In the previous lecture\(^3\), we saw an \(O(\log k \log D)\) approximation for the SPARSEST CUT problem. In the present lecture, we will use that result to establish an \(O\left(\log^2 n\right)\) approximation algorithm for the MINIMUM BALANCED CUT problem.

The MINIMUM BALANCED CUT Problem

Given a graph \(G(V, E)\) and weights \(c : E \rightarrow \mathbb{R}\) on the edges, to find the minimum cost set of edges to delete such that the graph is divided into two `balanced’ components, i.e; each component contains atleast \(\frac{n}{2}\) vertices. This may be generalised as a minimum \(k\)-balanced cut, for \(0 < k < 1\) and MINIMUM BALANCED CUT is the case \(k = \frac{1}{3}\).

We present some related problems first.

Related Problems

All-Pairs Unit Demand SPARSEST CUT Problem

The sparsest cut of a graph \(G(V, E)\) with a unit demand assigned to every pair of vertices in \(V\). Using the notations of the previous lecture,

\[
\min_{F \in E} \frac{\sum_{e \in E} c_e \chi_F(e)}{|S||V\setminus S|}
\]

where \(F\) is a cut dividing the vertex set into \(S\) and \((V\setminus S)\). It has applications in clustering, Markov chain (mixing times), etc. From the sparsest cut algorithm of the previous lecture, we have, with

\[
k = D = \binom{n}{2}
\]

an \(O\left(\log^2 n\right)\) approximation algorithm.

\(^1\)Dept of Comp. Sci., Stanford Univ.
\(^2\)Dept of Comp. Sci. and Automation, Indian Institute of Science, Bangalore.
\(^3\)see notes on Lecture 14 for notations used in the following
The Minimum Bisection Problem

Given a graph $G(V, E)$ with even number of edges, Find the min cost of edges to delete such that it divides the graph into two components of size $\frac{N}{2}$. The min balanced cut is a relaxation of this problem.

Algorithm for MINIMUM BALANCED CUT Problem

Let C_1 and C_b be the cost of the minimum balanced cut and the minimum bisection respectively. Returning to balanced cuts, We now show the main result of this lecture.

Theorem 1 There exists a poly-time algorithm for computing the balanced cut of cost $O \left(\log^2 n \right) C_b$.

Note that we have “cheated” here since the approximation ratio does not relate the balanced cut returned by the algorithm to the min balanced cut; instead it relates the returned balanced cut to the min bisection. Figure 1 shows an example where this does not lead to a true approximation, since the min balanced cut is zero but the min bisection is large (and our algorithm returns a cut which is $\log^2 n$ larger than this bisection).
Algorithm 1 MinBalancedCut

Input: Graph $G(V, E)$ over n vertices, with weights c_e on edge $e \in E$.

Output: A balanced cut $\{U, W\}$ with $|U|, |W| \geq \frac{n}{3}$.

1. set $U \leftarrow \phi, W \leftarrow V$
2. repeat
3. $H \leftarrow$ Subgraph of G induced by W
4. $\{X, W \setminus X\} \leftarrow \text{SparsestCut}(H, "All pairs Unit Demand")$
5. if $|X| \leq |W \setminus X|$ then
6. $S_i \leftarrow X$
7. else
8. $S_i \leftarrow W \setminus X$
9. end if
10. until $|U|, |W| \geq \frac{n}{3}$
11. return $\{U, W\}$

Note that the algorithm always produces a U, W such that $\frac{n}{3} \leq |U| \leq \frac{2n}{3}$ or $\frac{n}{3} \leq |W| \leq \frac{2n}{3}$. Before the final iteration, $|U| < \frac{n}{3}$ and $|W| > \frac{2n}{3}$. In the final iteration U is augmented with the smaller subset of W. This can occur in two ways.

1. The size of the smaller subset of W is $\leq \frac{n}{3}$ and this gives the final U, W with $\frac{n}{3} \leq |U| < \frac{2n}{3}$ and thereby $\frac{n}{3} \leq |W| \leq \frac{2n}{3}$; or

2. The size of the smaller subset of W is $> \frac{n}{3}$ and this results in a final U, W satisfying $\frac{n}{3} < |U| \leq \frac{2n}{3}$ and thereby $\frac{n}{3} \leq |W| \leq \frac{2n}{3}$.

The algorithm is also poly-time since in each iteration at least one vertex is added to U and the iterations stop when $|U|$ reaches $\frac{n}{3}$ vertices.

Let C_b be the min bisection. At any iteration, $|W| > \frac{2n}{3}$ and hence W has non-null intersections with both partitions of C_b say, A_1 and A_2, with A_1 being the larger, as shown in Figure. 2.

We have,

\[|A_1| \leq \frac{2n}{3} - \frac{n}{6} = \frac{n}{2} \]

\[\Rightarrow |A_2| \geq \frac{2n}{3} - \frac{n}{6} = \frac{n}{6} \]

Then

\[\rho(C_b) \leq \frac{C_b}{|A_1||A_2|} = \frac{C_b}{|A_1||V - A_1|} \]
Figure 2: Relation between the min bisection C_b and the sparsest cut

Note that the denominator is minimum when $A_1 = \frac{n}{4}$ and it equals $\frac{n^2}{12}$. Thus, there exists a cut in W of sparsity $\rho = \frac{12C_b}{n}$. From the algorithm for sparsest cut, we know that

$$\frac{C(S_i)}{|S_i||W \setminus S_i|} \leq \frac{12C_b}{n^2} O \left(\log^2 n \right) \frac{|W \setminus S_i|}{|S_i|} \leq \frac{12C_b}{n} O \left(\log^2 n \right) \frac{|W \setminus S_i|}{|S_i|} \leq \frac{12C_b}{n} O \left(\log^2 n \right)$$

since $|W \setminus S_i| = O(n)$. This gives

$$C(S_i) \leq \frac{12C_b}{n} O \left(\log^2 n \right) |S_i|.$$

We also have

$$C(U_{\text{final}}) \leq \sum_i C(S_i) \leq \frac{12C_b}{n} O \left(\log^2 n \right) \sum_i |S_i| \leq \frac{12C_b}{n} O \left(\log^2 n \right) |U_{\text{final}}| \leq \frac{12C_b}{n} O \left(\log^2 n \right) \frac{2n}{3} \leq O \left(\log^2 n \right) C_b$$

which gives us the required result. Note that the above approximation ratio is completely dependant on the best available result for the sparsest cut. Thus, a better approximation for
sparest cut immediately results in a similar improvement for balanced cut.

The Min-Cut Linear Arrangement Problem

Given graph $G(V, E)$, arrange the vertices on a st. line such that at any point on the line, the maximum number of edges of G crossing that point (going from a vertex to the left of the point to one to the right of the point, or vice versa) is minimised.

Algorithm 2 MinCutLinArrangement

\begin{itemize}
 \item \textbf{Input :} Graph $G(V, E)$ over n vertices.
 \item \textbf{Output :} An ordering of the n vertices satisfying Min-cut Linear Arrangement Property
 \begin{enumerate}
 \item set $H \leftarrow G$
 \item \textbf{if} H has only a single node, \textbf{then}
 \item \hspace{1em} return node as arrangement
 \item \textbf{else}
 \item \hspace{1em} compute balanced cut $(H_1, H - H_1)$ of H.
 \item \hspace{1em} recursively call MinCutLinArrangement on H_1 and $H - H_1$ separately.
 \item \hspace{1em} Lay out arrangement returned for H_1 and $H - H_1$ side-by-side.
 \item \hspace{1em} return arrangement
 \item \textbf{end if}
 \end{enumerate}
\end{itemize}

Let OPT be the optimal min-cut linear arrangement. Then $OPT \geq C_b$. From the algorithm for balanced cut we just saw,

$$\text{Cost of Cut}(H_1, H - H_1) \leq O\left(\log^2 n\right)C_b \leq O\left(\log^2 n\right)OPT.$$

For the recursive procedure, we have

$$OPT(H_1) \leq OPT(H)$$
$$OPT(H - H_1) \leq OPT(H)$$

and the depth of the recursion is $\log_{1.5} n$. In going up one step of the recursion, say from H_1 to H, the number of edges added to the arrangement cost is $O\left(\log^3 n\right)OPT(H)$. Then, it follows, loosely, that

$$\#\text{edges in arrangement cost} = O\left(\log^3 n\right)OPT(G).$$