
CPS290: Algorithmic Foundations of Data Science February 16, 2017

Lecture 7 : Locality Sensitive Hashing

Lecturer: Kamesh Munagala Scribe: Kamesh Munagala

It is conceivable that reducing dimension may be an overkill if our goal is simply to derive a faster
algorithm for nearest neighbor search. We will now describe a general method that is remarkably
similar to Bloom filters and Count-Min sketch; the main caveat is that it requires a distance-
preserving hash function.

The Approximate Near-Neighbor Problem

Given a database D with n items, define the query NN(q, r, c) as follows: Given query q and two
parameters r ≥ 0 and c ≥ 1,

• If there exists x ∈ D such that D(q, x) ≤ r, then report some y ∈ D such that D(q, y) ≤ cr.

• If there is no x ∈ D such that D(q, x) ≤ cr, then report failure.

• Otherwise, the algorithm could either output a point at distance at most cr from q or report
failure.

When c = 1, the above query is precise: If there is a point at distance at most r from q, the
algorithm reports such a point; else it reports failure. We can now perform binary search over r
and compute the nearest neighbor to an arbitrarily good approximation.

When c is much larger than 1, say c = 3, then the algorithm is good for distinguishing two
cases: If all points in D are very far away from q – at distance at least 3r – the algorithm correctly
reports failure. On the other hand, if there is a point at most distance r from q, the algorithm will
report some point, but this could be a point further away – at distance at most 3r from q. It is
easy to check that binary search over r yields a point y such that D(y, q) ≤ 3d∗, where d∗ is the
distance of q to its nearest neighbor.

Locality Sensitive Hashing

Consider the hash function for Hamming distance that maps a d-dimensional bit vector to its value
on a random coordinate. We showed that

Pr[h(~x) = h(~y)] = 1− D(~x, ~y)

d

In other words, the hash functions are more likely to be equal if the distance between the points is
smaller.

We generalize this definition as follows:

Definition 1. For a parameter c > 1, probability values p1 > p2, and distance r ≥ 0, A hash family
H is said to be (r, cr, p1, p2)-Locality Sensitive (LSH) if ∀q, x, y, we have:

• If D(x, q) < r, then Pr[h(x) = h(q)] ≥ p1, and

• If D(y, q) > cr, then Pr[h(y) = h(q)] ≤ p2
where the probability is over h ∈ H chosen at random.

1

2 LOCALITY SENSITIVE HASHING

LSH for Hamming Distance

In the case of Hamming distance, we will have

p1 = 1− r

d
p2 = 1− cr

d

The running times of the algorithms we present will depend on the parameter

ρ =
ln(p1)

ln(p2)

that in turn depends on the separation between p1 and p2. For instance, assuming c× r � d and
c > 1, for the Hamming distance, the calculation is roughly:

ρ =
ln(p1)

ln(p2)
≈ r/d

cr/d
=

1

c

LSH for Jaccard Similarity

For Jaccard measure, choose a random permutation π on the universe U . For set S ⊆ U , the LSH
for Jaccard measure is simply:

h(S) = First element in S according to permutationπ

Consider two sets S1 and S2. The Jaccard measure between them is

J(S1, S2) =
|S1 ∩ S2|
|S1 ∪ S2|

It is an easy exercise to check that

Pr[h(S1) = h(S2)] = J(S1, S2)

where the probability is over the choice of permutation π. If we define distance as:

D(S1, S2) = 1− J(S1, S2)

then it is easy to check that the hash family is LSH for any r > 0 and c > 1. In particular

D(S1, S2) < r ⇒ Pr[h(S1) = h(S2)] ≥ 1− r

and

D(S1, S2) > cr ⇒ Pr[h(S1) = h(S2)] ≤ 1− cr

The value ρ ≈ 1/c assuming cr � 1.

In practice, storing a permutation is difficult, so it is implemented by a universal hash function
with range roughly equal to |U |.

LSH for Angular Similarity 3

LSH for Angular Similarity

The angular distance between two vectors ~x and ~y is the angle between them:

D(~x, ~y) = cos−1
(

~x · ~y
‖~x‖‖~y‖

)
The LSH is simply the set of all random unit vectors:

h~r(~x) = Sign (~x · ~r)

In other words, the hash function maps ~x to 1 if ~x makes an acute angle with ~r, and to −1 otherwise.

For two vectors ~x and ~y, let θ denote the angle between them. A simple calculation shows

Pr[h(~x) = h(~y)] = 1− θ

π
= 1−D(~x, ~y)

Just as before, if we define distance as the angle between vectors scaled down by π, the above
hash family is LSH for any r ∈ [0, 1] and c > 1.

The LSH Algorithm and Analysis

Suppose we are given a hash family H that is (r, c, p1, p2)-LSH. Our goal is to use it as a subroutine
to design an algorithm for the NN(q, r, c) problem.

Fix two parameters k, `. Let G be the set of all k-dimensional vectors, each coordinate of which
is a hash function h chosen i.i.d from H. That is,

G = {〈h1, h2, . . . , hk〉 | hj ∼ H}

Choose g1, g2, . . . , g` i.i.d. from G.

Given x ∈ D, for each i = 1, 2, . . . , `, store x in the bucket gi(x) = 〈hi1(x), hi2(x), . . . , hik(x)〉.
Note that the bucket is defined by a vector, so that for each i = 1, 2, . . . , `, the number of buckets
is exponential in k. However, we only store the buckets which have at least one item mapping to
it. (How will you do this?)

Given query q, compute g1(q), g2(q), . . . , g`(q). Consider these buckets in order, and for each
x ∈ D in these buckets, compute the distance from x to q. If any of these is at most c× r, report
this item and stop. Otherwise continue till 4` items have been checked. At this point, stop and
declare failure.

Analysis

Suppose there is a point x∗ ∈ D such that d(x∗, q) ≤ r. The analysis hinges on showing that two
properties hold with constant probability:

1. For some i = 1, 2, . . . , `, we have gi(x
∗) = gi(q); and

2. There are at most 4` items x ∈ D with D(x, q) > cr, such that for some i, gi(x) = gi(q).

4 THE LSH ALGORITHM AND ANALYSIS

Assuming these properties hold, the second property implies that there are at most 4` false
positives, meaning items that hash to the same location as q but that have distance more than
cr from q. This means the algorithm will not encounter the case where it has to stop because
it found too many false positives. The first property then implies that in the worst case, the
algorithm encounters x∗ for some value of i and will return it. (It could return some other item if it
encounters it earlier, but the property guarantees it returns something.) This shows the algorithm
will be correct with constant probability – it will return an item whose distance from q is at most
cr, assuming there is one item whose distance from q is at most r. Though this probability is only
a constant, we can boost it by replicating the above data structure independently O(log n) times,
and running the same algorithm on all these copies.

Running Time and Space Requirement. Before we prove that the properties hold with
constant probability, what is the running time and space required? The number of false positives
allowed is 4`, so this is the worst case number of distance computations the algorithm performs.
We need to make this number much smaller than n. We will show below that ` = nρ, which is
roughly n1/c for the hash functions discussed above, including for Hamming distance, and Jaccard
and Cosine similarities. Assuming c = 2 for instance gives a running time of O(

√
n) distance

computations – far better than brute force! This is the magic of LSH. Note however, that each
data item is stored ` times, so that the space needed is O(n`) = O(n1+1/c). So the space blows up,
but is sub-quadratic. Note further that each hash function g is a concatenation of k hash functions
h. Therefore, the number of evaluations of h is 4k`. We will choose k = logn

log(1/p2)
≈ 1

cr log n

for Jaccard and angular. This means the number of evaluations is roughly O
(
`
cr log n

)
, which is

sub-linear in n, assuming cr is not too small.

Theorem 1. Let ρ = ln(p1)
ln(p2)

. Let ` = nρ, and k = logn
log(1/p2)

. Then both properties (1) and (2) hold

with probability at least 1/3.

Proof. Consider the second property. For some x′ ∈ D with D(x′, q) > cr, the LSH property
implies that for any i,

gi(x
′) = gi(q) ≤ pk2

Setting this to 1/n yields k = logn
log(1/p2)

. This means that for fixed i, the expected number of x′

that map to the same bucket as q is at most n × 1/n = 1. Applying linearity of expectation over
all ` buckets, the expected number of false positives is at most `. By Markov’s inequality, the
probability there are more than 4` false positives is therefore at most 1/4.

For the first property, note that for any i,

Pr[gi(x
∗) 6= gi(q)] ≤ 1− pk1 = 1− n−ρ = 1− 1

nρ

where we used k = logn
log(1/p2)

and ρ = ln(p1)
ln(p2)

. Since ` = nρ, we have

Pr[gi(x
∗) 6= gi(q) ∀i] ≤

(
1− 1

nρ

)nρ

≤ 1

e

This means the first property holds with probability at least 1− 1/e.
By union bounds, the probability that both the first and second properties hold with probability

at least 1− 1/4− 1/e ≥ 0.382 ≥ 1/3.

