CPS290: Algorithmic Foundations of Data Science March 7, 2017

Lecture 12 : Graph Laplacians and Cheeger’s Inequality

Lecturer: Kamesh Munagala Scribe: Kamesh Munagala

Graph Laplacian

Maybe the most beautiful connection between a discrete object (graph) and a continuous object
(eigenvalue) comes from a concept called the Laplacian. It gives a surprisingly simple and algebraic
method for splitting a graph into two pieces without cutting too many edges. In a sense, we take an
NP-COMPLETE problem of partitioning a graph and relax it to an easy to solve problem of finding
an eigenvector of a certain type of matrix. The resulting partition is not optimal, but close to it
in a certain provable sense. The algorithm is very practical and modifications of it are widely used
for clustering objects into similar groups.

Suppose we are given n items and some measure of similarity between them. Let w;; denote
the similarity score between items 7 and j. Let us assume this function is symmetric, so that
w;j = wj;. We will treat the general version later (without proofs), but will consider a simpler
version for presenting proofs. Let us assume w;; € {0,1}, where w;; = 1 means 7 and j are similar,
and dissimilar otherwise. This defines an undirected, unweighted graph G(V, E), where V is the
set of items, and FE is the set of edges corresponding to pairs of items that are similar. We further
assume all vertices in this graph have degree exactly d. We will relax all these assumptions later.

Let A denote the adjacency matrix of GG, and let D denote the diagonal matrix whose diagonal
entries are all d. Then, the unnormalized Laplacian of G is given by

L=D-A

Basic Properties

It is easy to check that for any vector ¥, we have

UT,Cﬁ == Z (Ui - Uj)z

(4,5)€Ei<j

Since the above quantity is always non-negative, the matrix £ is PSD, and has eigenvalues 0 <
A< A< < A

Further, note that if ¥ = I, then @ £ = 0. This means \; = 0 and a corresponding eigenvector
is 1. We now show something stronger.

Claim 1. Suppose 0 = A} = -+ = A\ < k41, then the number of connected components is exactly
k.

Proof. We will show that there are exactly k orthonormal eigenvectors for the 0 eigenvalue, when the
graph has k connected components. First note that if ¥ is a unit length eigenvector corresponding
to any eigenvalue A, then

TLo= > (ni-v)*=2A

(i,J)EEi<j

2 GRAPH PARTITIONING

Suppose A = 0, then it is easy to check that in the corresponding eigenvector v, for any connected
component S;, all vertices j € S; have the same value v;. If there are k connected component, we
can construct k orthogonal eigenvectors as follows: For each i = 1,2,...,k, construct vector v; by
setting v;; = 1 for j € S; and zero everywhere else. These k vectors are clearly orthogonal, which
shows that the multiplicity of the zero eigenvalue is at least k.

On the other hand, there is no other eigenvector for the zero eigenvalue that is orthogonal
to these k. To see this, any such eigenvector must take the same value on all vertices within a
connected component. So it’s dot product with any of the k eigenvectors we constructed above has
to be non-zero. This shows that the multiplicity of the zero eigenvalue is exactly the number of
components k, that is, the corresponding eigenvectors span a subspace of dimension k. O

Graph Partitioning

If we only wish to find the number of connected components, the Laplacian seems like a convoluted
way to go about doing it. In practice, typically the graph is connected, and we need to split it
into components such that items within a component are much more similar with each other than
with items in a different component. Such a problem is usually termed clustering or unsupervised
learning. We will now consider the simplest problem of splitting the graph into two pieces. We
want the partition to have two properties: The number of edges going from one side of the partition
to the other is small; and the number of edges within each partition is large. One way to do it is
to find a minimum cut in the graph — a partition that minimizes the number of edges going across.
This can be done by network flows in polynomial time (more later), but simply minimizing the
number of edges crossing the partition can lead to silly solutions, for instance, it may be optimal
to split off one vertex from everything else.

A more reasonable solution would attempt to minimize the number of edges while simultaneously
making sure each side of the partition has a lot of edges. Let (S,V \ S) be a partition. We define
the cut 0(.9) as the set of edges with one end-point in S and the other in V'\ S. Similarly, we define
the volume of the partition as vol(S) =), g d;, where d; is the degree of i. Since the graph is
regular, this is the same as d|S|. Given these, we can define a good partition as one that minimizes
the conductance, defined as:

6(5)] _1 6(5)]
min (vol(S), vol(V \ S)) _ dmin (5], [V \ S])

This attempts to simultaneously decrease the cut size while increase the volume of the partitions.
Without loss of generality, we can define .S to be the smaller side of the partition, and we can ignore
the factor of d. Therefore, define

[6(5)]

Og = min —
scvsi<ivisz S|

Our goal is to find an S that minimizes the RHS. This is the minimum normalized cut problem.
Note that ?TG is the conductance of the graph defined above. The quantity ‘6‘(5‘?')' is termed the
normalized cut size of cut S; for a regular graph, conductance is proportional to the normalized

cut size, so minimizing either of them is the same.

Connection to Laplacian

Finding a cut of minimum conductance is NP-COMPLETE. However, conductance is closely related
to the graph Laplacian. Take any set S C V of size at most |V|/2. Consider the vector vg defined

The Spectral Method 3

as follows: For j € S, vg; = 1—|S|/|V], and for j € S, we set vg; = —|S|/|V|. It is an easy exercise
to see that vg is perpendicular to 1. Further,

2 2
<UE,U§)=!S!< _”‘S/D LqvI-1S) (m) :‘S‘va‘g

and
us" Log = [6(S)[(1= [S|/[VI+|SI/IV])* = 16(5)|
Therefore,
wTLes 5SS 1 (s)
5T g % S| 1=[S]/[V] S|

where ¢ € [1,2] since |S| < |V]/2. The LHS of the above relation is at least g, since

0Ly
A2 = min —z
o1l U

v
and since vg L 1. Since all this holds for any S, it holds for the infimum, so that

0(5)]
— = =20
Ss.t.gl\lgn\wn |S] ¢

Ay <2
Therefore, the minimum normalized cut size of a regular graph is at least Ao/2. In fact, if we
restricted to unit vectors with two entries, one positive and one negative, that are perpendicular
to 1, then the quantity oI L7 s (within a factor of 2) the normalized cut size of the cut that
separates the vertices where ¥ takes the positive value from the vertices that ¥ takes negative
values. The minimum conductance cut therefore (roughly speaking) minimizes oI £ over unit
vectors perpendicular to 1 that takes only two values for all its coordinates. However, optimizing
over this set of vectors is NP-CoMPLETE. What we can do instead is optimize over the space
of all unit vectors @ that are perpendicular to I. This yields the second eigenvector of £ as its
optimal solution. Clearly, the resulting objective value, the second eigenvalue, is smaller than
the normalized cut size. This is called a relazation of the original problem, since we replaced a
hard discrete optimization problem (conductance) with an easier continuous optimization problem
(eigenvalue).

The Spectral Method

The question then becomes: Suppose we solve for the second eigenvector. Can we convert this to
a good cut? If so, how good is this cut? This is the spectral algorithm.

e Let ¥ denote the second smallest eigenvector of L. Sort the vertices ¢ of G in increasing order
of v;. Let the resulting ordering be v; < vy < -+ < vy,

e For each i, consider the cut {1,2,...,i} and its complement. Calculate its conductance.

e Among these n — 1 cuts, choose the one with minimum conductance.

The above algorithm need not find the optimum conductance cut, but has the advantage of being
efficient — all it involves is an eigenvalue computation, followed by sorting, followed by calculating
the conductance of n—1 cuts. How good is this algorithm? This is shown by the following theorem.

4 GRAPH PARTITIONING

Theorem 1 (Cheeger’s Inequality). Let G be a reqular connected graph with conductance %G Let

I' denote the normalized cut size of the cut found by the spectral algorithm, and let Ao denote the
value of the second smallest eigenvector of the Laplacian. Then

A
52 < Og <T < /2d);

This shows that the spectral method has pretty good performance — its conductance is roughly
the square root of the optimal conductance. So if the optimum is very small, the spectral method
will output a decent cut. This gives an extremely practical way to partition a graph into two pieces
so that the vertices within a piece are on average more similar to each other than to vertices in the
opposite side. The proof of this theorem is not hard, but beyond the scope of this course.

General Graph

In the above discussion, we assumed the graph is regular. Even if the graph is arbitrary, the
Laplacian can be constructed in the same way, and the spectral algorithm can be run as before.
However, Cheeger’s inequality only holds for a slightly different definition of Laplacian, termed the
Normalized Laplacian.

Define the volume of a set S as vol(S) = >, g d;. Define the conductance of the graph as:

oo w1
s[vol(sy<vol(v)/2 vol(:S)

Note that for a regular graph, d¢g = O¢-.

Next define the normalized Laplacian as £ = I — D™Y/24AD~1/2 where A is the adjacency
matrix, and D is the diagonal matrix of degrees. As before, compute the second eigenvector of £
and apply the spectral method to construct n — 1 cuts and choose the minimum conductance cut
among them. Then

Theorem 2 (Cheeger’s Inequality). Let G be a connected graph with conductance ¢¢. Let~y denote
the conductance of the cut found by the spectral algorithm applied to the normalized Laplacian, and
let Ao denote the value of the second smallest eigenvector of the normalized Laplacian. Then we

have the following result.
A
5 <da <7< V2N

Note that for regular graphs, both theorems are identical — the normalized Laplacian is 1/d times
the Laplacian, which means the second eigenvalue is 1/d times smaller. Further, the normalized
cut size is d times the conductance. If you put these together, you can show that both theorems
are saying the same thing. The main point is that for non-regular graph, the “right” Laplacian is
the normalized one, and the “right” measure of the quality of a cut is its conductance. However,
we can use the Laplacian D — A for running the algorithm; in practice, it does reasonably well.

We can further generalize the algorithm to handle weights on edges. The generalization is simple
if we replace degree with weighted degree, and volume by weighted volume. The definitions above
generalize naturally, and so does the algorithm, and performance guarantee.

Generalization to Many Partitions

To partition a graph into more pieces, one approach is to consider higher eigenvectors. For instance,
we can take the smallest k& eigenvectors, and project the vertices onto this space. This given n points

Generalization to Many Partitions 5

in k£ dimensional Euclidean space. These points are usually simpler to partition into k groups, since
the eigenvectors have already done most of the hard work! Suppose we want to partition the
resulting points into k groups, then one simple heuristic is the following, called k-center:

e Map each vertex to its projection onto the first k& eigenvectors of the Laplacian (normalized
or unnormalized).

e Start with any vertex; place it in partition 1.
e Take the vertex furthest away from it and place it in partition 2.

e Then take the vertex whose minimum distance to the first two vertices is largest and place it
in partition 3, and so on till we have populated k partitions with one vertex each.

e (Call these vertices, one per partition, the centers of the partitions.

e For the remaining vertices, place each of them in that partition whose center is closest to it.

This gives a partition of the n vertices of a graph into k groups. In practice, such schemes work
extremely well and is called the spectral clustering algorithm. For k = 2, this essentially takes the
second eigenvector, makes the two extreme vertices as centers of the partitions, and places each
vertex in that partition whose center is closer to it. This heuristic is worse than the algorithm that
achieves Cheeger’s inequality, but is simpler than computing the conductance of n — 1 cuts.

