0.1 The Minimum Makespan Problem

Given a set of identical processors \(\{P_1, P_2, \ldots, P_n\} \) and a set of jobs \(\{J_1, J_2, \ldots, J_m\} \) whose corresponding processing times are \(\{p_1, p_2, \ldots, p_m\} \), to find an assignment of jobs to processors which minimises the Makespan - the time at which all the processors have completed all the jobs assigned to them.

For arbitrary \(p_i \)'s this problem is known to be \(\mathcal{NP} \text{-Hard} \). In the following, let \(C \) denote the value of the Makespan.

Algorithm 1 GreedyMakespan

Input: A set of jobs \(\{J_1, J_2, \ldots, J_m\} \), their processing times \(\{p_1, p_2, \ldots, p_m\} \) and a set of processors \(\{P_1, P_2, \ldots, P_n\} \).

Output: An assignment of jobs to processors which minimises the Makespan.

1: order the jobs in any arbitrary way.
2: while there are unassigned jobs do
3: assign the next job to the next processor that becomes free.
4: end while

Analysis of GreedyMakespan

Let \(C^* \) represent the optimal Makespan. Two obvious lower bounds on \(C^* \) are as follows. \(C^* \) is not less than the average load on each processor given by

\[
C^* \geq \frac{\sum p_i}{n}
\]

1Dept. of Computer Science, Stanford University
2Dept of Comp. Sci. and Automation, Indian Institute of Science, Bangalore.
siddhu@csa.iisc.ernet.in
and it is at least as long as each of the jobs

\[C^* \geq p_i \quad \forall i. \]

Let the job that finishes last be \(J_j \). All the processors are busy till at least the time at which \(J_j \) was started (else \(J_j \) would’ve been scheduled on the machine which became free earlier). The shaded area in Figure 1 represents this. Thus, the area of this shaded region gives a lower bound on the total processing time of all the jobs except the job \(J_j \). We see that

\[
\frac{n(C - p_j)}{n} \leq \sum_{i}^n p_k - p_j
\]

\[
\Rightarrow (C - p_j) \leq \frac{\sum_{i}^n p_k}{n} - \frac{p_j}{n}
\]

\[
\Rightarrow C \leq \frac{\sum_{i}^n p_k}{n} + p_j \left(1 - \frac{1}{n}\right)
\]

Then, using the two lower bounds on \(C^* \) from Equations. 0.1 and 0.1 above, we have

\[
C \leq C^* + C^* \left(1 - \frac{1}{n}\right)
\]

\[
C \leq C^* \left(2 - \frac{1}{n}\right)
\]
0.1 The Minimum Makespan Problem

giving an essentially constant factor approximation ratio of \(\left(2 - \frac{1}{n} \right) \). See from the figure that a bad instance of this problem would have a large(s) job as \(J_j \). This observation leads us to an improved algorithm, discussed next.

An Improved Greedy Algorithm

Since a long job occurring at the end of the list of jobs can lead to a bad assignment, the greedy algorithm can be improved by sorting the job list in decreasing order of processing time before running GreedyMakespan. LPT stands for Longest Process First

Algorithm 2 LPTMakespan

Input : A set of job \(\{ J_1, J_2, \ldots, J_m \} \), their processing times \(\{ p_1, p_2, \ldots, p_m \} \) and a set of processors \(\{ P_1, P_2, \ldots, P_n \} \).
Output : An assignment of jobs to processors which minimises the Makespan.
1: sort the jobs in decreasing order of processing times.
2: while there are unassigned jobs do
3: assign the next job to the next processor that becomes free.
4: end while.

Theorem 1 LPTMakespan is a \(\frac{4}{3} \) approximation algorithm.

Proof: Assume that the job that finishes last, say \(J_j \), is also the job which starts last, in the assignment returned by LPTMakespan (see box below). The proof considers two cases depending on the value of \(p_j \).

If, in the assignment returned by LPTMakespan, the above property is not satisfied. Then there exists job(s) which start after \(J_j \) but end before \(J_j \). Throw away all such jobs and establish the above theorem. By throwing away such jobs, the Makespan of LPTMakespan is unchanged (the optimum solution on the modified problem can only become smaller). Thus, any approximation ratio derived for this special case will also hold for (is only greater than that of) the general case.

Case 1: \(p_j \leq \frac{C^*}{3} \).

From the analysis of GreedyMakespan, we have the inequality

\[C \leq \frac{\sum p_i}{n} + p_j \left(1 - \frac{1}{n} \right) \]
From the lower bound established on C^* before,

$$C \leq C^* + \frac{C^*}{3} \left(1 - \frac{1}{n}\right),$$

which gives the required result

$$C \leq \frac{4}{3} C^*.$$

Case 2: $p_j > \frac{C^*}{3}$

From our assumption, J_j is the last job to start. Hence J_j is also the (last job on the list and therefore the) smallest job. Hence $p_j > \frac{C^*}{3}$ (note strict inequality) for all jobs. Hence, in any schedule, each processor is assigned no more than two jobs. With this restriction, it can be shown that the optimal schedule and the schedule returned by LPTMakespan are identical.

Exercise 1 Show that, for the restricted case of schedules with no more than two jobs per processors, the optimal schedule is obtained by the following algorithm.

Algorithm 3 TwoJobOptSched

Input: A set of job $\{J_1, J_2, \ldots, J_m\}$, their processing times $\{p_1, p_2, \ldots, p_m\}$ and a set of processors $\{P_1, P_2, \ldots, P_n\}$. $m \leq 2n$

Output: An assignment of jobs to processors which minimises the Makespan.

1: sort list of jobs in decreasing order of processing times.
2: if number of jobs $\neq 2 \times$ number of processors then
3: pad list with jobs of zero processing time to obtain $2n$ jobs.
4: end if
5: pair the extreme (first and last) jobs in the list successively (by removing the pair from the list) to obtain a schedule.
6: done.

Exercise 2 Show that, for the above restricted case, LPTMakespan always returns a schedule identical to the schedule returned by the above algorithm.

The above exercises show that LPTMakespan returns an optimal schedule for Case 2. This along with the approx ratio shown for Case 1, establishes the theorem.

Exercise 3 Give an instance of the Makespan problem for which the approximation ratio $\frac{4}{3}$ is exact.