
Communication Complexity of Byzantine Agreement, Revisited
Ittai Abraham

VMware Research

T-H. Hubert Chan

The University of Hong

Kong

Danny Dolev

The Hebrew University of

Jerusalem

Kartik Nayak

VMware Research

Rafael Pass

Cornell Tech

Ling Ren

VMware Research

Elaine Shi

Cornell University

ABSTRACT
As Byzantine Agreement (BA) protocols find application in large-

scale decentralized cryptocurrencies, an increasingly important

problem is to design BA protocols with improved communication

complexity. A few existing works have shown how to achieve sub-

quadratic BA under an adaptive adversary. Intriguingly, they all

make a common relaxation about the adaptivity of the attacker, that

is, if an honest node sends a message and then gets corrupted in

some round, the adversary cannot erase the message that was already
sent — henceforth we say that such an adversary cannot perform

“after-the-fact removal”. By contrast, many (super-)quadratic BA

protocols in the literature can tolerate after-the-fact removal. In

this paper, we first prove that disallowing after-the-fact removal is

necessary for achieving subquadratic-communication BA.

Next, we show a new subquadratic binary BA construction (of

course, assuming no after-the-fact removal) that achieves near-

optimal resilience and expected constant rounds under standard

cryptographic assumptions and a public-key infrastructure (PKI).

In comparison, all known subquadratic protocols make additional

strong assumptions such as random oracles or the ability of honest

nodes to erase secrets from memory, and even with these strong

assumptions, no prior work can achieve the above properties. Lastly,

we show that some setup assumption is necessary for achieving

subquadratic multicast-based BA.

ACM Reference Format:
Ittai Abraham, T-H. Hubert Chan, Danny Dolev, Kartik Nayak, Rafael Pass,

Ling Ren, and Elaine Shi. 2019. Communication Complexity of Byzantine

Agreement, Revisited. In 2019 ACM Symposium on Principles of Distributed
Computing (PODC ’19), July 29-August 2, 2019, Toronto, ON, Canada. ACM,

New York, NY, USA, 11 pages. https://doi.org/10.1145/3293611.3331629

1 INTRODUCTION
Byzantine agreement (BA) [24] is a central abstraction in distributed

systems. Typical BA protocols [5, 11, 12] require all players to send

messages to all other players, and thus, n-player BA requires at

least n2 communication complexity. Such protocols are thus not

well suited for large-scale distributed systems such as decentralized

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

PODC ’19, July 29-August 2, 2019, Toronto, ON, Canada
© 2019 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 978-1-4503-6217-7/19/07. . . $15.00

https://doi.org/10.1145/3293611.3331629

cryptocurrencies [26]. A fundamental problem is to design BA

protocols with improved communication complexity.

In fact, in a model with static corruption, this is relatively easy.

For example, suppose there are at most f < (1
2
− ϵ)n corrupt

nodes where ϵ is a positive constant; further, assume there is a

trusted common random string (CRS) that is chosen independently

of the adversary’s (static) corruption choices. Then, we can use

the CRS to select a κ-sized committee of players. Various elegant

works have investigated how to weaken or remove the trusted

set-up assumptions required for committee election and retain

subquadratic communication [6, 22]. Once a committee is selected,

we can run any BA protocol among the committee, and let the

committee members may send their outputs to all “non-committee”

players who could then output the majority bit. This protocol works

as long as there is an honest majority on the committee. Thus,

the error probability is bounded by exp(−Ω(κ)) due to a standard

Chernoff bound.

Such a committee-based approach, however, fails if we consider

an adaptive attacker. Such an attacker can simply observe what

nodes are on the committee, then corrupt them, and thereby control

the entire committee! A natural and long-standing open question

is thus whether subquadratic communication is possible w.r.t. an

adaptive attacker:

Does there exist a BA protocol with subquadratic communication
complexity that resists adaptive corruption of players?

This question has been partially answered in a few prior works.

First, a breakthrough work by King and Saia [21] presented a BA

protocol with communication complexity O (n1.5). More recent

works studied practical constructions motivated by cryptocurrency

applications: notably the celebrated Nakamoto consensus [17, 26]

can reach agreement in subquadratic communication assuming

idealized proof-of-work. Subsequently, several so-called “proof-of-

stake” constructions [7, 9] also showed how to realize BA with

subquadratic communication. All of the above works tolerate adap-

tive corruptions.

What is both intriguing and unsatisfying is that all these works

happen to make a common relaxing assumption about the adap-

tivity of the adversary, namely, if adversary adaptively corrupts

an honest node i who has just sent a message m in round r , the
adversary is unable to erase the honest message m sent in round r .
Henceforth we say that such an adversary is incapable of after-the-
fact removal. In comparison, many natural Ω(n2)-communication

BA protocols [1, 11, 20] can be proven secure even if the adversary

is capable of after-the-fact removal – henceforth referred to as a

strongly adaptive adversary. That is, if an honest node i sends a
message m in round r , a strongly adaptive adversary (e.g., who

https://doi.org/10.1145/3293611.3331629
https://doi.org/10.1145/3293611.3331629

PODC ’19, July 29-August 2, 2019, Toronto, ON, Canada Ittai Abraham, T-H. Hubert Chan, Danny Dolev, Kartik Nayak, Rafael Pass, Ling Ren, and Elaine Shi

controls the egress routers of many nodes) can observe m and then

decide to corrupt i and erase the messagem that node i has just sent
in round r . This mismatch in model naturally raises the following

question:

Is disallowing after-the-fact removal necessary for achieving

subquadratic-communication BA?

Main result 1: disallowing “after-the-fact” removal is neces-
sary. Our first contribution is a new lower bound showing that

any (possibly randomized) BA protocol must incur at least Ω(f 2)
communication in expectation in the presence of a strongly adap-

tive adversary where f denotes the number of corrupt nodes. The

proof of our lower bound is inspired by the work of Dolev and Reis-

chuk [10], who showed that any deterministic BA protocol must

incur Ω(f 2) communication even against a static adversary. We

remark our lower bound (as well as Dolev-Reischuk) holds in a very

strong sense: even when making common (possibly very strong)

assumptions such as proof-of-work and random oracles, and even

under a more constrained omission adversary who is only allowed

to omit messages sent from and to corrupt nodes, but does not

deviate from the protocol otherwise.

Theorem 1 (Impossibility of BA with subqadratic commu-

nication w.r.t. a strongly adaptive adversary). Any (possibly
randomized) BA protocol must in expectation incur at least Ω(f 2)
communication in the presence of a strongly adaptive adversary capa-
ble of performing after-the-fact removal, where f denotes the number
of corrupt nodes.

Main result 2: near-optimal subquadratic BA with minimal
assumptions.On the upper bound front, we present a subquadratic
BA protocol that, besides the necessary “no after-the-fact removal”

assumption, relies only on standard cryptographic and setup as-

sumptions. Our protocol achieves near-optimal resilience and ex-

pected constant rounds.

Our results improve upon existing works in two major aspects.

Firstly, besides “no after-the-fact removal”, all existing subquadratic

protocols make very strong additional assumptions, such as random

oracles [7, 9] or proof-of-work [26]. In particular, someworks [7, 21]

assume the ability of honest nodes to securely erase secrets from

memory and that adaptive corruption cannot take place between

when an honest node sends a message and when it erases secrets

from memory. Such a model is referred to as the “erasure model”

in the cryptography literature and as “ephemeral keys” in Chen

and Micali [7]. To avoid confusing the term with “after-the-fact

message removal”, we rename it the memory-erasure model in this

paper. Secondly, and more importantly, even with those strong

assumptions, existing protocols do not achieve the above properties

(cf. Section 1.1).

The multicast model. In a large-scale peer-to-peer network, it is

usually much cheaper for a node to multicast the same message to

everyone, than to unicast n different messages (of the same length)

to n different nodes — even though the two have identical com-

munication complexity in the standard pair-wise model. Indeed,

all known consensus protocols deployed in a decentralized envi-

ronment (e.g. Bitcoin, Ethereum) work in the multicast fashion.

Since our protocols are motivated by these large-scale peer-to-peer

networks, we design our protocols to be multicast-based.

A multicast-based protocol is said to havemulticast complexityC
if the total number of messages multicast by all honest players is

upper bounded by C . Clearly, a protocol with multicast complexity

C has communication complexity nC . Thus, to achieve subquadratic
communication complexity, we need to design a protocol in which

only a sublinear (in n) number of players multicast.

Theorem 2. Assuming standard cryptographic assumptions and
a public-key infrastructure (PKI), for any constant 0 < ϵ < 1/2,
there exists a synchronous BA protocol with expected O (κ) multicast
complexity, expected O (1) round complexity, and exp(−Ω(κ)) error
probability that tolerates f < (1−ϵ)n/2 adaptively corrupted players
out of n players in total.

Our construction requires a random verifiable function (VRF)

that is secure against an adaptive adversary. Here, adaptive security

means security under selective opening of corrupt nodes’ secret

keys, which is a different notion of adaptivity from in some prior

works [4, 18]. Most previously known VRF constructions [4, 18,

25] do not provide security under an adaptive adversary. Chen

and Micali [7] use random oracles (RO) and unique signatures to

construct an adaptively secure VRF. In the full version of this paper,

we will show how to instantiate an adaptively secure VRF from

standard cryptographic assumptions such as bilinear groups.

Main result 3: on the necessity of setup assumptions. In light

of the above Theorem 2, we additionally investigate whether the

remaining setup PKI assumption is necessary. We show that if one

insists on a multicast-based protocol, indeed some form of setup as-

sumption is necessary for achieving sublinear multicast complexity.

Specifically, we show that without any setup assumption, i.e., under

the plain authenticated channels model, a (possibly randomized)

protocol that solves BA with C multicast complexity with probabil-

ity p > 5/6 can tolerate no more than C adaptive corruptions.

Theorem 3 (Impossibility of sublinear multicast BA with-

out setup assumptions). In a plain authenticated channel model
without setup assumptions, no protocol can solve BA usingC multicast
complexity with probability p > 5/6 under C adaptive corruptions.

We remark that this lower bound also applies more generally

to protocols in which few nodes (i.e., less than C nodes) speak

(multicast-style protocols are a special case). Also note that there

exist protocols with subquadratic communication and no setup

assumptions that rely on many nodes to speak [21].

Organization. The rest of the paper is organized as follows. Sec-

tion 1.1 reviews related work. Section 2 presents the model and

definitions of BA. Section 3 proves Theorem 1. Section 4 and 5

construct an adaptively secure BA protocol to prove Theorem 2.

Section 6 proves Theorem 3.

1.1 Related Work
Dolev and Reischuk [10] proved that quadratic communication

is necessary for any deterministic BA protocol. Inspired by their

work, we show a similar communication complexity lower bound

for randomized protocols, but now additionally assuming that the

adversary is strongly adaptive.

Communication Complexity of Byzantine Agreement, Revisited PODC ’19, July 29-August 2, 2019, Toronto, ON, Canada

A number of works explored randomized BA protocols [3, 27] to

achieve expected constant round complexity [1, 13, 20] even under a

strongly adaptive adversary. A line of works [8, 16, 19] focused on a

simulation-based stronger notion of adaptive security for Byzantine

Broadcast. These works have at least quadratic communication

complexity.

King and Saia first observed that BA can be solved with sub-

quadratic communication complexity if a small probability of error

is allowed [21]. More recently Nakamoto-style protocols, based

on either proof-of-work [26] or proof-of-stake [7, 9] also showed

how to realize BA with subquadratic communication. Compared to

our protocol in Section 5, these existing works make other strong

assumptions, and even with those strong assumptions, cannot si-

multaneously achieve near-optimal resilience and expected con-

stant rounds. Nakamoto consensus [26] assumes idealized proofs-of-

work. Proof-of-stake protocols assume random oracles [7, 9]. King-

Saia [21] and Chen-Micali [7] assume memory-erasure. Nakamoto-

style protocols [9, 26] and King-Saia [21] cannot achieve expected

constant rounds. Chen-Micali [7] have sub-optimal tolerance of

f < (1
3
− ϵ)n.

2 MODEL AND DEFINITION

Communicationmodel.We assume that network is synchronous

and the protocol proceeds in rounds. Every message sent by an

honest node is guaranteed to be received by an honest recipient

at the beginning of the next round. We measure communication

complexity by the number of messages sent by honest nodes. Our

protocols in Section 4 and 5 use multicasts only, that is, whenever

an honest node sends a message, it sends that message to all nodes

including itself. We say a protocol has multicast complexity C if

the total number of multicasts by honest nodes is bounded by C .

Adversary model. Prior to the protocol execution, each node gen-

erates its public/private key pair honestly and sends its public key

to all other nodes. The adversary is denoted A. A can adaptively
corrupt nodes any time during the protocol execution after the

trusted setup. The total number of corrupt nodes at the end of the

execution is at most f . At any time in the protocol, nodes that re-

main honest so far are referred to as so-far-honest nodes and nodes

that remain honest till the end of the protocol are referred to as

forever-honest nodes. All nodes that have been corrupt are under

the control ofA, i.e., the messages they receive are forwarded toA,

and A controls what messages they will send in each round once

they become corrupt. We assume that when a so-far-honest node

i multicasts a message m, it can immediately become corrupt in

the same round and be made to send one or more messages in the

same round. However, the message m that was already multicast

before i became corrupt cannot be retracted — it will be received

by all so-far-honest nodes at the beginning of the next round. In

other words, the adversary is adaptive but not strongly adaptive

(i.e., incapable of after-the-fact removal).

Agreement vs. broadcast. (Binary) Byzantine Agreement is typ-

ically studied in two forms. In the broadcast version, also called

Byzantine broadcast, there is a designated sender (or simply sender)
known to all nodes. Prior to protocol start, the sender receives an

input b ∈ {0, 1}. A protocol solves Byzantine broadcast with proba-

bility p if it achieves the following properties with probability at

least p.

- Termination. Every forever-honest node i outputs a bit b ′i .
- Consistency. If two forever-honest nodes output b ′i and b

′
j respec-

tively, then b ′i = b
′
j .

- Validity. If the sender is forever-honest and the sender’s input is

b, then all forever-honest nodes output b.

In the agreement version, sometimes referred to as Byzantine

“consensus” in the literature, there is no designated sender. Instead,

each node i receives an input bit bi ∈ {0, 1}. A protocol solves

Byzantine agreement (BA) with probability p if it achieves the

following properties with probability at least p.

- Termination and Consistency same as Byzantine broadcast.

- Validity. If all forever-honest nodes receive the same input bit b,
then all forever-honest nodes output b.

With synchrony and PKI, the agreement version (where everyone
receives input) can tolerate up to minority corruption [15] while

the broadcast version can tolerate up to n − 1 corruptions [11, 24].
Under minority-corruption, the two versions are equivalent from

a feasibility perspective, i.e., we can construct one from the other.

Moreover, one direction of the reduction preserves communication

complexity. Specifically, given an adaptively secure BA protocol

(agreement version), one can construct an adaptively secure Byzan-

tine Broadcast protocol by first having the designated sender mul-

ticasting its input to everyone, and then having everyone invoke

the BA protocol. This way, if the BA protocol has subquadratic

communication complexity (resp. sublinear multicast complexity),

so does the resulting Byzantine Broadcast protocol. For this rea-

son, we state all our upper bounds for BA and state all our lower

bounds for Byzantine Broadcast — this makes both our upper- and

lower-bounds stronger.

3 COMMUNICATION LOWER BOUND UNDER
A STRONGLY ADAPTIVE ADVERSARY

In this section, we prove that any (possibly randomized) BA protocol

must in expectation incur at least Ω(f 2) communication in the

presence of a strongly adaptive adversary capable of performing

after-the-fact removal. For the reasons mentioned in Section 2, we

prove our lower bound for Byzantine Broadcast (which immediately

applies to BA). Our proof strategy builds on the classic Dolev-

Reischuk lower bound [10, Theorem 2], which shows that in every

deterministic Byzantine Broadcast protocol honest nodes need to

send at least Ω(f 2) messages.

Warmup: the Dolev-Reischuk lower bound. We first explain

the Dolev-Reischuk proof at a high level. Observe that for a deter-

ministic protocol, an execution is completely determined by the

input (of the designated sender) and the adversary’s strategy. Con-

sider the following adversary A: A corrupts a set V of f /2 nodes
that does not include the designated sender. LetU denote the set

of remaining nodes. All parties in V behave like honest nodes, ex-

cept that (i) they ignore the first f /2 messages sent to them, and

(ii) they do not send messages to each other. Suppose the honest

PODC ’19, July 29-August 2, 2019, Toronto, ON, Canada Ittai Abraham, T-H. Hubert Chan, Danny Dolev, Kartik Nayak, Rafael Pass, Ling Ren, and Elaine Shi

designated sender has input 0. For validity to hold, all honest nodes

must output 0.

If at most (f /2)2 messages are sent to V in the above execution,

then there exists a node p ∈ V that receives at most f /2 messages.

Now, define another adversary A ′ almost identically as A except

that: (i) A ′ does not corrupt p, (ii) A ′ corrupts all nodes inU that

send p messages (possibly including the designated sender), pre-

vents them from sending any messages to p, but behaves honestly
to other nodes. Since p receives at most f /2 messages underA,A ′

corrupts at most f nodes.

Observe that honest nodes in U receive identical messages from

all other nodes in the two executions. So these nodes still output

0 under A ′. However, p does not receive any message but has to

output some value. If this value is 1, consistency is violated. If p
outputs 0 when receiving no messages, we can let the sender send

1 under A and derive a consistency violation under A ′ following

a symmetric argument.

Our lower bound. We now extend the above proof to random-

ized protocols. In a randomized protocol, there are two sources

of randomness that need to be considered carefully. On one hand,

honest nodes can use randomization to their advantage. On the

other hand, an adaptive adversary can also leverage randomness.

Indeed our lower bound uses a randomized adversarial strategy. In

addition, our lower bound crucially relies on the adversary being

strongly adaptive – the adversary can observe that a message is

sent by an honest node h to any other party in a given round r ,
decide to adaptively corrupt h, and then remove messages sent by

h in round r . We prove the following theorem — here we say that a

protocol solves Byzantine Broadcast with probability q iff for any

non-uniform p.p.t. strongly adaptive adversary, with probability

q, every honest node outputs a bit at the end of the protocol, and

consistency and validity are satisfied.

Theorem 4. If a protocol solves Byzantine Broadcast with 3

4
+ ϵ

probability against a strongly adaptive adversary, then in expectation,
honest nodes collectively need to send at least (ϵ f)2 messages.

Proof. For the sake of contradiction, suppose that a protocol

solves Byzantine Broadcast against a strongly adaptive adversary

with
3

4
+ ϵ probability using less than (ϵ f)2 expected messages.

This means, regardless of what the adversary does, the protocol

errs (i.e., violate either consistency, validity or termination) with

no more than
1

4
−ϵ probability. We will construct an adversary that

makes the protocol err with a probability larger than the above.

Without loss of generality, assume that there exist ⌈n/2⌉ nodes
that output 0 with at most 1/2 probability if they receive no mes-

sages. (Otherwise, then there must exist ⌈n/2⌉ nodes that output
1 with at most 1/2 probability if they receive no messages, and

the entire proof follows from a symmetric argument.) Let V be a

set of f /2 such nodes not containing the designated sender. Note

that these nodes may output 1 or they may simply not terminate if

they receive no messages. (We can always find such a V because

f /2 < ⌈n/2⌉). LetU denote the remaining nodes. Let the designated

sender send 0.

Next, consider the following adversary A that corrupts V and

makes nodes in V behave honestly except that:

(1) Nodes in V do not send messages to each other.

(2) Each node in V ignores (i.e., pretends that it does not receive)
the first f /2 messages sent to it by nodes inU .

For a protocol to have an expected message complexity of (ϵ f)2,
honest nodes collectively need to send fewer than that many mes-

sages in expectation regardless of the adversary’s strategy. Let z
be a random variable denoting the number of messages sent by

honest nodes to V . We have E[z] < (ϵ f)2. Let X1 be the event

that z ≤ ϵ
2
f 2. By Markov’s inequality, Pr[z > 1

2ϵ E[z]] < 2ϵ . Thus,

Pr[z ≤ ϵ
2
f 2] ≥ Pr[z ≤ 1

2ϵ E[z]] > 1 − 2ϵ .

Let X2 be the event that among the first
ϵ
2
f 2 messages, a node p

picked uniformly at random from V by the adversary receives at

most f /2 messages. Observe that among the first
ϵ
2
f 2 = 2ϵ |V |(f /2)

messages, there exist at most 2ϵ |V | nodes that receive more than

f /2 of those. Since p has been picked uniformly at random from V ,

Pr[X2] ≥ 1 − 2ϵ . Thus, we have that

Pr[X1 ∩ X2] = Pr[X1] + Pr[X2] − Pr[X1 ∪ X2]

> (1 − 2ϵ) + (1 − 2ϵ) − 1 = 1 − 4ϵ .

Now, define another adversaryA ′ almost identically asA except

that:

(1) A ′ picks a node p ∈ V uniformly at random and corrupts

everyone else in V except p.
(2) A ′ blocks the first f /2 attempts that nodes in U send p mes-

sages. In other words, whenever some node s ∈ U attempts to

send a message to p in a round, if this is within the first f /2
attempts that nodes inU send p messages,A ′ immediately cor-

rupts s (unless s is already corrupted) and removes the message

s sends p in that round. Corrupted nodes inU behave honestly

otherwise. (In particular, after the first f /2 messages fromU to

p have been blocked, corrupted nodes behave honestly to p as

well.)

Observe that X1 ∩X2 denotes the event that under adversaryA,

the total number of messages sent by honest nodes toV is less than

ϵ
2
f 2 and among those, the randomly picked node p has received at

most f /2 messages. In this case, p receives no message at all under

adversary A ′. By the definition of V , p outputs 0 with at most 1/2

probability if it receives no messages. Let Y1 be the event that p
does not output 0 under A ′. Recall that Y1 includes the event that
p outputs 1 as well as the event that p does not terminate. We have

Pr[Y1] ≥ Pr[Y1 |X1 ∩ X2] · Pr[X1 ∩ X2] >
1

2
(1 − 4ϵ).

Meanwhile, we argue that honest nodes inU cannot distinguish

A and A ′. This is because the only difference between the two

scenarios is that, under A, the first f /2 messages from U to p
are intentionally ignored by a corrupt node p, and under A ′, the

first f /2 messages from U to an honest p are blocked by A ′ using

after-the-fact removal. Thus, honest nodes in U receive identical

messages under A and A ′ and cannot distinguish the two adver-

saries. Under A, they need to output 0 to preserve validity. Recall

that the protocol solves Byzantine broadcast with at least
3

4
+ ϵ

probability. Thus, with at least the above probability, all honest

nodes in U output 0 under A. Let Y2 be the event that all honest
nodes in U output 0 under A ′. Since they cannot distinguish A

and A ′, Pr[Y2] ≥
3

4
+ ϵ .

Communication Complexity of Byzantine Agreement, Revisited PODC ’19, July 29-August 2, 2019, Toronto, ON, Canada

If Y1 and Y2 both occur, then the protocol errs under A ′: either

consistency or termination is violated. We have

Pr[Y1 ∩ Y2] = Pr[Y1] + Pr[Y2] − Pr[Y1 ∪ Y2]

>
1

2

(1 − 4ϵ) + (
3

4

+ ϵ) − 1 =
1

4

− ϵ .

This contradicts the hypothesis that the protocol solves Byzantine

broadcast with
3

4
+ ϵ probability. □

4 SUBQUADRATIC BA: f < (1/3 − ϵ)n
This section presents the main ingredients for achieving sub-

quadratic BA. In this section, we opt for conceptual simplicity over

other desired properties. In particular, the protocol in this section

tolerates only
1

3
−ϵ fraction of adaptive corruptions, and completes

in O (κ) rounds. In the next section, we will show how to improve

the resilience to
1

2
− ϵ and round complexity to expected O (1).

4.1 Warmup: A Simple Quadratic BA
Tolerating 1/3 Corruptions

We first describe an extremely simple quadratic BA protocol, in-

spired by the Phase-King paradigm [2], that tolerates less than 1/3

corruptions. The protocol proceeds inκ iterations r = 1, 2, . . .κ, and
every iteration consists of two rounds. For the time being, assume a

random leader election oracle that elects and announces a random

leader at the beginning of every iteration. At initialization, every

node i sets bi to its input bit, and sets its “sticky flag” F = 1 (think

of the sticky flag as indicating whether to “stick” to the bit in the

previous iteration). Each iteration r now proceeds as follows where

all messages are signed, and only messages with valid signatures

are processed:

(1) The leader of iteration r flips a random coin b and multicasts

(Propose, r ,b). Every node i sets b∗i := bi if F = 1 or if it has

not heard a valid proposal from the current iteration’s leader.

Else, it sets b∗i := b where b is the proposal heard from the

current iteration’s leader (if proposals for both b = 0 and b = 1

have been observed, choose an arbitrary bit).

(2) Every node i multicasts (Vote, r ,b∗i). If at least
2n
3
votes from

distinct nodes have been received and vouch for the same b∗,
set bi := b

∗
and F := 1; else, set F := 0.

At the end of the last iteration, each node outputs the bit that it last

voted for.

In short, in every iteration, every node either switches to the

leader’s proposal (if any has been observed) or it sticks to its previ-

ous “belief” bi . This simple protocol works because of the following

observations. Henceforth, we refer to a collection of
2n
3

votes from

distinct nodes for the same iteration and the same b as a certificate
for b.

- Consistency within an iteration. Suppose that in iteration r , honest
node i observes a certificate for b from a set of nodes denoted S ,
and honest node j observes a certificate for b ′ from a set S ′. By a

standard quorum intersection argument, S ∩ S ′ must contain at

least one forever-honest node Since honest nodes vote uniquely,

it must be that b = b ′.
- A good iteration exists. Next, suppose that in some iteration r the
leader is honest. We say that this leader chooses a lucky bit b∗ iff
in iteration r − 1, no honest node has seen a certificate for 1 −b∗.

This means, in iteration r , every honest node either sticks with

b∗ or switches to the leader’s proposal of b∗. Clearly, an honest

leader chooses a lucky b∗ with probability at least 1/2. Except

with exp(−Ω(κ)) probability, an honest-leader iteration with a

lucky choice exists.

- Persistence of honest choice after a good iteration. Now, as soon as

we reach an iteration (denoted r) with an honest leader and its

choice of bit b∗ is lucky, then all honest nodes will vote for b∗ in
iteration r . Thus all honest nodes will hear certificates for b∗ in
iteration r ; therefore, they will all stick to b∗ in iteration r + 1.
By induction, in all future iterations they will stick to b∗.

- Validity. If all honest nodes receive the same bit b∗ as input then
due to the same argument as above the bit b∗ will always stick
around in all iterations.

4.2 Subquadratic Communication through
Vote-Specific Eligibility

The above simple protocol requires in expectation linear number of

multicast messages (in each round every nodemulticasts a message).

We now consider how to improve the multicast complexity of the

warmup protocol. We will also remove the idealized leader election

oracle in the process.

Background on VRFs. We rely on a verifiable random function

(VRF) [25]. A trusted setup phase is used to generate a public-key

infrastructure (PKI): each node i ∈ [n] obtains a VRF secret key

ski , and its corresponding public key pki . A VRF evaluation on the

message µ denoted (ρ,π) ← VRFski (µ) generates a deterministic

pseudorandom value ρ and a proof π such that ρ is computationally

indistinguishable from random without the secret key ski , and
with pki everyone can verify from the proof π that ρ is evaluated

correctly. We use VRF1 to denote the first output (i.e., ρ above) of

the VRF.

Strawman: the Chen-Micali approach. We first describe the

paradigm of Chen and Micali [7] but we explain it in the context of

our warmup protocol. Imagine that now not everyone is required to

vote in a round r . Instead, we use the function VRF1ski (Vote, r) < D

to determine whether i is eligible to vote in round r where D is a

difficulty parameter appropriately chosen such that, in expectation,

κ many nodes would be chosen to vote in each round. When node

i sends a Vote message, it attaches the VRF’s evaluation outcome

as well as the proof such that every node can verify its eligibility

using its public key pki . Correspondingly, when we tally votes, the

original threshold
2n
3

should be changed to
2κ
3
, i.e, two-thirds of

the expected committee size.

Evaluating the VRF requires knowing the node’s secret key. Thus,

only the node itself knows at what rounds it is eligible to vote.

This may seem to solve the problem because the adversary cannot

predict in advance who will be sending messages in every round

The problem with this is that once an adaptive adversaryA notices

that some player i was eligible to vote for b in round r (because i
just sent a valid vote for b),A can corrupt i immediately and make

i vote for 1 − b in the same round!

To tackle this precise issue, Chen and Micali [7] relies on the

memory-erasure model (referred to as ephemeral keys in their

paper) and a forward-secure signing scheme. Informally, in a forward

PODC ’19, July 29-August 2, 2019, Toronto, ON, Canada Ittai Abraham, T-H. Hubert Chan, Danny Dolev, Kartik Nayak, Rafael Pass, Ling Ren, and Elaine Shi

secure signing scheme, in the beginning, a node has a key that can

sign any messages from any round; after signing a message for

round t , the node updates its key to one that can henceforth sign

only messages for round t + 1 or higher, and the round-t secret key
should be immediately erased at this point. This way, even if the

attacker instantly corrupts a node, it cannot cast another vote in

the same round.

Our key insight: bit-specific eligibility. Our key insight is to

make the eligibility bit-specific. To elaborate, the committee eligible

to vote for b in round r is chosen independently from the committee

eligible to vote on 1 − b in the same round. Concretely, node i is
eligible to send a Vote message for the bit b ∈ {0, 1} in round r iff
VRF1ski (Vote, r ,b) < D, where D is the aforementioned difficulty

parameter.

What does this achieve? Suppose that the attacker sees some

node i votes for the bit b in round r . Although the attacker can now

immediately corrupt i , the fact that i was allowed to vote for b in

round r does not make i any more likely to be eligible to vote for

1−b in the same round. Thus, corrupting i is no more useful to the

adversary than corrupting any other node.

Finally, since we already make use of the VRF, as a by-product

we can remove the idealized leader election oracle in the warmup

protocol: a node i is eligible for making a proposal in iteration

r iff VRF1ski (Propose, r ,b) < D0 where D0 is a separate difficult

parameter explained below. Naturally, the node attaches the VRF

evaluation outcome and proof with its proposal so that others can

verify its eligibility.

Difficulty parameters. The two difficulty parameters D and D0

need to be specified differently. Recall that D is used to elect a

committee in each round for sending Vote messages; and D0 is

used for leader election.

(1) D should be set such that each committee is κ-sized in ex-

pectation; whereas

(2) D0 should be set such that every node has a
1

2n probability

to be eligible to propose.

Since we are interested in making communication scale better with

n, we assume n = ω (κ) and n > κ; otherwise, one should simply

use the quadratic protocol.

Putting it together. More formally, we use the phrase “node i
conditionally multicasts a message (T, r ,b)” to mean that node i
checks if it is eligible to vote forb in iteration r and if so, it multicasts

(T, r ,b, i,π), where T ∈ {Propose, Vote} stands for the type of the
message and π is a proof proving that i indeed is eligible (note

that π includes both the pseudorandom evaluation result and the

proof output by the VRF). Now, our new committee-sampling based

subquadratic protocol is almost identical to the warmup protocol

except for the following changes:

• every occurrence of multicast is now replaced with

“conditionally multicast”;

• the threshold of certificates (i.e., number of votes for a bit to

stick) is now
2κ
3
; and

• upon receiving every message, a node checks the proof to verify

the sender’s eligibility to send that message.

4.3 Proof Sketch
To help our analysis, we shall abstract away the cryptography

needed for eligibility election, and instead think of eligibility elec-

tion as making queries to a trusted party called Fmine. We call an

attempt for node i to check its eligibility to send either a Propose
or Vote message a mining attempt for a Propose or Vote message

(inspired by Bitcoin’s terminology where miners “mine” blocks).

Specifically, if a node i wants to check its eligibility for sending

(T, r ,b) where T ∈ {Propose, Vote}, it calls Fmine.mine(T, r ,b), and
Fmine shall flip a random coin with appropriate probability to de-

termine whether this “mining” attempt is successful. If successful,

Fmine.verify((T, r ,b), i) can vouch to any node of the successful

attempt – this is used in place of verifying the VRF proof. If a so-far-

honest node makes a mining attempt for some (T, r ,b), it is called
an honest mining attempt (even if the node immediately becomes

corrupt afterwards in the same round). Else, if an already corrupt

node makes a mining attempt, it is called a corrupt mining attempt.
We now explain why our new protocol works by following simi-

lar arguments as the underlying BA— but nowwemust additionally

analyze the stochastic process induced by eligibility election.

Consistency within an iteration. We first argue why “consis-

tency within an iteration” still holds with the new protocol. There

are at most (1
3
− ϵ)n corrupt nodes, each of which might try to

mine for two votes (one for each bit) in every iteration r . On the

other hand, each so-far-honest node will try to mine for only one

vote in each iteration. Therefore, in iteration r , the total number of

mining attempts (honest and corrupt) for Vote messages is at most

2(1
3
− ϵ)n + (2

3
+ ϵ)n = (4

3
− ϵ)n, each of which is independently

successful with probability
κ
n . Hence, if there are

2κ
3

votes for each

of the bits 0 and 1, this means there are at least in total
4κ
3
successful

mining attempts, which happens with exp(−Ω(κ)) probability, by
the Chernoff bound. Therefore, except with exp(−Ω(κ)) probability,
if any node sees

2κ
3
votes for some bit b, then no other node sees

2κ
3

votes for a different bit b ′.

A good iteration exists. We now argue why “a good iteration

exists” in our new protocol. Here, for an iteration r to be good, the

following must hold: 1) a single so-far-honest node successfully

mines a Propose message, and no already corrupt node success-

fully mines a Propose message; and 2) if some honest nodes want

to stick to a bit b∗ in iteration r , the leader’s random coin must

agree with b∗. (Note that if multiple so-far-honest nodes success-

fully mine Propose messages, this iteration is not a good itera-

tion). Every so-far-honest node makes only one Propose mining

attempt per iteration. Every already corrupt node can make two

Propose mining attempts in an iteration, one for each bit. Since

our Propose mining difficulty parameter D0 is set such that each

attempt succeeds with
1

2n probability, in every iteration, with Θ(1)
probability, a single honest Propose mining attempt is successful

and no corrupt Propose mining attempt is successful. Since our

protocol consists of κ iterations, a good iteration exists except with

exp(−Ω(κ)) probability,

Remainder of the proof. Finally, “persistence of honest choice
after a good iteration” and “validity” hold in a relatively straight-

forward fashion by applying the standard Chernoff bound.

Communication Complexity of Byzantine Agreement, Revisited PODC ’19, July 29-August 2, 2019, Toronto, ON, Canada

Remark. We stress that for the above argument to hold, it is im-

portant that the eligibility be tied to the bit being proposed/voted.

Had it not been the case, the adversary could observe whenever

an honest node sends (T, r ,b), and immediately corrupt the node

in the same round and make it send (T, r , 1 − b) too. If T is Vote,
whenever there are

2κ
3

votes for b in iteration r , by corrupting all

these nodes that are eligible to vote, the adversary can construct
2κ
3

votes for 1 − b, and thus “consistency within an iteration” does not

hold. If T is Propose, whenever there is a so-far-honest leader in
iteration r , by corrupting this leader, the adversary gets a corrupt

leader, and thus no good iteration would exist.

5 SUBQUADRATIC BA: f < (1/2 − ϵ)n
In this section, we present our synchronous BA protocol that

achieves expected subquadratic communication complexity (ex-

pected sublinearmulticast complexity) and expected constant round

complexity, and tolerates f < (1
2
− ϵ)n adaptive corruptions. Our

starting point is Abraham et al. [1], a synchronous quadratic BA pro-

tocol tolerating f < n/2 corruptions. We explain Abraham et al. at a

high level and then apply the techniques introduced in the previous

section to achieve subquadratic communication complexity.

5.1 Warmup: Quadratic BA Tolerating 1/2
Corruptions

Our description below assumes n = 2f + 1 nodes in total. The

protocol runs in iterations r = 1, 2, . . . Each iteration has four

synchronous rounds called Status, Propose, Vote, and Commit,
respectively. Messages sent at the beginning of a round will be

received before next round. All messages are signed. Henceforth, a

collection of f + 1 (signed) iteration-r Vote messages for the same

bitb ∈ {0, 1} from distinct nodes is said to be an iteration-r certificate
for b. For the time being, assume a random leader election oracle

that elects a random leader Lr at the beginning of every iteration r .
Below is the protocol for an iteration r ≥ 2. The protocol for the

very first iteration r = 1 skips the Status and Propose rounds.

(1) Status. Every node multicasts a Status message of the form

(Status, r ,b,C) containing the highest certified bit b it has

seen so far as well as the corresponding certificate C.

(2) Propose. The leader Lr chooses a bit b with a highest certifi-

cate denoted C breaking ties arbitrarily. The leader multicasts

(Propose, r ,b). To unify the presentation, we say that a bit b
without any certificate has an iteration-0 certificate and it is

treated as the lowest ranked certificate.

(3) Vote. For the very first iteration r = 1, a node votes for its input

bit b by multicasting (Vote, r = 1,b).
For all iterations r ≥ 2, if a validly signed (Propose, r ,b) mes-

sage has been received from Lr with a certificate C for b, and
if the node has not observed a strictly higher certificate for

1−b, it multicasts an iteration-r Votemessage for b of the form

(Vote, r ,b) with the leader’s proposal attached. Importantly, if

the node has observed a certificate for the opposite bit 1 − b
from the same iteration as C, it will vote for b.

(4) Commit. If a node has received f + 1 iteration-r signed votes for
the same bit b from distinct nodes (which form an iteration-r
certificate C for b) and no iteration-r vote for 1−b, it multicasts

an iteration-r Commit message for b of the form (Commit, r ,b)
with the certificate C attached.

⋆ (This step is not part of the iteration and can be executed at

any time.) If a node has received f + 1 Commitmessages for the

sameb from the same iteration from distinct nodes, it multicasts

a termination message of the form (Terminate,b) with the

f + 1 Commit messages attached. The node then outputs b
and terminates. This last message will make all other nodes

multicast Terminate, output b and terminate in the next round.

Consistency. The protocol achieves consistency due to the follow-

ing key property. If an honest node outputs a bit b in iteration r , then
no certificate for 1−b can be formed in iteration r and all subsequent
iterations.We explain why this property holds below.

An honest node outputs b in iteration r , only if it has observed

f + 1 iteration-r Commit messages (from distinct nodes) for b. One
of these must have been sent by an honest node henceforth indexed

by i∗. For an iteration-r certificate for 1−b to exist, an honest node

must have multicast a vote for 1−b. But in that case, i∗ would have
received this conflicting vote i and thus would not have sent the

commit message for b. We have reached a contradiction. Thus, we

can rule out any iteration-r certificate for 1 − b.
Furthermore, by the end of iteration r , all nodes will receive

from node i∗ an iteration-r certificate for b. Since no iteration-r
certificate for 1−b exists, no honest node votes for 1−b in iteration

r + 1; hence, no iteration-(r + 1) certificate for 1 − b can come into

existence; hence no honest node votes for 1−b in iteration r +2, and
so on The preference for a higher certificate ensures consistency

for all subsequent iterations following a simple induction.

Validity. Recall that the very iteration skips Status and Propose
and directly starts with Vote. If all honest nodes have the same

input bit b, then they all vote for b in the first iteration. By the end

of the first iteration, every honest node has an iteration-1 certificate

for b and no iteration-1 certificate for 1 − b exists. Validity then

follows from consistency.

Expected constant round complexity. Once an iteration has an

honest leader, it will sign a unique proposal for the bit b with the

highest certificate reported by honest nodes. Then, all honest nodes

send Vote and Commitmessages for b, output and terminate in that

iteration. Since leaders are selected at random, in expectation, an

honest leader emerges in two iterations.

5.2 Subquadratic Communication through
Vote-Specific Eligibility

The above simple protocol requires quadratic communication (in

each round every node multicasts a message). We now improve

the communication complexity to subquadratic and we will also

remove the idealized leader election oracle in the process.

We now use the vote-specific eligibility to determine for each

iteration, who is eligible for sending Status Propose, Vote and

Commitmessages for 0 and 1, respectively. To keep the presentation

simple, we abstract away the cryptographic primitives for eligibility

election and model it as an ideal functionality Fmine. As before, we

call an attempt for node i to check eligibility to send a message

a mining attempt. Concretely, node i is eligible to send a (T, r ,b)

PODC ’19, July 29-August 2, 2019, Toronto, ON, Canada Ittai Abraham, T-H. Hubert Chan, Danny Dolev, Kartik Nayak, Rafael Pass, Ling Ren, and Elaine Shi

where T is Status, Vote, or Commit, iff

Fmine.mine(i, T, r ,b) < D,

node i is eligible to send (Terminate,b) iff

Fmine.mine(i, Terminate,b) < D,

and node i is eligible to send (Propose, r ,b) iff

Fmine.mine(i, Propose, r ,b) < D0.

D and D0 are appropriate difficulty parameters such each mining

attempt for Status/Vote/Commit/Terminate has a κ/n probability

to be successful and each mining attempt for leader proposal has a

1/2n probability to be successful. As before, we assume n = ω (κ)
and n > κ; otherwise, one should simply use the quadratic protocol.

We use the phrase “node i conditionally multicasts a message” to

mean that node i checks with Fmine if it is eligible to send that mes-

sage and only multicasts the message if it is. Now, the committee-

sampling based subquadratic protocol is almost identical to the

warmup protocol except for the following changes:

• every occurrence of multicast is now replaced with

“conditionally multicast”;

• every occurrence of f + 1 Vote or Commit messages is now

replaced with κ/2 messages of that type; and

• upon receiving a message of the form (i,m) (including

messages attached with other messages), a node invokes

Fmine.verify(i,m) to verify node i’s eligibility to send

that message. Note that m can be of the form (T, r ,b)
where T ∈ {Status, Propose, Vote, Commit} or of the form

(Terminate,b).

5.3 Proof
We prove our new protocol works in this subsection. The proofs

mostly follow the sketch in Section 5.1 — except that we now need

to analyze the stochastic process induced by eligibility.

To prove consistency and validity, we first establish two lemmas,

Lemma 5 and 6, to show that each bad event we care about happens

with exp(−Ω(κ)) probability. We will then show there are at most

poly(κ) such bad events that we need to take a union bound over, so
the overall error probability is still exponentially small in κ. Recall
that n > κ and that the adversary can make at most (1/2 − ϵ)n
adaptive corruptions where 0 < ϵ < 1/2 is a constant.

Lemma 5. Except for exp(−Ω(κ)) probability, if ϵn/2 honest nodes
have terminated, all honest nodes terminate in the next round.

Proof. Each of those ϵn/2 nodes has a κ/n probability to be

eligible to send Terminate. The probability that none of them is

eligible is (1 − κ/n)ϵn/2 < exp(−ϵκ/2) = exp(−Ω(κ)). Note that
the adversary can fully control in what order honest nodes termi-

nate, but it cannot predict which honest nodes are eligible to send

Terminate. Thus, it cannot bias the above probability. Except for
this exponentially small probability, a Terminate message sent by

an honest eligible node makes all honest nodes terminate in the

next round. □

Lemma 6. Except for exp(−Ω(κ)) probability, For any
Status/Vote/Commit message for bit b in iteration r , (i) less
than κ/2 already-corrupt nodes are eligible to send it, and (ii) either

ϵn/2 honest nodes have terminated, or at least κ/2 so-far-honest
not-yet-terminated nodes are eligible to send it.

Proof. For (i), observe that there are at most (1
2
− ϵ)n already-

corrupt nodes at any time. By our choice of D, in expectation, at

most (1
2
− ϵ)κ already-corrupt nodes are eligible to send the said

message. A simple Chernoff bound completes the proof.

For (ii), if the “either” part is not true, then there are at least

(1
2
+ ϵ

2
)n so-far-honest nodes that have not terminated. By our

choice of D, in expectation, at least (1
2
+ ϵ

2
)κ of them are eligible

to send the said message. A simple Chernoff bound completes the

proof. □

Theorem 7 (Consistency). Except for exp(−Ω(κ)) probability,
if an honest node outputs a bit b in iteration r , then no certificate for
1 − b can be formed in iteration r and all subsequent iterations.

Proof. An honest node outputs b in iteration r , only if it has

observed κ/2 Commit messages for b. By Lemma 6, except for

exp(−Ω(κ)) probability, one of the Commit messages was sent by

a so-far-honest node henceforth indexed by i∗. Similarly, for an

iteration-r certificate for 1−b to exist, except for exp(−Ω(κ)) prob-
ability, a so-far-honest node has multicast a vote for 1 − b. But in
that case, i∗ would have received this conflicting vote and thus, still
being honest by then, would not have sent the Commit message for

b. We have reached a contradiction. Thus, no iteration-r certificate
for 1 − b exists except for exp(−Ω(κ)) probability.

Furthermore, by the beginning of iteration r + 1, all so-far nodes
will receive from node i∗ an iteration-r certificate for b. The lack
of iteration-r certificate for 1 − b together with the preference to

higher certificate ensures that no honest node will vote for 1 − b
in iteration r + 1. To form a certificate for 1 − b in a subsequent

iteration, all κ/2 votes have to come from already-corrupt nodes,

which happens with exp(−Ω(κ)) probability by Lemma 6. □

Theorem 8 (Validity). Except for exp(−Ω(κ)) probability, if all
honest nodes have the same input bit b, then all nodes will output b.

Proof. Straightforward from Lemma 6: in the first iteration,

except for the said probability, there will be sufficient honest nodes

to send (Vote, r = 1,b), and there will not be sufficient corrupt

nodes to vote for 1 − b. Validity then follows from consistency. □

We then turn to analyze round complexity and communica-

tion/multicast complexity.

We say an iteration r is a good iteration if a single so-far-honest
node successfully mines a Proposemessage, and no already corrupt

node successfully mines a Propose message. (Note that if multi-

ple so-far-honest nodes successfully mine Propose messages, this

iteration is not a good iteration).

Lemma 9. Every iteration independently has a probability at least
1

2e to be a good iteration.

Proof. In any fixed iteration r , there are 2n total attempts to

propose (every node can attempt to propose 0 or 1). The probability

that exactly one of these attempts succeeds is

(
2n
1

)
1

2n (1 −
1

2n)
2n−1

.

It is not hard to show (using derivatives) that the above expression

decreases as n increases and is greater than 1/e . With at least 1/2

Communication Complexity of Byzantine Agreement, Revisited PODC ’19, July 29-August 2, 2019, Toronto, ON, Canada

probability, this successful propose attempt comes from a so-far-

honest node. Thus, every iteration independently has at least
1

2e
probability to be a good iteration. □

Theorem 10 (Efficiency). In expectation, all honest nodes termi-
nate in O (1) rounds and collectively send O (nκ) messages (i.e., O (κ)
multicasts).

Proof. By Lemma 9, with at least
1

2e probability, a single so-

far-honest node is elected leader in an iteration. After this honest

leader multicasts a unique proposal, all honest nodes will output

and terminate in three rounds, unless there are insufficient eligible

honest nodes to send Vote or Commit messages. Each of the above

bad event happens with exp(−Ω(κ)) probability by Lemma 6. Thus,

in each iteration, there is a
1

2e −exp(−Ω(κ)) = Θ(1) probability that
all nodes terminate. The expected constant round complexity thus

follows in a straightforward fashion. In each round, in expectation,

at most κ so-far-honest nodes multicast messages. The expected

O (nκ) communication complexity thus follows. □

Corollary 11 (Efficiency). Except for exp(−Ω(κ)) probabil-
ity, all honest nodes terminate in O (κ) rounds and collectively send
O (nκ2) messages (i.e., O (κ2) multicasts).

Proof. The probability that none of consecutive κ iterations is

good is (1 − 1

2e)
κ = exp(−Ω(κ)). □

Theorem 12. For any constant 0 < ϵ < 1/2, the protocol in this
section solves Byzantine agreement with 1 − exp(−Ω(κ)) probabil-
ity, terminates in expected O (1) rounds, and achieves expected O (κ)
multicast complexity.

Proof. Follows from Theorem 7, 8, and 10. □

6 NECESSITY OF SETUP ASSUMPTIONS FOR
SUBLINEAR MULTICAST COMPLEXITY

In this section, we show that some form of setup assumption is

needed for multicast-based subquadratic BA. Specifically, with plain

authenticated channels, we show the impossibility of sublinear

multicast-complexity BA. In this model, a message carries the true

identity of the sender, i.e., the communication channel authenticates

the sender, but no other setup is available.

As mentioned in Section 2, proving the lower bound for Byzan-

tine broadcast makes it stronger (and applicable to BA). Thus, we

restate the lower bound (i.e., Theorem 3) for Byzantine broadcast

below.

Theorem 13. In a plain authenticated channel model without
setup assumptions, no protocol can solve Byzantine broadcast with
C multicast complexity with probability p > 5/6 under C adaptive
corruptions.

Although the lower bound is stated for multicast-based protocols,

the same bound applies to a more general class of protocols in

which at most C nodes send messages with p > 5/6 probability. In

addition, the lower bound holds even when assuming the existence

of a random oracle or a memory-erasure model.

Our proof is inspired by the classical techniques for proving

consensus lower bounds in the authenticated channel model [14,

23, 24]; however, we extend known techniques in novel manners,

Wc,1

Wh,1Wh,0

Wc,0

Wc,_: node S is corrupt
Wh,_: node S is forever-honest

W_,b: sender sends bit b

In
di

st
in

gu
is

ha
bl

e
to

 h
on

es
t

no
de

s
ot

he
r t

ha
n

no
de

 S
 Indistinguishable to honest

nodes other than node S
 Indistinguishable to node 1

Figure 1: Relationships between different worlds in the sub-
linear multicast complexity without setup assumptions.

particularly in the way we rely on the ability to make adaptive

corruptions to complete the proof.

Proof. Suppose for the sake of contradiction that there exists a

protocol that solves Byzantine broadcast usingC multicast complex-

ity with probability p > 5/6, in the authenticated channel model

without any trusted setup, and tolerating C adaptive corruptions.

We focus on a special node S that is not the designated sender.

We consider four worlds:Wc,0,Wc,1,Wh,0, andWh,1. In worldWc,∗,

node S is corrupt whereas in worldWh,∗, node S is forever-honest.

The designated sender sends bit b in worldW∗,b .
The high-level structure of the proof is depicted in Figure 1. First,

since the designated sender is honest in Wc,b , with probability

p > 5/6, honest nodes output b inWc,b to preserve validity. Next,

we will show that worldWc,b and worldWh,b are indistinguishable

to nodes that are forever-honest in both. Hence, with probability

p > 5/6, these forever-honest nodes output 0 inWh,0 and 1 inWh,1.

Lastly, we will show that with a constant probability, an honest

node S cannot distinguish betweenWh,0 andWh,1, leading to a

consistency violation with probability > 1 − p in one of the two

worlds. Note that the designated sender may be corrupted inWh,b ,

so we need to show a violation of consistency, not validity.

WorldWc,b : InWc,b , node S is (statically) corrupt. All other nodes

(including the designated sender) are honest and execute the proto-

col as specified. The corrupt node S simulates an execution in the

Wc,1−b world in its head for up to C multicasts. To elaborate, for

every round, in addition to receiving messages from honest nodes

inWc,b , the corrupt node S simulates the receipt of messages mul-

ticast by all other nodes in worldWc,1−b , until C multicasts have

occurred in the simulated execution. The corrupt node S treats the

received messages (from both the real worldWc,b and the simulated

worldWc,1−b) as if they are from the same execution. It then sends

multicast messages as instructed by an honest execution of the pro-

tocol. When node S multicasts a message in the real execution, its

messages arrive in both the real as well as the simulated execution.

We note that a simulation ofWh,1−b by node S is possible only due

to the non-existence of a trusted setup.

Observe that in worldWc,b , only node S is corrupted and the

designated sender is honest. Hence, by the validity guarantee of the

PODC ’19, July 29-August 2, 2019, Toronto, ON, Canada Ittai Abraham, T-H. Hubert Chan, Danny Dolev, Kartik Nayak, Rafael Pass, Ling Ren, and Elaine Shi

Byzantine broadcast protocol, we have: With probability p > 5/6,

honest nodes inWc,b output b.

WorldWh,b : InWh,b , all nodes are honest at the start of the proto-

col and the adversary makes adaptive corruptions along the way.

The adversary simulates a protocol execution in worldWh,1−b in its

head. Specifically, at the start of each round, the adversary simulates

this round for all nodes except node S inWh,1−b in its head, and

checks to see which nodes will send a message in this round of the

simulated execution. Whenever a node j in the simulated execution

wants to speak, if there have not been C multicast messages from

nodes other than node S in this execution, the adversary adaptively

corrupts node j (unless it is already corrupt) in worldWh,b . If node S
multicasts messages in the real execution, its messages arrive in

both the real as well as the simulated execution.

In a round, a corrupt node j does the following. It sends all

messages as instructed for node j by the protocol. In addition, it

sends the messages node j inWh,1−b would have sent to node S in

this round; note that these messages are sent to node S only and

not to anyone else.

Indistinguishability between worlds Wh,b and Wc,b for
forever-honest nodes. The corrupt node S inWc,b behaves ex-

actly like the honest node S inWh,b . Corrupt nodes inWh,b behave

honestly towards forever-honest nodes other than node S . There-
fore, the views of the nodes that are forever-honest in bothWh,b
andWc,b are identically distributed. Let Y denote the event that

these forever-honest nodes output b inWh,b . Based on the indis-

tinguishability and the aforementioned validity guarantee inWc,b ,

we have Pr[Y] ≥ p > 5/6.

Indistinguishability between worlds Wh,b and Wh,1−b for
node S . Observe that in both worlds, the honest node S receives

all the messages in that world (through the honest protocol execu-

tion) and messages from the first up to C nodes in the other world

(through messages sent by adaptively corrupted nodes that would

be sending honest messages in the simulated world). Thus, given

that the honest and the simulated execution both have C multi-

cast complexity, the view of node S in worldsWh,b andWh,1−b is

identically distributed.

More formally, let Ar and As denote the events that the real and
simulated executions respectively have C multicast complexity. Re-

call that the protocol satisfies consistency, validity and termination,

and has C multicast complexity with probability p. Thus, Pr[Ar] ≥
p, Pr[As] ≥ p, and Pr[Ar ∩As] ≥ Pr[Ar] + Pr[As] − 1 ≥ 2p − 1.

Let X denote the event that node S does not output 1. Given

that the view of node S is identically distributed when the honest

and the simulated executions both have C multicast complexity,

without loss of generality, we have Pr[X |Ar ∩As] ≥ 1/2, and

Pr[X] ≥ Pr[X ∩Ar ∩As] = Pr[X |Ar ∩As] · Pr[Ar ∩As]

≥
1

2

(2p − 1) > 1/3.

Consistency violation inWh,1. The probability that consistency

of Byzantine broadcast is violated is given by

Pr[consistency violation] ≥ Pr[X ∩ Y] > 1/3 + 5/6 − 1 = 1/6.

This contradicts the supposition that the protocol solves Byzantine

broadcast with > 5/6 probability. □

Acknowledgement. This work is partially supported by The Fe-

dermann Cyber Security Center in conjunction with the Israel

National Cyber Directorate.

REFERENCES
[1] Ittai Abraham, Srinivas Devadas, Danny Dolev, Kartik Nayak, and Ling Ren. 2019.

Synchronous byzantine agreement with expectedO (1) rounds, expectedO (n2)
communication, and optimal resilience. In Financial Crypto.

[2] Hagit Attiya and Jennifer Welch. 2004. Distributed Computing: Fundamentals,
Simulations and Advanced Topics. John Wiley & Sons, Inc., USA.

[3] Michael Ben-Or. 1983. Another Advantage of Free Choice (Extended Abstract):

Completely Asynchronous Agreement Protocols. In PODC.
[4] Nir Bitansky. 2017. Verifiable Random Functions from Non-interactive Witness-

Indistinguishable Proofs. In Theory of Cryptography. 567–594.
[5] Miguel Castro and Barbara Liskov. 1999. Practical Byzantine Fault Tolerance. In

OSDI.
[6] Nishanth Chandran, Wutichai Chongchitmate, Juan A. Garay, Shafi Goldwasser,

Rafail Ostrovsky, and Vassilis Zikas. 2015. The Hidden Graph Model: Communi-

cation Locality and Optimal Resiliency with Adaptive Faults. In ITCS.
[7] Jing Chen and Silvio Micali. 2016. ALGORAND: The Efficient and Democratic

Ledger. https://arxiv.org/abs/1607.01341.

[8] Ran Cohen, Sandro Coretti, Juan Garay, and Vassilis Zikas. 2016. Probabilistic

Termination and Composability of Cryptographic Protocols. In the 36th Annual
International Cryptology Conference on Advances in Cryptology — CRYPTO 2016.
Springer, 240–269.

[9] Bernardo Machado David, Peter Gazi, Aggelos Kiayias, and Alexander Russell.

2018. Ouroboros Praos: An Adaptively-Secure, Semi-synchronous Proof-of-Stake

Blockchain. In Eurocrypt.
[10] Danny Dolev and Rüdiger Reischuk. 1985. Bounds on Information Exchange for

Byzantine Agreement. J. ACM 32, 1 (Jan. 1985), 191–204.

[11] Danny Dolev and H. Raymond Strong. 1983. Authenticated Algorithms for

Byzantine Agreement. Siam Journal on Computing - SIAMCOMP 12, 4 (1983),

656–666.

[12] Cynthia Dwork, Nancy Lynch, and Larry Stockmeyer. 1988. Consensus in the

Presence of Partial Synchrony. J. ACM (1988).

[13] Paul Feldman and Silvio Micali. 1988. Optimal algorithms for Byzantine agree-

ment. In Proceedings of the twentieth annual ACM symposium on Theory of com-
puting. ACM, 148–161.

[14] Michael J. Fischer, Nancy A. Lynch, and Michael Merritt. 1985. Easy Impossibility

Proofs for Distributed Consensus Problems. In PODC.
[15] Matthias Fitzi. 2002. Generalized communication and security models in Byzantine

agreement. Ph.D. Dissertation. ETH Zurich.

[16] Juan A. Garay, Jonathan Katz, Ranjit Kumaresan, and Hong-Sheng Zhou. 2011.

Adaptively Secure Broadcast, Revisited. In Proceedings of the 30th Annual ACM
SIGACT-SIGOPS Symposium on Principles of Distributed Computing (PODC ’11).
ACM, New York, NY, USA, 179–186.

[17] Juan A. Garay, Aggelos Kiayias, and Nikos Leonardos. 2015. The Bitcoin Backbone

Protocol: Analysis and Applications. In Eurocrypt.
[18] Rishab Goyal, Susan Hohenberger, Venkata Koppula, and Brent Waters. 2017. A

Generic Approach to Constructing and Proving Verifiable Random Functions. In

TCC, Vol. 10678. Springer, 537–566.
[19] Martin Hirt and Vassilis Zikas. 2010. Adaptively Secure Broadcast. In EUROCRYPT

(Lecture Notes in Computer Science), Vol. 6110. Springer, 466–485.
[20] Jonathan Katz and Chiu-Yuen Koo. 2009. On Expected Constant-round Protocols

for Byzantine Agreement. J. Comput. Syst. Sci. 75, 2 (Feb. 2009), 91–112.
[21] Valerie King and Jared Saia. 2011. Breaking the O (N 2) Bit Barrier: Scalable

Byzantine Agreement with an Adaptive Adversary. J. ACM 58, 4 (July 2011),

18:1–18:24.

[22] Valerie King, Jared Saia, Vishal Sanwalani, and Erik Vee. 2006. Scalable Leader

Election. In SODA.
[23] Leslie Lamport. 1983. The Weak Byzantine Generals Problem. J. ACM 30, 3

(1983), 668–676.

[24] Leslie Lamport, Robert Shostak, and Marshall Pease. 1982. The Byzantine Gener-

als Problem. ACM Trans. Program. Lang. Syst. 4, 3 (July 1982), 382–401.

[25] Silvio Micali, Salil Vadhan, andMichael Rabin. 1999. Verifiable Random Functions.

In FOCS.
[26] Satoshi Nakamoto. 2008. Bitcoin: A peer-to-peer electronic cash system. (2008).

[27] Michael O. Rabin. 1983. Randomized Byzantine Generals. In Proceedings of the
24th Annual Symposium on Foundations of Computer Science. IEEE, 403–409.

	Abstract
	1 Introduction
	1.1 Related Work

	2 Model and Definition
	3 Communication Lower Bound Under a Strongly Adaptive Adversary
	4 Subquadratic BA: f<(1/3-)n
	4.1 Warmup: A Simple Quadratic BA Tolerating 1/3 Corruptions
	4.2 Subquadratic Communication through Vote-Specific Eligibility
	4.3 Proof Sketch

	5 Subquadratic BA: f<(1/2-)n
	5.1 Warmup: Quadratic BA Tolerating 1/2 Corruptions
	5.2 Subquadratic Communication through Vote-Specific Eligibility
	5.3 Proof

	6 Necessity of Setup Assumptions for Sublinear Multicast Complexity
	References

