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Hermitian Matrices

It is simpler to begin with matrices with complex numbers. Let x = a + ib, where a, b are real
numbers, and i =

√
−1. Then, x∗ = a− ib is the complex conjugate of x. In the discussion below,

all matrices and numbers are complex-valued unless stated otherwise.

Let M be an n× n square matrix with complex entries. Then, λ is an eigenvalue of M if there
is a non-zero vector ~v such that

M~v = λ~v

This implies (M − λI)~v = 0, which also means the determinant of M − λI is zero. Since the
determinant is a degree n polynomial in λ, this shows that any M has n real or complex eigenvalues.

A complex-valued matrix M is said to be Hermitian if for all i, j, we have Mij = M∗ji. If the
entries are all real numbers, this reduces to the definition of symmetric matrix.

In the discussion below, we will need the notion of inner product. Let ~v and ~w be two vectors
with complex entries. Define their inner product as

〈~v, ~w〉 =

n∑
i=1

v∗iwi

Since (x∗)∗ = x for any complex number x, we have

〈~v, ~w〉 =
n∑
i=1

v∗iwi =
n∑
i=1

(w∗i vi)
∗ = (〈~w,~v〉)∗

Furthermore, we define

〈~v,~v〉 =
n∑
i=1

v∗i vi = ‖~v‖2

Claim 1. M is Hermitian iff all its eigenvalues are real. If further M is real and symmetric, then
all its eigenvectors have real entries as well.

Proof. Using the fact that Mij∗ = Mji, we have the following relations:

〈M~v,~v〉 =
∑
i

∑
j

(Mijvj)
∗vi

=
∑
i

∑
j

Mjiv
∗
j vi

=
∑
j

v∗j
∑
i

(Mjivi)

= 〈~v,M~v〉
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2 COMPUTING EIGENVALUES

Suppose M~v = λ~v. Then

〈M~v,~v〉 = 〈λ~v,~v〉 = λ∗‖~v‖2

and

〈~v,M~v〉 = 〈~v, λ~v〉 = λ‖~v‖2

Since these expressions are equal, this means λ∗ = λ, which means λ is real.

Suppose M is real and symmetric. Let λ be some eigenvalue, which by the above definition is
real. Then we have M~v = λ~v for some complex ~v. Since M is real, this means, the above relation
also holds for both the real and complex parts of ~v. Therefore, if ~w is the real part of ~v, then
M ~w = λ~w. This implies all eigenvectors are real if M is real and symmetric.

From now on, we will only focus on matrices with real entries.

Claim 2. For a real, symmetric matrix M , let λ 6= λ′ be two eigenvalues. Then the corresponding
eigenvectors are orthogonal.

Proof. Let M~v = λ~v and M ~w = λ′ ~w. Since M is symmetric, it is easy to check that

〈M~v, ~w〉 = 〈~v,M ~w〉 =
∑
i,j

Mijviwj

But

〈M~v, ~w〉 = λ〈~v, ~w〉

and

〈~v,M ~w〉 = λ′〈~v, ~w〉

Since λ 6= λ′, this implies 〈~v, ~w〉 = 0, which means the eigenvectors are orthogonal.

We state the next theorem without proof.

Theorem 1. Let M be a n × n real symmetric matrix, and let λ1, . . . , λn denote its eigenvalues.
Then, there exist n real-valued vectors ~v1, ~v2, . . . , ~vn such that:

• ‖~vi‖ = 1 for all i = 1, 2, . . . , n;

• 〈~vi, ~vj〉 = 0 for all i 6= j ∈ {1, 2, . . . , n}; and

• M~vi = λi~vi for all i = 1, 2, . . . , n.

Computing Eigenvalues

In this section, we assume M is real and symmetric.

Lemma 1. Let M be a real symmetric matrix. Let λ1 denote its largest eigenvalue and ~v1 denote
the corresponding eigenvector with unit norm. Then

λ1 = sup
~x∈Rn,‖~x‖=1

~xTM~x = ~v1
TM ~v1
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Proof. First note that since ‖~v1‖ = 1, we have:

~v1
TM ~v1 = λ1 ~v1

T ~v1 = λ1

This means
λ1 ≤ sup

~x∈Rn,‖~x‖=1
~xTM~x

Suppose the supremum is achieved at vector ~y. Let ~v1, ~v2, . . . , ~vn denote the orthogonal eigenvectors
of unit length corresponding to the eigenvalues λ1 ≥ · · · ≥ λn respectively. Then we can write ~y in
this basis as:

~y =
n∑
i=1

αi~vi

Since ~y has unit length, this means

〈~y, ~y〉 =
n∑
i=1

α2
i = 1

Note next that

M~y =
n∑
i=1

αiλi~vi

This means

~yTM~y = 〈
n∑
i=1

αi~vi,

n∑
i=1

αiλi~vi〉 =

n∑
i=1

α2
iλi

This means

sup
~x∈Rn,‖~x‖=1

~xTM~x = ~yTM~y =
n∑
i=1

α2
iλi ≤ λ1

n∑
i=1

α2
i = λ1

This means the supremum has value exactly λ1 and is achieved for ~x = ~v1.

We can continue the same argument to show the following corollaries:

Corollary 2. Let λ2 denote the second largest eigenvalue of a real, symmetric matrix M , and let
~v1 denote the first eigenvector. Then

λ2 = sup
~x∈Rn,‖~x‖=1,〈~x, ~v1〉=0

~xTM~x

Corollary 3. Let M be a real symmetric matrix, and λn denote its smallest eigenvalue. Then

λn = inf
~x∈Rn,‖~x‖=1

~xTM~x

Orthonormal Square Matrices

In order to interpret what the above results mean, we first review orthonormal matrices. A square
matrix P is orthonormal if its rows (columns) are orthogonal vectors of unit length. More formally,
we have

P TP = PP T = I

Note that since the matrix is square and the rows are orthogonal, they cannot be expressed as linear
combinations of each other. This means the matrix is invertible. Multiplying the above expressions
by P−1, it is easy to check that

P T = P−1



4 POWER ITERATION

In order to interpret what P does, note the following. For any vectors ~v and ~w,

〈P~v, P ~w〉 = ~vTP TP ~w = ~vT ~w = 〈~v, ~w〉

This means applying P preserves the angles between vectors, as well as their lengths. This means
applying P performs a rotation of the space.

Given a real, symmetric matrix M with eigenvalues λ1 ≥ λ2 ≥ · · · ≥ λn, let Q denote the
matrix whose rows are the corresponding eigenvectors of unit length. Since these eigenvectors are
orthogonal, this implies Q is orthonormal. Let D be the matrix whose entries along the diagonal
are the n eigenvalues, and other entries are zero. It is easy to check that:

MQT = QTD ⇒ M = QTDQ

Therefore, applying M to a vector v is the same as applying the rotation Q; then stretching
dimension i by factor λi, and rotating back by QT . Note that λi could be negative, which flips the
sign of the corresponding coordinate.

If we were to do this, which direction stretches the most? The dimension corresponding to λ1
after the rotation by Q. But in the original space, this would be the direction corresponding to the
first eigenvector ~v1. Now, for unit vector ~x, we have

~xTM~x = (Q~x)T D (Q~x)

This quantity therefore corresponds to the length of the stretched rotated vector (since Q~x is also
a unit vector), which is λ1 if ~x = ~v1. This is the interpretation of the previous result.

Power Iteration

Assuming λ1 is strictly larger than λ2, there is a simple algorithm to compute the largest eigenvector.
Note that

Mk =
(
QTDQ

)k
= QTDkQ

This means Mk has eigenvectors ~v1, ~v2, . . ., and the corresponding eigenvalues are λk1, λ
k
2, . . .. Sup-

pose ~x =
∑n

i=1 αi~vi, then

Mk~x =

n∑
i=1

αiλ
k
i ~vi

The claim is that as k becomes large, this vector points more and more in the direction of ~v1.
Suppose we choose the initial vector ~x at random. Since it is a random vector, each αi ∼ N

(
0, 1n

)
.

This means with large probability, |αi| ∈
[
1
n , 1
]
. If we assume λ1 ≥ cλ2, then, for i ≥ 2, αiλ

k
i ≤

λk1/c
k, while α1λ

k
1 ≥ λk1/n. If we choose ck ≥ n, so that k ≥ logc n, then the terms for i ≥ 2 have

vanishingly small coefficients, and the dominant term corresponds to ~v1. Assuming c = 1 + ε, we
need to choose k ≈ logn

ε for the second and larger eigenvectors to have vanishing contributions
compared to the first.

This method is termed power iteration. It can be improved by repeated squaring, so that k
grows in powers of 2. The number of iterations then drops to around log 1

ε + log log n. So even an
exponentially small gap, say ε = 1

2n between λ1 and λ2 is sufficient for the algorithm to converge
to the direction ~v1 in polynomially many iterations.
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Once we have computed ~v1, to compute ~v2, simply pick a random vector and project in the
direction perpendicular to ~v1. Call this projected vector~x. Since ~x =

∑n
i=2 αi~vi, we again have

Mk~x =

n∑
i=2

αiλ
k
i ~vi

In the limit, this converges to the second eigenvector assuming the second eigenvalue is well-
separated from the third. And so on.

Positive semidefinite Matrices

Positive semidefinite (PSD) matrices are a special case of real symmetric matrices. A matrix M is
said to be PSD if ~xTM~x ≥ 0 for all ~x. As an example, if M = ATA for any matrix A, then it is
easy to see that

~xTM~x = (A~x)T (A~x) ≥ 0

It is also easy to see that all eigenvalues of a PSD matrix are non-negative. To see this, note that

~vi
TM~vi = λi〈~viT , ~vi〉 ≥ 0 ⇒ λi ≥ 0

The above characterization is if and only if: A real, symmetric matrix is PSD iff all its eigenvalues
are non-negative.


