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Eigenvector Centrality

We now present a different type of connection between graphs and eigenvalues. In several applica-
tions, we wish to find influential vertices in a graph. For instance, suppose we model Twitter as a
directed graph where there is an edge from user i to user j if i follows j. Then how can we measure
importance of a user in the graph? One way of measuring it is look at the in-degree of a user, or
the number of users following this user. However, such a measure does not give different amounts
of importance to the different followers – if I have a follower who himself has a large number of
followers, then I must be really important!

In sociology, importance of a user in a social network is termed centraility. As discussed above,
degree centrality measures the importance of a user in terms of its degree in the graph. The
concept of eigenvector centrality or Bonacich centrality generalizes this as follows: Let πi denote
the importance of user i in a directed social network, and let A denote the adjacency matrix, where
aij = 1 if there is an edge from i to j. . A user’s importance proportional to the sum of the
importance of his or her neighbors.

πi =
1

λ

n∑
j=1

Ajiπj

In matrix notation, this can be written as:

λ~πT = ~πTA

In other words, π is the left eigenvector of A (or an eigenvector of AT ) corresponding to the
eigenvalue λ. Of course, the constraint is that ~π have non-negative entries, and λ ≥ 0. Is such a
solution even possible? The answer lies in a surprising fact about positive matrices.

Theorem 1 (Perron-Frobenius Theorem). Let A be a square matrix with real, positive entries.
Then, the largest eigenvalue λ1 of this matrix is real and unique, meaning that for all other eigen-
values λi, we have |λi| < λ1. Furthermore, there exists a unique (up to scaling) eigenvector ~v∗

corresponding to λ1 all of whose entries are real and positive, and this is the only eigenvector with
all positive entries. Finally, the power iteration method ~vt+1 ← A~vt starting at any initial vector
~v0 not orthogonal to ~v∗ converges to ~v∗ as t→∞.

In fact, it is sufficient to assume Ak has all positive entries for some k > 0 for the above theorem
to hold. For instance, in the case when A is the adjacency matrix of a graph, there are some entries
that are zero. So it does not quite satisfy the Perron-Frobenius theorem. There are two ways to
fix this. First, if we assume all entries aij are at least ε for a vanishingly small value ε, then the
theorem will hold. In that case, there is a unique solution to the equation λ~πT = ~πTA, and this
can be computed by power iteration. Secondly, if the graph is connected but not bipartite, then
Ak will have all positive entries for some k > 0, so that the statement of the theorem holds.
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2 RANDOM WALKS

Random Walks

The above concept is intricately connected to the concept of random walks and Markov chains.
Consider the following process on the graph: Suppose the location at the current step is vertex i,
and let its out-degree be di. Then at the next step, the location is a vertex j chosen uniformly at
random from the set of neighbors of i. Such a process is called a random walk or Markov chain,
where the word Markov means that what happens at the next step depends on which vertex the
process currently is at, and does not depend on how the process got to that vertex. Suppose we
repeat this process for t steps and consider the vertex that the process stops at. This follows a
distribution ~πt. Suppose we run the process for one more step, then we can calculate ~πt+1 as follows:
The process is at vertex i with probability πit, and conditioned on this, it transitions to vertex j
with probability 1

di
. Therefore, the probability of being at vertex j at step t+ 1 is given by:

πjt+1 =
∑

i|j∈N(i)

1

di
πit ∀j ∈ {1, 2, . . . , n}, t

As before, we can write this in matrix notation as follows: Let P denote the matrix where entry
pij = 1

di
if i has an edge to j, and 0 otherwise. This denotes the probability that the process at

vertex i transitions to vertex j at the next step. In matrix notation, the above equation can be
written as:

~πt+1
T = ~πt

TP

where P is termed the transition matrix. Note that the sum of entries of each row in P is 1,
since these represent the probabilities of transition out of a vertex. Such a matrix is termed row
stochastic. It is easy to check that we can use any row stochastic matrix with non-negative entries
to define the transition probabilities of the random walk on the underlying graph – the entry pij
of the matrix would correspond to the probability of transitioning to j at the next step given the
current vertex is i.

What we are interested in is the distribution over vertices of the process if it is run for a long
time. Suppose there is a distribution ~π∗ over vertices such that if the process is run for one more
step starting from this distribution, then the distribution at the next step remains the same. This
would mean

~π∗
T

= ~π∗
T
P

This means P T should have 1 as an eigenvalue, and the corresponding eigenvector is ~π. It is not a
priori clear this is true. But there is a simple way to check this. Instead of looking at eigenvectors
of P T , suppose we want to solve

P~v = λ~v

Since P is row-stochastic, summing the entries of a row yields 1. This means

P~1 = ~1

so that ~1 is an eigenvector corresponding to the eigenvalue λ = 1. Note next that for any square
matrix A, both A and AT have the same eigenvalues. Therefore, 1 is an eigenvalue of P T . Further,
if we assume the entries of P are strictly positive, then by the Perron-Frobenius theorem, the only
eigenvector with all positive entries corresponds to the largest eigenvalue. Therefore, λ = 1 is the
largest eigenvalue of P and hence of P T . Further, the corresponding eigenvector ~π∗ of P T has all

positive entries, and is unique up to scaling. Therefore the relation ~π∗
T

= ~π∗
T
P has a unique

solution assuming all entries of P are strictly positive.
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Finally, note that since λ = 1 is the largest eigenvalue, the power iteration method starting at
any initial vector (not orthogonal to ~π∗) converges to the largest eigenvector. But note that

~πt+1
T = ~πt

TP = ~π1
TP t

Therefore, the power iteration method is exactly how the probability distribution over vertices
evolves if we run the random walk starting with some initial distribution ~π1 over the vertices.
This means such a process converges to the distribution ~π∗ over vertices in the limit as t goes to
infinity. This distribution is therefore termed the stationary distribution of the Markov chain. Put
differently, suppose you run the random walk for many steps t and look at the final vertex, its
distribution will roughly follow ~π∗.

Convergence Rate and Revisiting Cheeger’s Inequality

There are two caveats to the discussion above. First, the Perron-Frobenius theorem needs all entries
of the matrix to be positive, meaning there is a non-zero probability of transitioning from any vertex
to any other vertex. A weaker assumption is that P k has all positive entries for some k > 0 and
that the underlying graph defined by non-zero pij is connected. Such a transition matrix is termed
ergodic. The simplest way to ensure ergodicity holds for a connected transition matrix is to place
self-loops at every vertex, so that the process stays at the current vertex with some probability each
step. The stationary distribution exists even without such an assumption, but in general, there can
be many such distributions. Further, it is easy to show that even if the stationary distribution is
unique, this will only be the relative frequency of visiting vertices, and the distribution will never
converge to this. For instance, think about running the random walk on a cycle of even length,
starting at some vertex. The states at even time steps will always be different from the states at
odd time steps, so there is no limiting distribution for such a walk.

Next, the rate at which the distribution ~πt converges to the stationary distribution is termed the
convergence rate. Since the process is simply power iteration, it depends on the gap between the
first eigenvalue (which is 1) and the second eigenvalue λ2. Consider a d-regular undirected graph.
For this graph, we have L = I − P , where L is the normalized Laplacian and P is the transition
matrix of the random walk. Therefore, the second smallest eigenvalue of L, call this κ2 is equal to
1 − λ2. Let φ denote the conductance of the underlying graph G. Then we know from Cheeger’s
inequality that

κ2 = 1− λ2 ≥
φ2
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We have seen that the time taken for power iteration to converge is O
(

logn
1−λ2

)
, which is O

(
logn
φ2

)
by Cheeger’s inequality. This means graphs with low conductance cuts need more time to achieve
the stationary distribution. In a sense, the above result is intuitive. The conductance of a cut is
the ratio of the edges crossing the cut to all the edges that originate in the cut. Take the cut S of
conductance φ. Suppose the process is choosing a random edge within S the next step. Then, the
probability that the process takes an edge of the cut is φ. Roughly speaking, this means it takes
time 1

φ in expectation to cross the cut. But unless it crosses the cut, the distribution over vertices

cannot be close to the steady state distribution. This means the walk will take expected time Ω
(

1
φ

)
to reach steady state. This would correspond to the “easy direction” of Cheeger’s inequality.

However, this argument was only for one cut, and the graph has exponentially many cuts; if the
random walk has to converge to steady state, it must have crossed all these exponentially many
cuts at least once in expectation. It is therefore somewhat surprising and non-trivial that it is at

most O
(
logn
φ2

)
, and this corresponds to the “hard direction” of Cheeger’s inequality.
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PageRank

Note that one measure of eigenvector centrality can be obtained by considering the stationary
distribution of the corresponding random walk. For an undirected graph, the stationary distribution
is the same as degree centrality. It is easy to check that

π∗i =
di

2|E|

is the stationary distribution. To see this, note that∑
j∈N(i)

π∗j pji =
∑
j∈N(i)

dj
2|E|

1

dj
=
|N(i)|
2|E|

=
di

2|E|
= π∗i

Therefore, for an undirected graph, the eigenvector centrality measure obtained by the stationary
distribution of the corresponding random walk is the same as the degree centrality.

For a directed graph, the correspondence is no longer true, and the random walk yields a more
interesting stationary distribution. This is the idea behind the PageRank algorithm that is widely
used to rank web pages, social networks, etc. Given the World Wide Web, we can make each page
a vertex. There is an edge from i to j if page i has a link to page j. Eigenvector centrality means a
webpage is deemed important if a lot of important pages have links to it. The PageRank algorithm
models this as follows: There is a web surfer who is performing a random walk on the web graph.
He starts at some page and follows links. We can now calculate the stationary distribution of this
process. The catch is that the web graph is often disconnected, and further, the process can reach
a page that does not have any links. The fix is the following:

• If a page i has no links, pretend the surfer restarts the process by going to a random page.
This corresponds to setting pij = 1/n for all j.

• At every step, the surfer does the random walk with probability 1−α, and goes to a random
page (that is, restarts the random walk) with probability α. This corresponds to setting

pij = (1− α)
aij
di

+
α

n

where aij = 1 if there is a link from i to j and 0 otherwise. The value of α is typically set to
0.15, and is termed the teleportation probability.

With these two changes, all entries of P are strictly positive so that we can apply the Perron-
Frobenius theorem. Further, one can show that the second eigenvalue of P is at most 1 − α,
implying power iteration will converge rapidly. This means the stationary distribution is unique,
can be computed by performing the random walk, and the number of steps for which the walk must
be performed is small. This method is termed the PageRank algorithm for computing centrality of
web pages. Similar methods are used for ranking users in a social networks, and the power iteration
method is implemented in practice on a large scale for this purpose.


