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In Google’s datacenter, RPCs

• generate >95% of application traffic[1]

• spend ~10% of its CPU cycles[2]

Performance is always a key design goal of RPC
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gRPC, Thrift, eRPC

Cap’n Proto, rpclib, XML-RPC 

brpc, tarpc, tonic…

RPC-as-a-library
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In our evaluation, adding Envoy sidecar to gRPC 
leads to

• 2.8x 99th tail latency

• 0.56x bandwidth (Gbps)


NOT Efficient
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• RPC library and sidecar are weakly 
coupled

• prevent from cross-layer optimization

• operate/coupled at L4

• RPC Library and app are strongly 
coupled

• Difficult to upgrade RPC library

coupled

decoupled

We want 
• strong coupling: operate at L7

• weak coupling: most of the functionalities extracted 

into a separate service
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In traditional RPC libraries, marshal/
unmarshal and service methods code 
will be generated as a stub and loaded 
into user applications as a library

16



mRPC’s Solution

Proto
mRPC 

Schema 
Compiler

Stub

fn Get()

1Compile 
Stub

App

Stub

mRPC 
Library

Service KVStore 
  Func Get(GetReq) -> Entry

17



mRPC’s Solution

Proto
mRPC 

Schema 
Compiler

Stub

fn Get()

1Compile 
Stub

App

Stub

mRPC 
Library

App

Stub

mRPC 
Library

mRPC

Proto 
Codegen

2

Connect(                 , …)     Proto

Service KVStore 
  Func Get(GetReq) -> Entry

18



mRPC’s Solution

Proto
mRPC 

Schema 
Compiler

Stub

fn Get()

1Compile 
Stub

Service KVStore 
  Func Get(GetReq) -> Entry

App

Stub

mRPC 
Library

mRPC

Marshal

Proto 
Codegen

2

Connect(                 , …)     Proto

Marshal module

fn marshal() 
fn unmarshal()

mRPC 
Schema 
Compiler

Compile 
Marshal Module3

19



mRPC’s Solution

Proto
mRPC 

Schema 
Compiler

Stub

fn Get()

1Compile 
Stub

Service KVStore 
  Func Get(GetReq) -> Entry

App

Stub

mRPC 
Library

mRPC

Marshal

Proto 
Codegen

2

Connect(                 , …)     Proto

Marshal module

fn marshal() 
fn unmarshal()

mRPC 
Schema 
Compiler

Compile 
Marshal Module3

In mRPC, marshal/unmarshal code are decoupled from 
user stub,  and generated/loaded by mRPC service instead
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Does mRPC deliver smaller latency and higher 
goodput compared to existing solutions?

Does mRPC enforce policy efficiently?

Can mRPC improve real-world application’s 
performance?



Evaluation: Large RPC Goodput

• TCP transport

• Keep 128 concurrent 

RPCs to hide latency

Speed-up by 3.1x

32
Evaluated on testbed of servers with 100 Gbps Mellanox 
Connect-X5 NICs and Xeon 5215 CPUs



Evaluation: Small RPC Latency

Median Latency 
(μs)

P99 Latency 
(μs)

eRPC 3.6 4.1
mRPC 7.6 8.7
eRPC + Proxy 11.3 15.6
mRPC + NullPolicy 7.9 9.1

• RDMA transport

• 64-byte RPC requests, 8-byte replies

Speed-up by 1.7x
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Evaluation: Policy Enforcement

• Filter RPCs based on string matching on one field

• 1% requests will not pass

<6% overhead
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Evaluation: DeathStarBench

• TCP transport

• Measured over 250 secs @ 20 reqs/sec

Speed-up by 2.5x

35



RPC-as-a-library cannot meet both manageability and efficiency 

mRPC: Reimagined RPC as a managed system service 

Efficient policy enforcement


Upgrade of RPC implementation without shutting down user applications


Summary

36

https://github.com/phoenix-dataplane/phoenix

https://github.com/phoenix-dataplane/phoenix

