
i =

n∑
i=0

(
ai ·

i∑
j=0

c
(i)
j x{j}

)

=an

( n∑
j=0

c
(n)
j x{j}

)
+ an−1

( n−1∑
j=0

c
(n−1)
j x{j}

)
+ · · ·+ a1

( 1∑
j=0

c
(1)
j x{j}

)
+ a0x

{0}

=anc(n)
n x{n} +

(
anc

(n)
n−1 + an−1c

(n−1)
n−1

)
x{n−1} + · · ·+

(
anc

(n)
i + an−1c

(n−1)
i + · · ·+ aic

(i)
i

)
x{i} + · · ·+

(
anc

(n)
0 + · · ·+ a0c

(0)
0

)
x{0}

=
n∑

i=0

( n−i∑
j=0

an−jc
(n−j)
i

)
x{i} =

n∑
i=0

aix
{i}.

Compare the coefficients, for n ≥ i > 0, we have

ai =
n−i∑
j=0

an−jc
(n−j)
i

and an = anc
(n)
n = an since c

(n)
n = 1.

From Theorem 5.3, the highest order term in c
(n)
i (p) occurs nowhere else in

ai(p) = anc
(n)
i + an−1c

(n−1)
i + · · · + aic

(i)
i . Therefore, if an is non-zero, ai(p) is not

a zero polynomial in p for every 0 < i ≤ n. £

Theorem 5.4 states that ai(p) are non-zero polynomials for 0 < i ≤ n when

n = deg(f). Therefore, if p is a random number, then with high probability

ai(p) = 0 occurs the first time at i = n + 1. Our racing algorithms require the
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early termination of Newton interpolation to be true on sequences constructed by

a random number p in the sparse algorithms. By showing the designate bases as

special cases of the generic basis in Theorem 5.4, following theorems provide the

early termination for different racing algorithms.

Theorem 5.5. If p is randomly picked and p /∈ {0, 1}, the early termination

of Newton interpolation is true if it interpolates on the sequence p1, p2, . . . , pk, . . ..

Proof:

For any non-zero number pc, we can let bi = pc · pi and deg (bi) = i. Now that

p is a non-zero random number, assign pc as p and apply Theorem 5.4. £

Theorem 5.6. If p is randomly picked, the early termination of Newton in-

terpolation is true if it interpolates on the sequence T0(p), T1(p), . . ., Tk(p), . . ..

Proof:

Let Ti(p) = bi and deg (bi) = deg (Ti(p)) = i, then apply Theorem 5.4. £

Remark: In our implementation, we first race both algorithms on a sequence,

b0(p1), b1(p1), . . ., constructed by a random number p1. It is possible that the sparse

racer terminates first, yet unsuccessfully, while the dense racer has not finished the

interpolation process. Whenever such scenario happens, we pick another random

value p2 and use p2 to construct a new sequence b0(p2), b1(p2), . . .. Then on this

new sequence, we restart the sparse racer but keep updating the existing dense

interpolant (see Section 5.2 for more details.) To show the early termination in

Newton exists for the “restarting” of the race, both Theorems 5.5 and 5.6 can be

modified by assigning pi in a lexicographic order as p1 ≺ p2 ≺ · · · ≺ pi ≺ · · · .

When Newton is racing against the sparse algorithm in the Pochhammer ba-

sis, it interpolates on the subsequent values p, p + 1, p + 2, . . .. Since deg(p) =
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deg(p + 1) = deg(p + 2) = · · · , in this case Theorem 5.4 cannot be applied to

the early termination of Newton interpolation. The next theorem provides the

early termination for the racing algorithm that races Newton against the sparse

algorithm in the Pochhammer basis.

Theorem 5.7. If p is randomly picked, the early termination of Newton in-

terpolation is true if it interpolates on the sequence p, p + 1, p + 2, . . ..

Proof:

Suppose deg(f) = n and f [i] the i-th Newton interpolant which interpolates p,

p + 1, p + 2, . . ., p + i, we have

f [i](x) = f [i−1](x) + ci(x− p)(x− p− 1) · · · (x− p− i + 1).

If f is not a zero polynomial, c0 = f(p) is not a zero polynomial in variable p.

Let 0 ≤ i < n, suppose for every 0 ≤ k ≤ i, ck is a non-zero polynomial in p

and deg(f [i](x)) = i. Consider ci+1 in the i + 1-th interpolant:

f [i+1](x) = f [i](x) + ci+1(x− p)(x− p− 1) · · · (x− p− i). (5.4)

When i = n− 1, ci+1 must be a non-zero polynomial in p, since if not, deg(f)

= n = deg(f [n−1]) = deg(f [i]) and deg(f [i]) = i = n− 1, a contradiction.

Now consider 0 ≤ i < n− 1, if for every 0 ≤ k ≤ i, ck is a non-zero polynomial

in p and ci+1 = 0 for every p in its domain, then ci+1 is a zero polynomial and

f [i] = f [i+1]. This implies f [i] = f [i+1] = · · · = f [n] = f . Otherwise suppose f [j] is
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the first interpolant being updated since f [i+1], that is, cj−1 = 0 for all p and

f [j] = f [i] + cj(x− p)(x− p− 1) · · · (x− p− j + 1) (5.5)

with cj 6= 0 and i + 1 < j ≤ n. We expand the newly updated term in (5.5) with

respect to p shifted by 1 as the following:

cj(x− p)(x− p− 1) · · · (x− p− j + 1)

=cj(x− p− j + j)(x− p− 1) · · · (x− p− j + 1)

=cj(x− p− 1) · · · (x− p− j + 1)(x− p− j)

+ cj · j︸︷︷︸
cj−1 6=0

·(x− p− 1) · · · (x− p− j + 1).

Therefore, cj−1 6= 0 when the value of p is shifted by 1 and it is a contradiction to

the claim that cj−1 = 0 for all p. Consequently, if f [i] = f [i+1] for all p, it must be

f [i] = f [i+1] = · · · = f [n] = f .

However, f 6= f [i] as deg(f) = n > i = deg(f [i]), so ci+1 in (5.4) cannot be a

zero polynomial for every 0 ≤ i < n.

When p is a random value and f(x) 6= 0, ci = 0 for 0 ≤ i ≤ deg(f) only when

p hits a zero in ci. As a result, with high probability ci = 0 the first time at

i = deg(f) + 1. £

5.2 Racing algorithm

In this section, we present the algorithm steps of a racing algorithm, which races a

dense algorithm (Newton interpolation) against a sparse algorithm in interpolating
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a univariate black box polynomial f(x).

In our implementation, we pick a random number p1 and construct a sequence

b0(p1), b1(p1), b2(p1), . . . derived from the designate basis in the sparse racer algo-

rithm. Then we in parallel interpolate f(x) via both the early termination versions

of Newton interpolation (dense racer) and a sparse algorithm (sparse racer.) When-

ever the sparse racer successfully terminates earlier than Newton interpolation, the

overall racing algorithm terminates. Nevertheless, it is possible the early termi-

nation of the sparse racer fails for an unlucky p1. In such case we pick another

random number p2 and restart the sparse racer on b0(p2), b1(p2), b2(p2), . . ., while

still keep on updating the existing Newton interpolant on this newly generated se-

quence. We can keep restarting such race until either one of the racers successfully

terminates. Newton interpolation guarantees the termination of the overall algo-

rithm if sufficiently many distinct points have been evaluated. Figure 5.1 shows

an example of a possible scenario.

We give more details of the racing algorithms in the case of racing Newton

interpolation against the Ben-Or/Tiwari algorithm, and provide the outlines of

the racing algorithm for racing Newton against a sparse interpolation.

Recall that in Section 2.2, f [i](x) is the interpolant from interpolating the first

i+1 elements in the evaluation point sequence, and f {k}(x) the first k +1 distinct

elements. To race Newton against Ben-Or/Tiwari, we pick a random number p1 to

form the sequence p1, p
2
1, . . ., and update the Newton interpolant f

[i]
N (x) = f

{k}
N (x)

as well as the error locator polynomial Λi embedded in the Berlekamp/Massey al-

gorithm. When neither Λi nor f
[i]
N (x) satisfies the corresponding early termination
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Figure 5.1: A possible scenario of the racing algorithm.
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criteria, we proceed with the next i. If Λi satisfies the early termination, we con-

tinue with all the remaining steps of the Ben-Or/Tiwari algorithm. Suppose all the

remaining steps are successfully finished, we have f(x) interpolated through Ben-

Or/Tiwari with high probability; otherwise, pick another random element p2 and

restart the Berlekamp/Massey algorithm on p2, p
2
2, . . .. In the meantime, f [i+1](x)

is updated as the interpolant which interpolates p1, p2
1, . . ., pi

1, pi+1
1 , p2. Namely,

we keep updating the Newton interpolant on the sequence of all the black box

probes we have acquired so far. On the other hand, if the Newton interpolant

f
[i]
N (x) = f

{k}
N (x) satisfies the early termination conditions, then f(x) is interpo-

lated as f
[i]
N (x) through Newton and the overall racing algorithm is terminated as

well.

None of the early termination algorithms requires a bound on either the degree

or the number of terms. In our application, we request δ as an upper bound on

deg(f(x)), not for the purpose of interpolations, but for guarding the overall racing

algorithm from running into an infinite loop. In other word, the overall black box

probes and the interpolation efforts are confined by the degree bound δ and the

corresponding thresholds.

Under a domain that provides enough distinct numbers, the Ben-Or/Tiwari

algorithm might terminate earlier in a sparse case, yet due to the unlucky numbers,

it might not finish at all; Newton interpolation might cost more black box probes,

it can always finish interpolating. Therefore, racing these two algorithms can take

advantage of both algorithms. That is, whenever it is possible, it can terminate

earlier while its termination is still guaranteed. In addition, by cross checking the

polynomial information acquired from two different algorithms, we further improve
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the probability of correctness. For example, check whether deg(f(x)) of f(x)

recovered from the Ben-Or/Tiwari algorithm is larger than or equal to the degree

of the most recent Newton interpolant deg(f [i]). The result polynomial f recovered

through Ben-Or/Tiwari cannot be correct if its degree is smaller than the degree

of the most updated Newton interpolant deg(f [i]), because if it were, the target

polynomial would have already been interpolated through Newton interpolation.

The racing algorithm that races Newton against a sparse algorithm1

with early termination

Input:

f(x): a univariate black box polynomial over K.

δ: an upper bound of deg(f) (for guarding against an infinite loop.)

η: the threshold in Newton interpolation.

ζ: the threshold in the sparse racer algorithm.

Output:

f̃(x): with high probability, f̃(x) = f(x).

Or an error message: if the procedure fails.

1. (Initialization.)

0 6= p random2, p ∈ S ⊆ K;

a0 ← b0(p);

ã0 ← a0;

1Of course, the early termination of Newton is required to be proved for the interpolation
points generated via the sparse racer algorithm. Section 5.1 provides proofs for the cases of sparse
algorithms in the power, Pochhammer, and Chebyshev bases.

2Depending on the sparse racer algorithm, there could be other restrictions on p.
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new[race] ← false;

j ← 0;

k ← 0;

Initialize Newton interpolant f
[0]
N at a0;

f
{0}
N ← f

[0]
N ;

Initialize the sparse racer algorithm at ã0;

2. (Interpolate at one more point.)

For i = 1, . . . , δ + η Do3

If new[race] = false then

j ← j + 1;

ai ← bj+1(p);

ãj ← ai;

Update Newton interpolant f
[i]
N on a0, a1, . . ., ai;

If ai /∈ {a0, . . . , ai−1} then

k ← k + 1;

f
{k}
N ← f

[i]
N ;

Update the sparse racer algorithm on ã0, ã1, . . ., ãj;

Else

j ← 0;

randomly generate a non-zero p from S ⊆ K;

3The upper bound δ+η is the default in our implementations. It can be set in other manners
(see Section 7.2) but has to be no less than δ + η when δ is given as δ ≥ deg(f(x)). This is to
confine the overall black box probes and the interpolation efforts in order to avoid an infinite
loop.
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new[race] ← false;

ai ← b0(p);

ã0 ← ai;

Update Newton interpolation f
[i]
N on a0, a1, . . . , ai;

If ai /∈ {a0, . . . , ai−1} then

k ← k + 1;

f
{k}
N ← f

[i]
N ;

Initialize the sparse racer algorithm at ã0;

3. (See whether the sparse racer algorithm finishes before the Newton interpola-

tion.)

If f
{k}
N = f

{k−1}
N = · · · = f

{k−η}
N then

break;

Return f̃ ← f {k};

Else

If the early termination criteria is met ζ many times in a row for the sparse

racer, then

4. (Now we attempt to complete the sparse algorithm. If we fail to complete,

we set new[race] as true in order to restart a race at a new random p.)

Complete the sparse racer algorithm;

If fail to complete, then

new[race] ← true;
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End For;

If f̃ is not defined then Fail;

End.
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Chapter 6

Hybrids of Zippel Algorithm and Other

Improvements

In 1979, Richard Zippel gave an interpolation algorithm [24] that is efficient when

the target polynomial is sparse in the multivariate case. It requires randomization,

and interpolates one variable at a time through a dense univariate algorithm.

In this chapter, we present hybrids of Zippel algorithm by embedding our racing

algorithms in Chapter 5 as the univariate interpolations into Zippel’s scheme. As

a result, the original Zippel algorithm is improved through adopting more efficient

algorithms for its univariate interpolations.

As further refinements on the ideas of prunings in Zippel’s approach through

homogenization as described in [5], we implement permanent prunings and tem-

porary prunings in our hybrids of Zippel algorithm. We also address some issues

that arise from modular implementations.
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6.1 The Zippel algorithm

A black box polynomial f can be represented as the following:

f(x1, . . . , xn) =
∑

(e1,...,en)∈J

ce1,...,enxe1
1 · · ·xen

n , (6.1)

where 0 6= ce1,...,en ∈ K, J ⊆ (Z≥0)
n. Here Z≥0 is the set of non-negative integers.

Note that #(J) is the number of non-zero terms in f .

The Zippel algorithm is based on the following idea: if the representation in

(6.1) is sparse, than during the variable by variable interpolation, a zero coefficient

is the image of a zero polynomial with high probability. We present the Zippel

algorithm now:

The Zippel algorithm

Input:

f : a multivariate black box polynomial over K.

(x1, . . . , xn): an ordered list of variables in f .

δ: an upper bound of deg(f).

Output:

f̃(x1, . . . , xn): with high probability, f̃ = f .

Or an error message: if the procedure fails.

1. (Initialize the anchor points.)

Randomly pick a2, . . . , an from a finite subset S ⊆ K;

2. (Interpolating one more variable: with high probability, we have

f(x1, . . ., xi−1, ai, . . ., an) =
∑

(e1,...,ei−1)∈Ji−1
ce1,...,ei−1

xe1
1 · · · xei−1

i−1 , where 0 6=
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ce1,...,ei−1
∈ K, Ji−1 ⊂ Zi−1

≥0 .)

For i = 1, . . . , n Do

(Update the degree upper bound for monomials in xi.)

δi = max{δ − e1 − · · · − ei−1 | (e1, . . . , ei−1) ∈ Ji−1};

(Update the number of monomials in x1, . . . , xi−1.)

ji−1 ← #(Ji−1);

3. (Interpolate one more degree on the coefficient polynomials. We consider

the coefficients of f in the variables x1, . . . , xi−1 as polynomials in K[xi] and

interpolate those polynomials at b0, . . . , bδi
in the loop for k below. Since those

polynomials are all of degrees no more than δi.)

For k = 0, . . . , δi Do

Randomly pick bk from a subset of K;

4. (For every bk, by solving the following ji−1 by ji−1 transposed Vandermonde

system, we can locate the value of every such coefficient polynomial evalu-

ated at xi = bk.)

Set up a ji−1 by ji−1 transposed Vandermonde system:

For j = 0, . . . , ji−1 − 1 Do

∑

(e1,...,ei−1)∈Ji−1

γe1,...,ei−1,k(ã
j
1)

ei · · · (ãj
i−1)

ei

= f(ãj
1, . . . , ã

j
i−1, bk, ai+1, . . . , an); (6.2)

End j For;

If the system is singular then report ”Failure;”
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Else solve the system for all γe1,...,ei−1,k (see [14];)

5. (Next we interpolate ji−1 many univariate polynomials in xi. Those poly-

nomials are the coefficients, being viewed in K[xi], of terms in the variables

x1, . . . , xi−1. We perform Newton algorithm to interpolate each polynomial

through its values γe1,...,ei−1,k of evaluations at bk for 0 ≤ k ≤ δi.)

For every (e1, . . . , ei−1) ∈ Ji−1 Do

Perform Newton interpolation so that

c
[k]
i,(e1,...,ei−1)(xi) ∈ K[xi] and

c
[k]
i,(e1,...,ei−1)(bs) = γe1,...,ei−1,s, 0 ≤ s ≤ k;

c
[k]
i,(e1,...,ei−1)(xi) ←

k∑
s=0

ci,(e1,...,ei−1),sx
s
i ;

End (e1, . . . , ei−1) For;

End k For;

6. (Prune all the monomials with zero coefficient and update Ji.)

Ji = ∅;

For every (e1, . . . , ei−1) ∈ Ji−1 and s = 0, . . . , δi Do

If c
[δi]
i,(e1,...,ei−1),s 6= 0 then

ce1,...,ei−1,s ← c
[δi]
i,(e1,...,ei−1),s;

Ji ← Ji ∪ {(e1, . . . , ei−1, s)};

End (e1, . . . , ei−1), s For;

Randomly pick ãi from a subset of K;

End i For;
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End.

The following example shows why Zippel algorithm can be efficient in a sparse

case.

Example 6.1. Interpolate f(x, y) = 3x5y3 + 2x5 + y2 + 5 ∈ K[x, y].

First fix y at a random a ∈ S and interpolate f(x, a) with respect to x. After

f(x, a) is interpolated, we have

f(x, a) = C5(a)x5 + C0(a),

and through Zippel algorithm consider terms x, x2, x3, x4 all have a zero coefficient

in y. We finish interpolating f by recovering C5(y) and C0(y). Figure 6.1 demon-

strates this example in a diagram.

0 0 0 0

000

Interpolate

Black box polynomial

Interpolate

x x x x x x012345

y y y y y y y y3 2 1 0 3 2 1 003 2 1 5

C5
(y) C0 (y)

5y2x3x5 5y3 2

f(x,a)

 f(x,y)

f(x,y)

Figure 6.1: Interpolate f(x, y) = 3x5y3 + 2x5 + y2 + 5 via Zippel algorithm.

6.2 Prunings and hybrids of Zippel algorithm

In Zippel algorithm, each time after a new variable gets interpolated, the mono-

mials with a zero coefficient are pruned ; they are dropped and assumed to be
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zero polynomials in all other variables as well. If the anchor points are chosen at

random, this is true with high probability.

Consider a new variable x0, introduce the homogenizing variable into the rep-

resentation of f in (6.1) as the following:

f̃(x0, x1, . . . , xn) = f(x0x1, x0x2, . . . , x0xn)

=
∑

(e1,...,en)∈J

(ce1,...,enxe1
1 · · · xen

n )xe1+e2+···+en
0 (6.3)

Now instead of f(x1, . . . , xn), we interpolate f̃(x0, x1, . . ., xn) and the anchor

points a1, . . ., an are randomly picked from a subset of K. That is, we start

interpolating f̃(x0, a1, . . ., an) with respect to x0 and get a polynomial f0(x0) in

K[x0]. Through the Zippel algorithm, we can prune the support structure of f in

f0(x0).

Let f0(x0) =
∑d

k=0 γ0,kx
k
0, by definition, γ0,k is the image of polynomial ck(x1,

. . ., xn) ∈ K[x1, . . . , xn] evaluated at the anchor point, namely ck(a1, . . . , an) = γ0,k,

and

ck(x1, . . . , xn) =
∑

e1+···+en=k,(e1,...,en)∈J

ce1,...,enxe1
1 · · · xen

n .

Since every term in ck is of degree k in K[x1, . . . , xn], if f0 is correctly interpolated,

deg(f0) inK[x0] evaluates deg(f) inK[x1, . . . , xn]. And the degree of every non-zero

monomial in f0(x0) provides an upper bound for the degree of all the intermediate

terms of its coefficient polynomial. Notice that in this section we have been using

polynomial representations in the power basis, however, our discussion can be

extended to coefficient polynomials in other bases as well.
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Now, we refine the pruning idea in [5]. Comparing to Zippel’s idea, we will do

two more types of pruning so that we can possibly reduce the size of the transposed

Vandermonde system in Step 4 of the Zippel algorithm in Section 6.1.

During the process of interpolating the homogenized polynomial in a variable

by variable manner, as Step 2 in the Zippel algorithm of Section 6.1, with high

probability we have

f̃(x0, x1, . . . , xi−1, ai, . . . , an) =
∑

(e0,e1,...,ei−1)∈Ji−1

ce0,e1,...,ei−1
xe1

1 · · · xei−1

i−1 xe0
0 ,

where 0 6= ce0,e1,...,ei−1
∈ K, Ji−1 ⊂ (Z≥0)

i.

For every term with (e0, . . . , ei−1) ∈ Ji−1 such that e1 + · · · + ei−1 = e0, the

degree of the coefficient monomial in variables x1,. . ., xi−1 has reached the total

degree upper bound e0 = e1 + · · · + en. That is, ce0,e1,...,ei−1
xe1

1 · · · xei−1

i−1 xe0
0 is an

actual monomial in f̃ . All such monomials have been fully interpolated and will

not be changed in further interpolations with respect to other variables. We now

let gi−1(x0, x1, . . . , xn) denote a polynomial summing up all such fully interpo-

lated monomials in x0, . . . , xi−1, and form the set J ′i−1 from Ji−1 by removing all

(e0, . . . , ei−1)’s such that e1+ · · ·+ei−1 = e0. The equation (6.2) in Step 4 of Zippel

algorithm now becomes

f(ãj
0, . . . , ã

j
i−1, bk, ai+1, . . . , an) =

∑

(e0,...,ei−1)∈J ′i−1

γe0,...,ei−1,k(ã
j
1)

e1 · · · (ãj
i−1)

ei−1(ãj
0)

e0

+ gi−1(ã
j
0, . . . , ã

j
i−1, bk, ai+1, . . . , an)

Since #(J ′i−1) ≤ #(Ji−1), by subtracting gi−1(ã
j
0, . . ., ãj

i−1, bk, ai+1, . . ., an) from
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both sides of the transposed Vandermonde system (6.2), we can reduce the size of

the system to be solved. All the monomials in gi−1 are called permanently pruned

since they will not be interpolated in variables xi, . . . , xn.

While we are interpolating the coefficients of terms in x0, . . ., xi−1 of f̃(x0, . . . ,

xi−1, xi, ai+1, . . . , an), which are different polynomials in K[xi], some of those co-

efficient polynomials might be interpolated via early termination before the degree

bound is reached. Their values can be taken out of the loop in Step 3 before the

rest of the coefficient polynomials are interpolated in xi. As a result, the dimen-

sions of the transposed Vandermonde system (6.2) can be further reduced. Those

terms are temporarily pruned from all the remaining interpolations in variable xi,

nevertheless, they are not permanently pruned from all the remaining interpola-

tions in other variables and still need to be interpolated with respect to xi+1, . . .,

xn.

Without an input as the degree bound, the permanent prunings rely on the in-

terpolation of homogenizing variable; while the temporary prunings can be carried

out regardless whether the homogenizing variable is introduced

Our hybrids of Zippel algorithm use Zippel’s technique as the outer loop. In

addition, we introduce a homogenizing variable and perform both permanent and

temporary term prunings accordingly. Yet, we allow the homogenizing variable

modification to be “turned off” (see Section 7.3.) Within Zippel’s scheme, each

univariate interpolation implements a racing algorithm that races Newton against a

sparse interpolation algorithm as in Section 5.2. As a result, our hybrid algorithms

are more efficient due to the better univariate interpolations embedded.
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6.3 Modular techniques in the univariate Ben-

Or/Tiwari algorithm

Besides the efficiency in black box probes, our hybrid Zippel algorithm provides

another possible advantage in modular implementations: when applying the uni-

variate racing algorithm to race Newton against Ben-Or/Tiwari, we may greatly

reduce the size of modulus required by the multivariate Ben-Or/Tiwari algorithm.

In order to control the size of the coefficients in the error locator polynomial

of the embedded Berlekamp/Massey algorithm, Kaltofen et al. [13] apply modular

techniques for finding Λ(z) and locating the roots of Λ(z). However, to provide a

modular image of Λ(z) sufficient for recovery of all the terms βi, the modulus q

needs to be sufficiently large. They use a modulus pk that is larger than each bj,

the value of term βj evaluated a prime number. Now consider a multivariate black

box polynomial f and let d = deg(f); since 2 is the smallest prime, a sufficiently

large modulo pk is at least 2d. This means when deg(f) is relatively large, we

need to perform all computations modulo an integer of length proportional to the

degree, even though the coefficients could be of a much smaller size.

However, we notice that for the recovery of the terms in a sparse univariate

polynomial f̃(x) with degree d̃, a prime q̃ larger than d̃ can already provide a

sufficiently large modulus. If we evaluate the single variable x at a primitive

root % and recover the term exponents as the discrete logarithms of bj. There are

φ(q̃−1) primitive roots modulo q̃, with u/loglogu = O(φ(u)) for any integer u and

φ denoting Euler’s totient function [12, sec. 18.4], so a random residue has a fair

chance of being a primitive root.
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Our algorithm picks a random residue % for x and for each bk tries the exponents

ek = 0, 1, 2, . . . until %ek ≡ bk (mod q). The method produces an incorrect term

exponent if for %, %2, . . ., %λq(%) ≡ 1 (mod q) we have ek ≥ λq(%). However, such

false exponent computations highly likely lead to inconsistencies in later steps. An

immediate inconsistency is to the degrees of the concurrent Newton interpolation.

In that case, the algorithm recovers the univariate intermediate result by Newton

interpolation or another restarted Ben-Or/Tiwari. If the false exponent is not

caught then, with high likelihood the inconsistency shows up later, at the latest

during the comparison of the final sparse interpolant with the black box input at

an additional random point.

The trade-off between the size of the modulus and the number of black box

probes in Ben-Or/Tiwari versus the univariate Ben-Or/Tiwari within Zippel, both

with early termination, can now be quantified. Ignoring the size of the coefficients,

in the former we have q > 2deg(f) versus q = O(deg(f)), while the number of

probes is 2t + ζ versus O(n(2t + ζ)). Therefore, if the degrees are small but there

are many variables, the pure Ben-Or/Tiwari (with early termination) may still out-

perform Zippel. Therefore, we add that at any stage in the variable by variable

Zippel interpolation algorithm, we could complete the rest of the variables by a

multivariate Ben-Or/Tiwari algorithm.

Also, we note that for a small finite coefficient field, say Z/2Z, one can switch to

the coefficient domain Z/2Z[xn], where xn is the last variable, and proceed modulo

irreducible polynomials in Z/2Z[xn].
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Chapter 7

Maple Implementation

The ProtoBox package is the Maple implementation of our new algorithms. We

have implemented the early terminations with thresholds in Newton and Ben-

Or/Tiwari algorithms, the racing algorithm that races Newton against the Ben-

Or/Tiwari algorithm, its hybrid of Zippel interpolation with prunings, and the

homogenizing modification.

We test the performance of ProtoBox in the polynomials listed in Table 7.1.

Note that f1 and f2 are from [26, p. 100], along with f3 and f4 from [26, p. 102].

7.1 Black box probes

In our racing algorithm that races Newton against Ben-Or/Tiwari, we can “turn

off” either racer algorithm by setting its threshold to ∞ and consequently forcing

all the interpolations performed through the remaining active one.

Under Zippel’s scheme, we compare the black box probes needed in interpo-

lating different polynomials through different embedded univariate interpolations:

Newton, Ben-Or/Tiwari, and the racing algorithm (all with threshold one for early
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Table 7.1: Polynomials in ProtoBox performance tests.

f1(x1, . . . , x10) = x2
1x

3
3x4x6x8x

2
9 + x1x2x3x

2
4x

2
5x8x9 +x2x3x4x

2
5x8x9

+x1x
3
3x

2
4x

2
5x

2
6x7x

2
8 +x2x3x4x

2
5x6x7x

2
8

f2(x1, . . . , x10) = x1x
2
2x

2
4x8x

2
9x

2
10 + x2

2x4x
2
5x6x7x9x

2
10 + x2

1x2x3x
2
5x

2
7x

2
9

+x1x
2
3x

2
4x

2
7x

2
9 +x2

1x3x4x
2
7x

2
8

f3(x1, . . . , x10) = 9x3
2x

3
3x

2
5x

2
6x

3
8x

3
9 + 9x3

1x
2
2x

3
3x

2
5x

2
7x

2
8x

3
9 + x4

1x
4
3x

2
4x

4
5x

4
6x7x

5
8x9

+10x4
1x2x

4
3x

4
4x

4
5x7x

3
8x9 + 12x3

2x
3
4x

3
6x

2
7x

3
8

f4(x1, . . . , x10) = 9x2
1x3x4x

3
6x

2
7x8x

4
10 + 17x3

1x2x
2
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f5(x1, . . . , x50) =
∑50

i=1 x50
i

f6(x1, . . . , x5) =
∑5

i=1(x1 + x2 + x3 + x4 + x5)
i

f7(x1, x2, x3) = x20
1 + 2x2 + 2x2

2 + 2x3
2 + 2x4

2 + 3x20
3

termination.) We choose relatively large moduli for the tests in order to reduce

the possibility of hitting unlucky random numbers that might interfere with the

behavior of each embedded algorithm. Our algorithms are all probabilistic, and

we run each interpolation ten times to take the average of black box probes. In

our test, for each interpolation we obtain the same count ten times.

Table 7.2 compares the black box probes needed in different embedded univari-

ate interpolations. In average, the number of probes needed in a racing algorithm

is no more than the minimum of either racer, which confirms that our racing algo-

rithm takes advantage of both racer algorithms. Moreover, under Zippel’s variable
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by variable approach, the racing algorithm always reflects the behavior of the win-

ning algorithm. The winner might alternate between the two racers in different

variables, therefore often the total black box count is less than the minimum of

univariate interpolations completely through either Newton or Ben-Or/Tiwari.

Table 7.2: Black box probes needed for different embedded univariate interpola-
tions.

mod Newton Ben-Or/Tiwari Racing

f1 100003 147 137 126
f2 100003 146 143 124
f3 100003 209 143 133
f4 100003 188 149 133
f5 100000007 2652 251 251
f6 100000007 965 1256 881
f7 100003 94 46 41

7.2 Thresholds

In addition to the thresholds for early terminations in Newton and Ben-Or/Tiwari,

we introduce other thresholds in ProtoBox to further improve the probability of

success and the throughput of the overall algorithm.

One way to further check the correctness of the interpolation result is to pick

a few more random points and see whether the result agrees with the black box

polynomial at those places. If they do not agree at any of them, we report an

error message indicating the result cannot pass the post test. The number of

random points generated for the post test is supplied as an optional argument

“posttest thresh” and is zero by default.
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Within our probabilistic approach, random numbers are generated at different

algorithm steps. Many times an unlucky random number in an intermediate step

will abort the overall algorithm, which can be remedied by simply generating an-

other random number. Nevertheless, in order to avoid a potential infinite loop, such

efforts need to be bounded. In the case of Zippel algorithm, we may correctly inter-

polate all the monomials in the previous variables, yet due to a bad random point,

two different terms may map to a same value yielding a singular transposed Van-

dermonde system in (6.2). In ProtoBox, the optional argument “mapmon thresh,”

set by default to zero, defines the number of random points tried after encountering

a singular system in (6.2). If the system (6.2) is non-singular at a random point

during those tries, we proceed with the next step, otherwise report a failure after

all the tries. Such threshold helps avoiding unnecessary failures and improving the

throughput of the overall algorithm.

Considering the delay in our updating of Newton interpolant at repeated points,

the optional argument “rndrep thresh,” default as zero, extends the upper bound

for each univariate interpolation loop and lowers the failure rate due to the repeated

points.

The chance to hit a bad random number in a large prime modulus is rare, thus

the effects from the thresholds are less likely to be revealed when modulo a large

prime. Consequently, we test ProtoBox on some relatively small moduli.

We totally have five arguments as different thresholds, and we test three com-

binations of varying thresholds listed in Table 7.3. In Table 7.3, Combination 1

corresponds to the default, while Combinations 2 and 3 are of higher thresholds.
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Table 7.3: Sets of different combinations of thresholds used in the tests.

Combination η ζ posttest thresh mapmon thresh rndrep thresh

1 1 1 0 0 0

2 2 2 1 2 2

3 3 3 2 4 4

We display the performance of the hybrid of Zippel algorithm, with racing New-

ton against Ben-Or/Tiwari algorithm embedded, on f1, f2, f3, f4 in Figures 7.1

through 7.4. As a probabilistic algorithm implementation, we test each interpola-

tion 100 times for every modulus and threshold combination. The height of each

rectangle, both solid and airy parts combined, reflects the number of accurate re-

sults in 100 runs. The three rectangles on each modulus correspond the results

of three threshold combinations in Table 7.3, from left to right, Combinations 1

through 3. The accurate results are either the correct polynomial (number of times

in 100 runs indicated as the solid part) or an error message (airy part of the rect-

angle.) When the result is not accurate, it is a polynomial that does not equal to

the target polynomial.

For every polynomial and every modulus, when thresholds are increasing, often

both the height of the rectangle and the solid part of the rectangles rise. However,

not all the time the solid part rise at higher thresholds. We notice that higher

thresholds require more evaluation points and checks, and that our record is just

a random sample from 100 runs. We also observe the increasing size of modulus

does not directly increase the overall throughput and probability of correctness.

This is because it is the number of sufficiently large order elements, not the size

of the modulus, that directly effects the success of the Ben-Or/Tiwari algorithm
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(also see Section 7.3.)

7.3 The heuristic on small moduli

If a multivariate polynomial has degrees in each variable that are much smaller

than the total degree, some very small moduli might suffice for interpolating such

a polynomial provided we “turn off” the homogenizing variable modification. Be-

cause without the higher degree in the homogenizing variable interpolation, we

only need to deal with lower degree interpolations in each variable.

We demonstrate the heuristic of polynomials being interpolated on some very

small moduli and report the result after running 100 times in each listed case.

In Table 7.4, for brevity “posttest thresh” is denoted as τ , “mapmon thresh” as

κ, and “rndrep thresh” as γ. After 100 runs, the column under “=” records the

times the result is the correct polynomial, under “!” the times an error message is

returned, and “ 6=” reports the times the result polynomial does not equal to the

target polynomial. Note that when modulo 17, the terms with coefficient 17 in f4

map to zero.

Table 7.4: Interpolations on very small moduli without homogenization modifi-
cation after 100 runs.

Thresholds mod 11 mod 13 mod 17 mod 19
η, ζ τ κ, γ = 6= ! = 6= ! = 6= ! = 6= !

f1 2 2 6 28 2 70 30 0 70 60 0 40 44 1 55
f2 2 2 6 8 1 91 26 0 74 42 0 58 52 0 48
f3 2 2 6 7 1 92 2 0 98 20 0 80 13 1 86
f4 2 2 6 5 0 95 0 1 99 39 0 61 17 0 83

The magnitude of modulus q provides the number of distinct points in the
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Figure 7.1: The performance of interpolating f1 under different threshold com-
binations and moduli after 100 runs.
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Figure 7.2: The performance of interpolating f2 under different threshold com-
binations and moduli after 100 runs.
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Figure 7.3: The performance of interpolating f3 under different threshold com-
binations and moduli after 100 runs.
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Figure 7.4: The performance of interpolating f4 under different threshold com-
binations and moduli after 100 runs.
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domain. Yet in the Ben-Or/Tiwari algorithm, in order to recover the term ex-

ponents, an element needs to generate enough distinct values from its powers. In

other word, instead of the number of distinct elements, it is the amount of sufficient

order elements that determines the success rate of the univariate Ben-Or/Tiwari

algorithm.

Figures 7.5 and 7.6 display the order of each element in modulo 11 and 13.

We use a dotted line to indicate the least order required for recovering every term

exponent in a corresponding polynomial. For polynomials f3 and f4, there are less

elements with sufficient order in modulo 13 than in modulo 11. As a result, the

increase of modulus from 11 to 13 does not increase the success rate for these two

polynomials.

Order
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Figure 7.5: The order of elements in modulo 11 and the least order required in
interpolating different polynomials through Ben-Or/Tiwari.
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Figure 7.6: The order of elements in modulo 13 and the least order required in
interpolating different polynomials through Ben-Or/Tiwari.
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Chapter 8

Conclusions and Further Developments

We summarize our research efforts and contributions, then report our further de-

velopments.

8.1 Conclusions

In addition to the case of Newton interpolation, we developed the early termination

strategy in the setting of sparse interpolation algorithms, in which the construction

of different bases is taken into consideration. Among them, we have proved this

strategy for the Ben-Or/Tiwari algorithm, sparse interpolations in the Pochham-

mer and Chebyshev bases. Within the sparse interpolation under the Chebyshev

basis, we eliminated the complications in a symmetric Hankel-plus-Toeplitz ma-

trix solver through randomization. Based on the early termination strategy, we

proposed racing algorithms that race Newton interpolation against a sparse algo-

rithm on the same set of evaluation points, and proved the early termination in

the overall racing algorithms.

We introduced thresholds into the early termination and showed that higher
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thresholds can improve the lower bound of the probability of correctness in dense

interpolations. The probability analysis of thresholds in sparse interpolations is

more complicated and depends on certain conditional probabilities that require

further investigations. Yet, we demonstrated some heuristic examples that higher

thresholds weed out bad random choices.

We provided a new paradigm of racing algorithms: a better algorithm can be

designed by racing two existing algorithms. Through racing two different algo-

rithms, our racing algorithm performs as good as the winning algorithm in every

case, and therefore provides a solution to the predicament of choosing between

two algorithms who have different advantages. Moreover, the racing algorithms

can cross check the results acquired from both racer algorithms and further im-

prove the probability of correctness. By taking the advantage of the two racer

algorithms, our racing algorithm is superior than either of them.

The original variable by variable Zippel algorithm interpolates each variable

densely. We improved Zippel algorithm by embedding our racing algorithms as

the univariate interpolations, and therefore enhanced the efficiency in univariate

interpolations as well as the overall multivariate interpolations. We supplied an

example in the paradigm of designing new algorithms from the hybrids of other

existing algorithms.

Some of our algorithms are implemented in a Maple package, ProtoBox. The

implementations include the racing algorithm that races Newton against Ben-

Or/Tiwari with thresholds, its hybrid in Zippel, and the homogenization modi-

fication. In ProtoBox, we can “turn off” either of the racers for performance com-

parisons, and we verified from our tests the performance of our racing algorithm is
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better than either of the racer algorithms. In ProtoBox, besides the thresholds of

early termination, we introduced other thresholds for the purpose of fault tolerance

in order to prevent the failure of the overall process due to bad random choices.

We tested some bench mark polynomials under different combinations of thresh-

olds, and presented heuristic examples of interpolating polynomials on very small

moduli.

8.2 Future developments

Derived from the early termination of the Ben-Or/Tiwari algorithm, we present a

heuristic on the early termination of sparse shifts.

Given a univariate1 polynomial f(x) =
∑t

i=1 cix
ei with ci 6= 0, we assume its

most sparse shift occurs at α, that is,

f(x) =
t̃∑

i=1

c̃i(x + α)ẽi , c̃i 6= 0. (8.1)

Consider y = x + α and polynomial g(α, y) = f(y − α) as the following:

g(α, y) = f(y − α) =
t̃∑

i=1

c̃i(y − α + α)ẽi =
t̃∑

i=1

c̃iy
ẽi , (8.2)

where c̃i are polynomials in α, that is, c̃i ∈ K[α].

Compare g(α, y) represented in (8.2) in variable y and the representation of

f in its most sparse shift (x + α) in (8.1). If the most sparse shift α in (8.2) is

known and p is chosen at random, performing the early termination Ben-Or/Tiwari

1As the Ben-Or/Tiwari algorithm is multivariate, we are optimistic of extending this approach
to the multivariate case.
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algorithm on sequence g(α, p), g(α, p2), g(α, p3), . . . will encounter the first zero

discrepancy ∆i = 0 at i = 2t̃ + 1 with high probability.

The value of α is unknown, and we turn to solve for the first α from the

coefficient field such that ∆i = 0 at a random p. Notice now we perform the

Berlekamp/Massey algorithm (Step 1 of the early termination Ben-Or/Tiwari al-

gorithm in Section 3.3) on a sequence of polynomials g(α, p), g(α, p2), g(α, p3),

. . ., the discrepancies ∆i become rational polynomials in α (see Table 8.1 for the

comparisons of sparse shifts and the Ben-Or/Tiwari algorithm.) We need to prove

that when p is random, the first α such that ∆i(α) = 0 is the most sparse shift

with high probability.

Table 8.1: Early termination in sparse shifts and the Ben-Or/Tiwari algorithm.

Early termination in Early termination in
sparse shifts Ben-Or/Tiwari

• At a random p, perform • At a random p, perform
the Berlekamp/Massey the Berlekamp/Massey
algorithm on algorithm on
g(α, p), g(α, p2), g(α, p3), . . . f(p), f(p2), f(p3), . . .

∆i(α) ∈ K(α) ∆i ∈ K
• Find the first α ∈ K such • Early termination:

that ∆i(α) = 0 when 2L < i the first ∆i = 0 when 2L < i

If our claim can be proved, we have a polynomial time algorithm for early

termination in sparse shifts. However, the efficiency of the algorithm needs to be

addressed as well: either solving ∆i(α) = 0 or factorizing the numerator of ∆i(α)

is an excess in computing α.

Observe that once the most sparse shift is found, that is, ∆2t̃+1(α) = 0, we

have ∆i(α) = 0 for all i ≥ 2t̃ + 1. In other word, once the linear factor (z − α)
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is introduced as a factor in the numerator of a discrepancy ∆i(α), it will stay

in all the following discrepancies. As a result, we can deduce α from the poly-

nomial GCD of the numerators of every two consecutive discrepancies, namely,

gcd(numer(∆i(α)), numer(∆i+1(α))).

Recall the fact that when α is an integer and (z−α) a factor in the numerator

of ∆i, α is an integer factor of its constant term. Hence the most sparse integer

shift α can be derived from finding the numeric GCD of the numerators of two con-

secutive discrepancies evaluated at 0, that is, gcd(numer(∆i(0)), numer(∆i+1(0))).

(Yet, when α = 0, this is the standard power basis. The correspondence may be

investigated.)

A polynomial factor in the numerator of ∆i(α) and stays for all the following

discrepancies is not necessarily a linear one. We may study the possible early

termination in sparse decompositions as well as the sparse shifts.

For the wide applications and many useful properties, another possible research

direction is the inquiry about early termination in the setting of the Bernstein

bases. A polynomial f(x) with deg(f) = n can be represented in the Bernstein

bases as the following:

f(x) =
n∑

i=0

ciBi,n(x),

where

Bi,n(x) =

(
n

i

)
xi(1− x)n−i.

Finally, we list some topics in our research that may be further studied: the

interpolations on very small moduli in Section 7.3, the probability analysis of the

algorithms with different thresholds and moduli, and as described in Section 6.3,
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the heuristic of switching from a small finite coefficient field, say Z/2Z, to a co-

efficient domain Z/2Z[xn], where xn is the last variable, and proceeding modulo

irreducible polynomials in Z/2Z[xn].
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