
CPS290: Algorithmic Foundations of Data Science January 18, 2017

Lecture 1 : Data Compression and Entropy

Lecturer: Kamesh Munagala Scribe: Kamesh Munagala

In this lecture, we will study a simple model for data compression. The compression algorithms
will be constrained to be “lossless” meaning that there should be a corresponding decoding algo-
rithm that recovers the original data exactly. We will study the limits of such compression, which
ties to the notion of entropy. We will also study a simple algorithm for compression when the input
text arrives one symbol at a time.

Prefix Codes

A compression model is specified as a probabilistic model for generating input text. In the most
basic model, there is a set {a1, a2, . . . , am} of m symbols. We assume there is an underlying
distribution D over these symbols, where symbol ai has associated probability pi. Note that∑m

i=1 pi = 1, since D is a distribution. The input text of length n is generated by choosing each
symbol independently from D. We typically assume n is large compared to m.

The standard way of representing such text would be to encode each ai in binary using q0 =
dlog2me bits. The quantity q0 is the number of bits per symbol in this encoding. For instance,
ASCII is such an encoding of text. The decoding algorithm knows the mapping of symbols to
binary strings, and knows the length q0 of each encoded symbol. This is sufficient to decode a
binary string corresponding to the concatenation of the encodings of each character of the input
text.

Such an encoding can be sub-optimal in terms of the number of bits per symbol required. Let
us make this statement more precise. Any code is a mapping of each of the m input symbols to a
binary string. Suppose `i is the length of the binary string corresponding to symbol ai. Then, on
average, the length of the encoding of an input symbol is

∑m
i=1 pi`i. This is the expected length of

the encoded string if a symbol is drawn at random from the distribution D.

Note that we cannot allow symbols to be mapped to arbitrary binary strings. Such a mapping
cannot be uniquely decoded. For instance, suppose a1 maps to 10, a2 to 1 and a3 to 101, then if
the output is 101, it is not clear if it is an encoding of the text a1a2 or the text a3. This leads to
the notion of a prefix code. A prefix code has the property that there is no pair of symbols such
that the encoding of one symbol is a prefix of the encoding of the other symbol. We will now show
that a code is uniquely decodable iff it is a prefix code.

To see this, we can view any code as a binary tree, where the left branch at any node is labeled 0
and the right branch 1. The leaves of this tree are annotated with the symbols. To encode a symbol,
we read off the binary string formed by traversing the path from the root to the corresponding leaf.
It is clear that such a code is a prefix code. Decoding such a code is unique, since the decoder,
when presented with the same tree, and a long binary sequence, traverses the tree starting at the
root based on the binary sequence. When it encounters a leaf, it outputs the corresponding symbol,
and goes back to the root. Conversely, if a code is not a prefix code, then there is an internal node
of the tree that corresponds to a symbol. In this case, when the prefix is encountered, the decoder
does not know whether to output the symbol or traverse further to a leaf.

1



2 DISCRETE ENTROPY

Huffman Codes

The goal now is to construct a prefix code with smallest expected length per symbol. This corre-
sponds to finding a binary tree on m leaves whose expected root to leaf path length is smallest.
Without loss of generality, assume p1 ≤ p2 ≤ p3 ≤ · · · ≤ pm. Ideally, the code should place a1
deepest in the tree and am the shallowest. We will show a greedy algorithm that roughly does this.

Claim 1. Let f(p1, p2, . . . , pm) denote the expected length per symbol of the optimal prefix code.
Suppose p1 ≤ p2 ≤ · · · ≤ pm. Then f(p1, p2, . . . , pm) = p1 + p2 + f(p1 + p2, p3, . . . , pm).

Proof. Consider any binary tree, and a node v in the tree. Let S denote the leaves in the subtree
corresponding to v. Let wv =

∑
i∈S pi. Then it is easy to check that the expected length of the

tree is equal to the sum of the wv over all nodes v in the tree.
This means that if i and j are two leaves with a common parent in the optimal tree, then we

can remove i and j and pretend its parent is a leaf with frequency pi + pj – the resulting smaller
tree is a prefix code for the smaller set of symbols, and should be the optimal such tree. Therefore,
if f(pi, pj , p1, . . . , pm) = pi + pj + f(pi + pj , p1, . . . , pm), if i and j are siblings in the optimal tree.

We will finally show that a1 and a2, the symbols with the smallest frequencies, are siblings.
This follows from an exchange argument. Suppose they are not. Consider the two deepest nodes
in the optimal tree. Swap a1 and a2 with these nodes. This only reduces the expected length of
the tree.

The above claim suggests a greedy algorithm to find the optimal prefix code – find the symbols
with the smallest frequencies, make them siblings, and replace them with a symbol whose frequency
is equal to the sum of their frequencies. Now recurse on the smaller instance. This is the Huffman
encoding algorithm, and can be implemented in O(m logm) time using a priority queue to store
the frequencies of the current set of symbols.

Discrete Entropy

The above construction is algorithmic – it shows the existence of an optimal prefix code. The ex-
pected code length captures how “compressible” the distribution over symbols is. If the distribution
is very skewed, then so is the Huffman tree, and the expected code length is small. Conversely, if
all symbols have the same frequency, then the simple ASCII encoding is optimal.

The expected code length has a closed form to a very good approximation. This closed form is
a fundamental property of distributions, and is termed entropy. It captures how much randomness
there is in the distribution – the more the entropy, the greater the length of the encoding, and the
less compressible is text drawn from this distribution.

Why do we need a closed form? It helps us get a handle on understanding how good various
practical compression schemes are. We will present an example later.

We begin with a theorem that essentially says that in a prefix code, all the codewords cannot
be really small in length. If some codewords have very small lengths, there must be others with
really large lengths. This is very intuitive – we cannot construct binary trees where all leaves are
shallow.

Theorem 1 (Kraft’s Inequality). Suppose there is a prefix code where the codewords for
a1, a2, . . . , am have lengths `1, `2, . . . , `m. Then

m∑
i=1

2−`i ≤ 1



3

Conversely, if a collection {`i} of integers satisfies the above inequality, then there is a prefix code
with those lengths.

Proof. Let `max = maxm
i=1 `i. Consider a complete binary tree of length `max. A prefix code

corresponds to a subtree of this tree with the same root. Consider a leaf at depth `i in the Huffman
tree. When mapped to the complete binary tree, this leaf is an internal node at depth `i, and its
subtree has depth `max − `i, and hence 2`max−`i leaves. Different leaves of the Huffman tree map
to disjoint subtrees in the complete binary tree. By simple counting, the total number of leaves
in these subtrees cannot be more than the total number of leaves in the complete binary tree.
Therefore,

m∑
i=1

2`max−`i ≤ 2`max

This implies Kraft’s inequality.

To see the converse, suppose Kraft’s inequality holds. Consider the complete binary tree of
depth `max. We will construct a Huffman tree as follows: Suppose `1 ≤ `2 ≤ · · · ≤ `m. Place
symbol a1 and depth `1 and delete the entire subtree beneath this node. Now place symbol a2 at
any remaining node at depth `2, delete its subtree, and so on. We will show this process does not
fail. Suppose on the contrary that when we try to place symbol aj , there is no remaining node at
depth `j . This implies we have deleted more than 2`j nodes of the complete binary tree at this
depth. But a1 deletes 2`j−`1 nodes, and so on. This means:

j∑
i=1

2`j−`i > 2`j

This contradicts Kraft’s inequality. Therefore, the process terminates with a valid prefix code that
assigns symbol aj a binary string of length exactly `j .

We now present a lower bound on the expected code length per symbol via the concept of
discrete entropy.

Definition 1. Given a discrete distribution X = (p1, p2, . . . , pm) on m items, the entropy of this
distribution H(X) is defined as:

H(X) =
m∑
i=1

pi log2
1

pi

Consider the case where m = 2. In this case, suppose Pr[X = a1] = p and Pr[X = a2] = 1− p,
then H(X) = p log2

1
p + (1− p) log2

1
1−p . It is easy to check that this is a concave function, which is

0 when p = 0 or p = 1, and is maximized when p = 1/2, where it takes value log2 2 = 1. In general,
the discrete entropy is largest when p1 = p2 = · · · = pm = 1

m , where its value is log2m. We will
now show that discrete entropy is an exact estimate of the expected length of the optimal prefix
code, modulo rounding error.

Theorem 2. Given a distribution X = (p1, p2, . . . , pm) on m symbols, the Huffman code has length
at least H(X) and at most H(X) + 1.

Proof. To show the lower bound, we will minimize the expected code length subject to Kraft’s
inequality. Suppose the optimal code assigns length `i to symbol ai. Then, the expected length of
the encoding is

∑m
i=1 pi`i. But since this is a prefix code, the {`i} satisfy Kraft’s inequality.



4 A SIMPLE COMPRESSION SCHEME AND ITS ANALYSIS

This means the following optimization problem is a lower bound on the length of the Huffman
code, where the variables are {`i}.

Minimize
m∑
i=1

pi`i

∑m
i=1 2−`i ≤ 1

`i ≥ 0 ∀i = 1, 2, . . . ,m

Note that the optimal code also has the constraint that the `i are integers. If we ignore that
constraint, we only obtain a lower value to the optimization problem. We will show later that the
estimate we get is not that bad.

Without further ado, let’s solve this optimization problem. It has one objective function and
one non-trivial constraint. Let’s change the variables to make the constraint simple. Set xi = 2−`i

so that `i = log2
1
xi

. Then the optimization problem can be rewritten as:

Minimize

m∑
i=1

pi log2
1

xi

∑m
i=1 xi ≤ 1

xi ≥ 0 ∀i = 1, 2, . . . ,m

Let fi(xi) = pi log2
1
xi

. Then the objective is of the form
∑m

i=1 fi(xi). Note that fi(xi) is a
decreasing function of xi. Furthermore, the gradient f ′i(xi) = − pi

xi loge 2
is an increasing negative

function in the range xi ∈ [0, 1].

The optimum solution {x∗i } can be found by the following argument: Suppose f ′i(x
∗
i ) < f ′j(x

∗
j ).

In this case, suppose we increase x∗i by an infinitesimal quantity δ, and decrease x∗j by the same
amount, then the objective decreases by δ(f ′j(x

∗
j )− f ′i(x∗i )) > 0, contradicting the optimality of x∗.

Therefore, at the optimum solution, the gradients f ′i(x
∗
i ) are equal for all i. Since f ′i(xi) = − pi

xi loge 2
,

this means x∗i ∝ pi. But
∑m

i=1 x
∗
i = 1 by Kraft’s inequality, which implies x∗i = pi. This implies

`∗i = log2
1
pi

, so that the optimal value of the objective
∑

i pi`i is the entropy H(X).

To show an upper bound, note that `i = dlog2
1
pi
e satisfies Kraft’s inequality. Since dlog2

1
pi
e ≤

log2
1
pi

+ 1, this means
∑

i pi`i ≤ H(X) +
∑

i pi = H(X) + 1. Therefore, the optimal Huffman tree
has length at most H(X) + 1, completing the proof.

A Simple Compression Scheme and its Analysis

In reality, we need to compress large volumes of text in one pass over the text. In such settings,
it is infeasible to first estimate the frequencies of different symbols and then construct an optimal
Huffman tree. There are several compression algorithms that adjust the encoding of symbols as
time goes by, based on their current frequencies. Such algorithms have the additional advantage
that they can exploit patterns in the data beyond simple frequencies of symbols. We present one
such scheme – this scheme is not only close to optimal in terms of symbol entropy in the worst case
(as we will prove below), but is also quite practical and simple to analyze.

Move-to-front (MTF) coding maintains the symbols in a linked list L. At time t, suppose the
encoder sees symbol a. It walks down L until it encounters a. Suppose it is the ith symbol in
the list. Then the encoder emits dlog2 ie 0’s followed by the binary representation of the number i
(which takes dlog2 ie bits). The encoder moves a to the front of the linked list.



Worst-case Analysis of MTF 5

The decoder maintains the same ordered list as the encoder. The decoder walks down the
compressed binary string till it encounters a 1. Suppose it saw q zeros. It interprets the next q bits
as the binary representation of the position of the next symbol in the list L. It walks down the list
to that position, emits that symbol, and moves it to the front of its list. It then continues parsing
the compressed binary string.

It is an easy exercise to show that the behavior of the decoder is correct. One may think
that emitting dlog2 ie 0’s is wasteful. But note that there is a need to separate the encodings of
different symbols. A prefix code is one way of doing this if the decoder has access to the same code.
A different way is to have the same bit length for all codewords, but this does not achieve any
compression. MTF will assign small codewords to highly repetitive symbols, but at the expense of
doubling their length. We show later that we can in fact do better than double the code length
using roughly the same ideas.

Worst-case Analysis of MTF

Suppose the text contains N symbols, where symbol ai appears with frequency pi. Let X =
(p1, p2, . . . , pm). An optimal static Huffman code is one that uses these frequencies to construct a
fixed code. Such a code uses roughly H(X) bits per symbol. We will show that MTF is not much
worse – it uses at most 2(H(X) + 1) bits per symbol. Note that since MTF is a dynamic code,
meaning that it changes the encoding of any symbol as time goes by, it can in fact do much better
than a static Huffman code. The analysis below shows that in no case can be more than a factor
of 2 worse than the Huffman code. (The factor 2 is not necessary, as we show later.)

Before presenting the proof, to gain intuition, suppose we want to make MTF as bad as possible
by carefully constructing text. Suppose at each step, we try to make MTF encode using the largest
possible integer, m. This means the next symbol in the text must always be the current last symbol
in the linked list. The only way of always doing this is a pattern of the form a1a2 . . . ama1a2 . . . ama1
and so on, assuming the initial list had a1 at the very end, a2 second last, and so on. In this case,
MTF always outputs the binary encoding of m, so it takes 2N log2m bits for N symbols. But for
this text, the frequencies of all symbols are all equal to 1/m, so the entropy is log2m. This means
Huffman coding also takes at least N log2m bits.

We now present an argument that works for any text. Consider some symbol ai with frequency
pi. There are Npi occurrences of this symbol. Suppose the first of these appears at time t1, the
second at time t2, and so on. Let m1 = t1, m2 = t2 − t1, and so on. Note that

∑
j mj = N , the

length of the text. Note further that j takes Npi values.
Now, the first time ai is encountered, it is at position m1, the second time at position m2,

and so on. This means the length of the encoded text corresponding to these occurrences is
2dlog2m1e, 2dlog2m1e, . . .. Therefore, the total length of the binary encoding for all occurrences of
ai is ∑

j

2dlog2mje ≤ 2
∑
j

log2mj + 2piN = 2Npi

(∑
j log2mj

Npi
+ 1

)
Since log is a concave function, we can use Jensen’s inequality:∑

j log2mj

Npi
≤ log2

(∑
j mj

Npi

)
= log2

1

pi

Therefore, the total length of the binary encoding for all occurrences of ai is at most

2Npi

(
log2

1

pi
+ 1

)



6 A SIMPLE COMPRESSION SCHEME AND ITS ANALYSIS

Summing this over all symbols ai, and dividing by N , the average length of a codeword is

m∑
i=1

2

(
pi log2

1

pi
+ pi

)
= 2(H(X) + 1)

Therefore, MTF compression produces compressed text that is at most twice as large as that
produced by Huffman coding. Note further that our analysis is worst-case – given any text with
N symbols with frequencies of symbols given by X, the length of the compressed text is close to
2NH(X). This does not require that the text satisfies some distributional property like being drawn
from independently from distribution X, and so on. In fact, the above bound can be somewhat
pessimistic, since MTF can exploit periodic patterns in the data, that is “locality”. The entropy
bound assumes data is generated independently from an underlying distribution, and there are no
patterns beyond the frequencies of the symbols. In reality, patterns abound in data, and different
compression schemes exploit different types of patterns.

Elias Codes

The factor of 2 in the above bound is bothersome. It arises because we want to encode integers
using a prefix code. The way we did it was to pre-append the binary encoding for i with q = dlog2 ie
zeros. This doubles the length of the encoding. Can we construct a better prefix code? The answer
is “yes”. We can recurse on the unary encoding of the number of bits in i. Instead of writing out
q zeroes, we can write the binary encoding of q, and pre-append it with r = dlog2 qe zeros. The
decoder then reads the string till it sees a 1. Suppose these are r bits It reads the next r bits as
the binary representation of q. It then reads the next q bits as the binary representation of i. The
number of bits now needed is roughly log2 i + 2 log2 log2 i, which for large i, beats 2 log2 i. With
more care, we can replace the ceilings by floors in the above encodings, which saves some more
bits. There is no reason to stop here – we can repeat the process, but the gains get progressively
less meaningful.


