Genesis: A Hardware Acceleration Framework for Genomic Data Analysis

Tae Jun Ham, David Bruns-Smith, Brendan Sweeney, Yejin Lee, Seong Hoon Seo, U Gyeong Song, Young H. Oh, Krste Asanovic, Jae W. Lee, Lisa Wu Wills

Genomics and Genome Sequencing

- DNA (deoxyribonucleic acid): the chemical compound containing the instructions an organism needs to develop, live, and reproduce.
 - DNA is made of two paired strands, where each strand pair is represented with a single character (A, C, G, or T) that corresponds to the nucleotide base of a single pair
- DNA sequencing (genome sequencing): a process of identifying the base pair sequence for a DNA
- Why is it important?
 - Can identify if a person is susceptible to a specific disease
 - Can identify the type/variant of the cancer
 - Can be used for genetics research
 - Also used for COVID-19 researches (e.g., identification of the virus, virus variant analysis)

Source: U.S National Library of Medicine

Genomics and Genome Sequencing

- Genome Sequencing was very expensive, and time-consuming.
 - Human Genome Project cost \$2.7B billion and took 13 years.
- Next-Generation Sequencing (NGS) technology enabled the rapid sequencing of a whole genome
 - Whole genome sequencing now costs \$300-\$700^[1] and takes less than an hour per genome^[2]
- Genome sequencing comes with a huge computational demand
 - Data obtained from Genome sequencing instruments (i.e., raw reads) needs to be processed with the various algorithms
 - This process is called Secondary Analysis

Cost of Genome Sequencing
Source: U.S National Human Genome
Institute

^[1] https://nebula.org/whole-genome-sequencing/

^[2] https://sapac.illumina.com/systems/sequencing-platforms/novaseq/specifications.html

Advent of Hardware Accelerators for Genome Sequencing

GATK4 Best Practices Data Preprocessing Pipeline Runtime Breakdown (measured on Intel Xeon 8-cores) (Miscellaneous stages accounting for 1.9% of the runtime are omitted)

- Complex stage such as Alignment takes most of the runtime and thus has been targets for many hardware accelerators
 - GenAx [ISCA '18], Darwin [ASPLOS' 18], Guo et al. [FCCM '19]
 - Other complex stages such as Variant Calling (downstream) are accelerated as well
- Advent of hardware accelerators shifts the bottleneck to simple data-manipulation operations

Advent of Hardware Accelerators for Genome Sequencing

GATK4 Best Practices Data Preprocessing Pipeline Runtime Breakdown (measured on Intel Xeon 8-cores) (Miscellaneous stages accounting for 1.9% of the runtime are omitted)

- Complex stage such as Alignment takes most of the runtime and thus has been targets for many hardware accelerators
 - GenAx [Fujiki et al., ISCA '18], Darwin [Turakhia et al., ASPLOS' 18], [Guo et al., FCCM '19]
 - Other complex stages such as Variant Calling (downstream) are accelerated as well
- Advent of hardware accelerators shifts the bottleneck to simple data-manipulation operations
 - Assuming GenAx throughput (4058K reads/s), the alignment only takes 0.7% of the total data preprocessing runtime
 - Data-manipulation operations accounts for 93% of the total runtime

Genesis: A Hardware Acceleration Framework for Genomic Data Analysis

Genesis is a framework that enables the users to easily design a clouddeployable hardware accelerator for the genomic data-manipulation operations

- 1 A user utilizes Genesis SQL Frontend to represent the target data-manipulation operation in a way that can be easily mapped to the hardware
- 2 Components in Genesis Hardware Library (configurable accelerator building blocks) is used to construct a dataflow pipeline for the specified SQL query
- Genesis Backend automatically augments the pipeline with parallelism, deploys it on cloud FPGA, and allows a user to access it with high-level API

Presentation Outline

- Genomics and Genome Sequencing
- Genesis: A Hardware Acceleration Framework for Genomic Data Analysis
 - Genesis SQL Frontend
 - Genesis Hardware Library
 - Genesis Backend
 - Genesis-generated HW accelerators
- Evaluation
- Conclusions

Genesis SQL Interface

- **Observation**: Most simple data manipulation operations for genomic data can be easily represented with a SQL Query^[1,2] on genomic data represented in tabular form
- Key Data Types: Reference and Reads
 - Reference: A reference genome sequence for an individual organism of a species (e.g., human)
 - (Aligned) Reads: A fragment of the genome sequence measured using sequencing instruments with some metadata

Reference Sequence Read1 Read2 Read3 Read3 Reference Sequence Read3 Reference Sequence Read2 Read3 Rea

[1] Massie et al., ADAM: Genomics Formats and Processing Patterns for Cloud Scale Computing, UC Berkeley Tech Report, 2013 [2] Kozanitis et al., GenAp: a distributed SQL interface for genomic data, BMC informatics, 2016

Genesis SQL Interface (Tabular Data Representation)

 Observation: Most simple data manipulation operations for genomic data can be easily represented with a SQL Query^[1,2] on genomic data represented in tabular form

Key Data Types: References and Reads

Reference Table		
POS	SEQ	
0	AGTTTAGTACCATAGCTAG CTGAAGGAACCAGTA	

(Simplified) Reads Table			
POS	SEQ	CIGAR -	
0	AGTGTAGTACCCTAGC	16 M	
12	TACTAGATGATGGAA	2 M , 1 D , 13 M ✓	
18	GCTGAAGGAACCAGTA	16 M	

2 Aligned (M), 1 Deleted (D) 2345678901234567

00000000011111111112222222223333 0123456789012345678901234567890123

Reference Sequence

Read1

Read2 Read3 AGTTTAGTACCATAGCTAGCTGAAGGAACCAGTA

AGTGTAGTACCCTAGC

TA-CTAG<mark>A</mark>TGA<mark>T</mark>GGAA GCTGAAGGAACCAGTA

[1] Massie et al., ADAM: Genomics Formats and Processing Patterns for Cloud Scale Computing, UC Berkeley Tech Report

[2] Kozanitis et al., GenAp: a distributed SQL interface for genomic data, BMC informatics, 2016

2M 1D

Metadata representing

alignment information

13 Aligned (**M**)

CTAGATGATGGAA

13M

Genesis SQL Interface (Operations)

(Common) Supported SQL Operations:

Select, Where, GroupBy, Join, Limit (i.e., select a subset of rows), Count, Sum, etc.

SEQ

(Simplified) Reads Table

Additional Supported Operations: PosExplode & ReadExplode

POS

Reference Table			
POS	SEQ		
0	AGTTTAGTACCATAGCTAG CTGAAGGAACCAGTA		
R <u>P</u>	PosExplode (Reference.POS OSSEQ Reference.SEQ)		

ReadExplode (Reads.POS, Reads.SEQ, Reads.CIGAR)

CIGAR

16**M**

16**M**

Genesis SQL Interface (Example App.)

Example Application

Compute the number of base pair mismatches between the reference and each read

CREATE TABLE REF AS

PosExplode (Reference.SEQ, Reference.POS) FROM Reference

FOR R IN Reads:

/* Step 1 */ /* Step 2 */ /* Step 3 */ END LOOP;

CREATE TABLE READ AS

Step #1

ReadExplode (R.POS, R.SEQ, R.CIGAR) FROM R

CREATE TABLE RefRead AS

Step #2

SELECT READ.SEQ, REF.SEQ **FROM** READ

INNER JOIN (SELECT * FROM REF LIMIT 0, 15)

ON READ.POS = REF.POS **INSERT INTO** Output

SELECT SUM(READ.SEQ == REF.SEQ) Step #3

FROM RefRead

Hardware Pipeline Design with Genesis HW Library

- SQL and its tabular data types map very well to the stream dataflow architecture
 - Q100 [ASPLOS'14], LINQits [ISCA '13], SDA [HotChips '16]

Compute the number of base pair mismatches between the reference and reads

Genesis HW Library

- Genesis HW Library includes four types of hardware modules
 - Data Manipulation modules
 - Joiner, Filter, Reducer, ALU
 - Genomic Data Processing modules
 - ReadToBases
 - DRAM/SPM Access modules
 - Sequential Read/Write with Prefetch & Buffered Write (DRAM)
 - Random/Sequential Read/Write & Atomic RMW (SPM)
 - Custom modules
 - User can integrate a custom simple computation module

Genesis Data Manipulation modules

Genesis Backend

 Genesis Backend automatically exploits the abundant parallelism within the genomics data manipulation operations

- Also provides high-level user-API that enables users to easily control the accelerator data movements and computation
 - void configure_mem
 (void* addr, int elemsize, int len, string colname, int pipelineID)
 - void run_genesis(int pipelineID)
 - bool check_genesis(int pipelineID) / void wait_genesis(int pipelineID)
 - void flush_genesis(int pipelineID)

Genesis-Generated Hardware Accelerators

- Genesis framework is used to accelerate three data-manipulation operations in Data Preprocessing
 Phase of the GATK4 Genome Sequencing Pipeline
 - (Portion of) Mark Duplicates, Metadata Update, BQSR (Covariate Table Construction)
 - Accounts for more than 80% of the data preprocessing phase once the alignment stage is hardware-accelerated with GenAx^[1]

Metadata Update

Mark
Duplicates
(Quality Score
Reduction)

BQSR (Covariate Table Construction)

[1] D. Fujiki, A. Subramaniyan, T. Zhang, Y. Zeng, R. Das, D. Blaauw, and S. Narayanasamy, "GenAX: a genome sequencing accelerator," in ISCA 2018

Presentation Outline

- Genomics and Genome Sequencing
- Genesis: A Hardware Acceleration Framework for Genomic Data Analysis
 - Genesis SQL Frontend
 - Genesis Hardware Library
 - Genesis Backend
 - Genesis-generated HW accelerators
- Evaluation
- Conclusions

16

Performance Evaluation

- Genesis-generated accelerators: AWS EC2 F1 instance with a single Xilinx VU9P FPGA
- **Baseline**: AWS EC2 instance with 16-threads Intel Xeon Platinum CPU and high-performance SSDs
- Genesis obtains 2 18x speedup on three different data manipulation stages
 - Mark Duplicate speedup is bounded by un-accelerated portion
 - Metadata Update and BQSR performance are partly limited by host-FPGA data transfers
 - Speedup will improve with the better interconnect between the host and the FPGA
- Speedup can be further improved with the use of multiple FPGAs

Cost & Resource Usage

- Speedups from Genesis-generated accelerators translate to the cost saving
 - 2-15x cost saving (on AWS EC2 cloud) over the GATK4 baseline
 - Slightly less cost saving than the speedup (80%-99%)
- Different accelerators are bounded by different types of resources
 - Most Used Resource Type
 - Mark Duplicate & BQSR CLB Lookup Tables (Mostly Logic) | Metadata Update BRAMs (SPM)
 - Can co-locate different accelerators on the same FPGA

Conclusion

Genesis frames data-manipulation operations in genome sequencing pipeline as RDBMs operation and aids the designing of hardware accelerators for it in a composable way

- Genesis aids the accelerator design for the data manipulation operations with the followings:
 - **SQL Frontend** users utilize to represent the target data-manipulation operation
 - Hardware Library which contains hardware blocks accelerating relational operators as well as a genomics-specific operation
 - **Backend** which automatically augments the pipeline with parallelism, deploys it on cloud FPGA, and allows a user to access it with high-level API
- 2-18x speedup as well as 2-15x cost saving on data manipulation operations in the data preprocessing phase of the GATK4 genome sequencing pipeline

Genesis: A Hardware Acceleration Framework for Genomic Data Analysis

Tae Jun Ham, David Bruns-Smith, Brendan Sweeney, Yejin Lee, Seong Hoon Seo, U Gyeong Song, Young H. Oh, Krste Asanovic, Jae W. Lee, Lisa Wu Wills

