
Jingrong Chen*, Yongji Wu*, Shihan Lin, Yechen Xu, Xinhao Kong,
Thomas Anderson, Matthew Lentz, Xiaowei Yang, Danyang Zhuo

*Equal contributions

Remote Procedure Call as a
Managed System Service

Remote Procedure Calls Widely Used

Cluster Orchestrator

Distributed Data Store

Consensus Protocol

Network Filesystem Data Analytics Framework

Deep Learning System

2

Remote Procedure Calls Widely Used

Cluster Orchestrator

Distributed Data Store

Consensus Protocol

Network Filesystem Data Analytics Framework

Deep Learning System

• [1] Aequitas: Admission Control for Performance-Critical RPCs in Datacenters, SIGCOMM ’22

• [2] Profiling a Warehouse-Scale Computer, ISCA ‘15 2

In Google’s datacenter, RPCs

• generate >95% of application traffic[1]

• spend ~10% of its CPU cycles[2]

Remote Procedure Calls Widely Used

Cluster Orchestrator

Distributed Data Store

Consensus Protocol

Network Filesystem Data Analytics Framework

Deep Learning System

• [1] Aequitas: Admission Control for Performance-Critical RPCs in Datacenters, SIGCOMM ’22

• [2] Profiling a Warehouse-Scale Computer, ISCA ‘15 2

In Google’s datacenter, RPCs

• generate >95% of application traffic[1]

• spend ~10% of its CPU cycles[2]

Performance is always a key design goal of RPC

Remote Procedure Calls: Implementation

3

Remote Procedure Calls: Implementation

3

Service KVStore
 Message GetReq
 bytes key
 Message Entry
 bytes? value
 Func Get(GetReq) -> Entry

1 Write protocol specification

Remote Procedure Calls: Implementation

3

Service KVStore
 Message GetReq
 bytes key
 Message Entry
 bytes? value
 Func Get(GetReq) -> Entry

1 Write protocol specification

Remote Procedure Calls: Implementation

3

Protocol
Compiler

2 Protocol compiler generates stub code

Stub

Service KVStore
 Message GetReq
 bytes key
 Message Entry
 bytes? value
 Func Get(GetReq) -> Entry

1 Write protocol specification

Client

Stub

RPC
Library

Server

Stub

RPC
Library

3 App compiles with the stub and RPC library

Remote Procedure Calls: Implementation

3

Protocol
Compiler

2 Protocol compiler generates stub code

Stub

Service KVStore
 Message GetReq
 bytes key
 Message Entry
 bytes? value
 Func Get(GetReq) -> Entry

1 Write protocol specification

Client

Stub

RPC
Library

Server

Stub

RPC
Library

3 App compiles with the stub and RPC library Andrew D. Birrel and Bruce Jay Nelson,
Implementing Remote Procedure Calls,
ACM Transactions on Computer Systems
2(1):39-59, February 1984

Remote Procedure Calls: Implementation

3

Protocol
Compiler

2 Protocol compiler generates stub code

Stub

Service KVStore
 Message GetReq
 bytes key
 Message Entry
 bytes? value
 Func Get(GetReq) -> Entry

1 Write protocol specification

Client

Stub

RPC
Library

Server

Stub

RPC
Library

3 App compiles with the stub and RPC library Andrew D. Birrel and Bruce Jay Nelson,
Implementing Remote Procedure Calls,
ACM Transactions on Computer Systems
2(1):39-59, February 1984

gRPC, Thrift, eRPC

Cap’n Proto, rpclib, XML-RPC

brpc, tarpc, tonic…

RPC-as-a-library

The Need for Manageability

4

The Need for Manageability

4

Observability
e.g., How many RPCs? RPC Latency?

The Need for Manageability

4

Observability
e.g., How many RPCs? RPC Latency?

Policy Enforcement
e.g., Prioritize certain RPCs?

The Need for Manageability

4

Observability
e.g., How many RPCs? RPC Latency?

Policy Enforcement
e.g., Prioritize certain RPCs?

Upgradability
e.g., Fix vulnerabilities while app running?

The Need for Manageability

4

Observability
e.g., How many RPCs? RPC Latency?

Policy Enforcement
e.g., Prioritize certain RPCs?

Upgradability
e.g., Fix vulnerabilities while app running?

Manageability in a feature-rich RPC library?

Observability
e.g., How many RPCs? RPC Latency?

Policy Enforcement
e.g., Prioritize certain RPCs?

Upgradability
e.g., Fix vulnerabilities while app running?

5

Manageability in a feature-rich RPC library?

YES
Observability
e.g., How many RPCs? RPC Latency?

Policy Enforcement
e.g., Prioritize certain RPCs?

Upgradability
e.g., Fix vulnerabilities while app running?

5

Manageability in a feature-rich RPC library?

YES

Mandatory policies?

NO

Observability
e.g., How many RPCs? RPC Latency?

Policy Enforcement
e.g., Prioritize certain RPCs?

Upgradability
e.g., Fix vulnerabilities while app running?

5

Manageability in a feature-rich RPC library?

Upgradability?

Currently NO

YES

Mandatory policies?

NO

Observability
e.g., How many RPCs? RPC Latency?

Policy Enforcement
e.g., Prioritize certain RPCs?

Upgradability
e.g., Fix vulnerabilities while app running?

5

Current Solution to Policy Enforcement

6

Client

Stub

RPC
Library

Transport

NIC

Current Solution to Policy Enforcement

Sidecar

Policies

RPC
Library

Transport

NIC

7

Client

Stub

RPC
Library

Current Solution to Policy Enforcement

Sidecar

Policies

RPC
Library

Transport

NIC

8

Client

Stub

RPC
Library

Sidecar

Policies

RPC
Library

Transport

NIC

Server

Stub

RPC
Library

Current Solution to Policy Enforcement

Sidecar

Policies

RPC
Library

Transport

NIC

9

Client

Stub

RPC
Library

M Marshal

U Unmarshal Sidecar

Policies

RPC
Library

Transport

NIC

Server

Stub

RPC
Library

Call

Reply

Current Solution to Policy Enforcement

Sidecar

Policies

RPC
Library

Transport

NIC

9

Client

Stub

RPC
Library

M Marshal

U Unmarshal Sidecar

Policies

RPC
Library

Transport

NIC

Server

Stub

RPC
Library

Call M

Reply

Current Solution to Policy Enforcement

Sidecar

Policies

RPC
Library

Transport

NIC

9

Client

Stub

RPC
Library

M Marshal

U Unmarshal Sidecar

Policies

RPC
Library

Transport

NIC

Server

Stub

RPC
Library

Call UM

Reply

Current Solution to Policy Enforcement

Sidecar

Policies

RPC
Library

Transport

NIC

9

Client

Stub

RPC
Library

M Marshal

U Unmarshal Sidecar

Policies

RPC
Library

Transport

NIC

Server

Stub

RPC
Library

Call MUM

Reply

Current Solution to Policy Enforcement

Sidecar

Policies

RPC
Library

Transport

NIC

9

Client

Stub

RPC
Library

M Marshal

U Unmarshal Sidecar

Policies

RPC
Library

Transport

NIC

Server

Stub

RPC
Library

Call MUM

Reply U MM U M U

U M U

Current Solution to Policy Enforcement

Sidecar

Policies

RPC
Library

Transport

NIC

10

Client

Stub

RPC
Library

M Marshal

U Unmarshal Sidecar

Policies

RPC
Library

Transport

NIC

Server

Stub

RPC
Library

Call MUM

Reply U MM U M U

U M U

In our evaluation, adding Envoy sidecar to gRPC
leads to

• 2.8x 99th tail latency

• 0.56x bandwidth (Gbps)

NOT Efficient

RPC-as-a-Library Limitation

Sidecar

Policies

RPC
Library

Transport

NIC

11

Client

Stub

RPC
Library

M Marshal

U Unmarshal

Call MUM

Reply U MM U M U

U M U

Client Server

RPC-as-a-Library Limitation

Sidecar

Policies

RPC
Library

Transport

NIC

11

Client

Stub

RPC
Library

M Marshal

U Unmarshal

Call MUM

Reply U MM U M U

U M U

Client Server

• RPC library and sidecar are weakly
coupled

• prevent from cross-layer optimization

• operate/coupled at L4

decoupled

RPC-as-a-Library Limitation

Sidecar

Policies

RPC
Library

Transport

NIC

11

Client

Stub

RPC
Library

M Marshal

U Unmarshal

Call MUM

Reply U MM U M U

U M U

Client Server

• RPC library and sidecar are weakly
coupled

• prevent from cross-layer optimization

• operate/coupled at L4

• RPC Library and app are strongly
coupled

• Difficult to upgrade RPC library

coupled

decoupled

RPC-as-a-Library Limitation

Sidecar

Policies

RPC
Library

Transport

NIC

11

Client

Stub

RPC
Library

M Marshal

U Unmarshal

Call MUM

Reply U MM U M U

U M U

Client Server

• RPC library and sidecar are weakly
coupled

• prevent from cross-layer optimization

• operate/coupled at L4

• RPC Library and app are strongly
coupled

• Difficult to upgrade RPC library

coupled

decoupled

We want
• strong coupling: operate at L7

• weak coupling: most of the functionalities extracted

into a separate service

mRPC Overview

Sidecar

Policies

RPC
Library

Transport

NIC

12

Client

Stub

RPC
Library

M Marshal

U Unmarshal

Call MUM

Reply U MM U M U

U M U

Client Server

RPC-as-a-library

mRPC Overview

13RPC-as-a-library

mRPC
Service

Policies

RPC
Library

Transport

NIC

Client

Stub

mRPC
Library

Call M

Reply U M

U

Client Server

RPC-as-a-service: mRPC

Sidecar

Policies

RPC
Library

Transport

NIC

Client

Stub

RPC
Library

Call MUM

Reply U MM U M U

U M U

Client Server

M Marshal

U Unmarshal

Client

Stub

RPC
Library

Client

Stub

RPC
Library

mRPC Overview

13RPC-as-a-library

mRPC
Service

Policies

RPC
Library

Transport

NIC

Client

Stub

mRPC
Library

Call M

Reply U M

U

Client Server

RPC-as-a-service: mRPC

Sidecar

Policies

RPC
Library

Transport

NIC

Client

Stub

RPC
Library

Call MUM

Reply U MM U M U

U M U

Client Server

M Marshal

U Unmarshal

Challenges

14

How to enforce policies with
efficiency and security?

How to support new
applications with new RPC
specifications at runtime?

How to live upgrade RPC
implementations without
disrupting other applications?

Dynamic
Binding

Memory
Management

Live
Upgrade

mRPC
Service

Policies

RPC
Library

Transport

NIC

Client

Stub

mRPC
Library

Call M

Reply U M

U

Client Server

RPC-as-a-service: mRPC

Challenges

15

How to enforce policies with
efficiency and security?

How to support new
applications with new RPC
specifications at runtime?

How to live upgrade RPC
implementations without
disrupting other applications?

Dynamic
Binding

Memory
Management

Live
Upgrade

mRPC
Service

Policies

RPC
Library

Transport

NIC

Client

Stub

mRPC
Library

Call M

Reply U M

U

Client Server

RPC-as-a-service: mRPC

Traditional RPC Libraries

Stub

fn Get()

fn marshal()
fn unmarshal()

Proto

App

Stub

RPC
Library

Service KVStore
 Func Get(GetReq) -> Entry

16

Traditional RPC Libraries

Stub

fn Get()

fn marshal()
fn unmarshal()

Proto

App

Stub

RPC
Library

Service KVStore
 Func Get(GetReq) -> Entry

In traditional RPC libraries, marshal/
unmarshal and service methods code
will be generated as a stub and loaded
into user applications as a library

16

mRPC’s Solution

Proto
mRPC

Schema
Compiler

Stub

fn Get()

1Compile
Stub

App

Stub

mRPC
Library

Service KVStore
 Func Get(GetReq) -> Entry

17

mRPC’s Solution

Proto
mRPC

Schema
Compiler

Stub

fn Get()

1Compile
Stub

App

Stub

mRPC
Library

App

Stub

mRPC
Library

mRPC

Proto
Codegen

2

Connect(, …) Proto

Service KVStore
 Func Get(GetReq) -> Entry

18

mRPC’s Solution

Proto
mRPC

Schema
Compiler

Stub

fn Get()

1Compile
Stub

Service KVStore
 Func Get(GetReq) -> Entry

App

Stub

mRPC
Library

mRPC

Marshal

Proto
Codegen

2

Connect(, …) Proto

Marshal module

fn marshal()
fn unmarshal()

mRPC
Schema
Compiler

Compile
Marshal Module3

19

mRPC’s Solution

Proto
mRPC

Schema
Compiler

Stub

fn Get()

1Compile
Stub

Service KVStore
 Func Get(GetReq) -> Entry

App

Stub

mRPC
Library

mRPC

Marshal

Proto
Codegen

2

Connect(, …) Proto

Marshal module

fn marshal()
fn unmarshal()

mRPC
Schema
Compiler

Compile
Marshal Module3

In mRPC, marshal/unmarshal code are decoupled from
user stub, and generated/loaded by mRPC service instead

19

Challenge #2: Memory Management

App

Stub

mRPC
Library

mRPC

Marshal

Frontend

20

Shared
Memory Heap GetReq

Service KVStore
 Func Get(GetReq) -> Entry

Challenge #2: Memory Management

RPC messages are allocated on shared
memory heap.

Accessed by both the application and the
mRPC service.

App

Stub

mRPC
Library

mRPC

Marshal

Frontend

20

Shared
Memory Heap GetReq

Service KVStore
 Func Get(GetReq) -> Entry

Memory Management

Desc

GetReq

Desc
message_ptr
call_id
func_id

Shared
Memory Heap

App

Stub

mRPC
Library

mRPC

Marshal

Frontend

Service KVStore
 Func Get(GetReq) -> Entry

21

Shared Memory
Queue

Memory Management

Desc

GetReq

Desc
message_ptr
call_id
func_id

Shared
Memory Heap

App

Stub

mRPC
Library

mRPC

Marshal

Frontend

Service KVStore
 Func Get(GetReq) -> Entry

21

Shared Memory
Queue

A shared memory queue is used to pass
RPC descriptors

Memory Management

Desc

Desc
message_ptr
call_id
func_id

App

Stub

mRPC
Library

mRPC

Marshal

Frontend

Service KVStore
 Func Get(GetReq) -> Entry

Desc

Entry

22

Shared Memory
Queue

GetReqShared
Memory Heap

Memory Management (Outgoing Message)

Desc

GetReq

1

App

Stub

mRPC
Library

mRPC

Marshal

Frontend

23

Shared
Memory Heap

Memory Management (Outgoing Message)

Desc

GetReq

1

NIC

2

3

App

Stub

mRPC
Library

mRPC

Marshal

Frontend

23

Shared
Memory Heap

Memory Management (Outgoing Message)

Desc

GetReq

1

NIC

2

3

4

Completion
Notify

App

Stub

mRPC
Library

mRPC

Marshal

Frontend

23

Shared
Memory Heap

Memory Management (Outgoing Message)

Desc

GetReq

1

NIC

2

3

4

Completion
Notify

Reclaim

App

Stub

mRPC
Library

mRPC

Marshal

Frontend

23

Shared
Memory Heap

5

Policy Enforcement

Shared
Heap

App

Stub

mRPC
Library

Processing Flow / Time

mRPC

Frontend

mRPC

ACL

Policy NIC

24

Policy Enforcement

Shared
Heap

App

Stub

mRPC
Library

key: “dog”

Processing Flow / Time

Desc

mRPC

Frontend

mRPC

ACL

Policy NIC

25

Policy Enforcement

Shared
Heap

App

Stub

mRPC
Library

key: “dog”

Processing Flow / Time

Desc

mRPC

Frontend

mRPC

ACL

Policy NIC

key: “dog”

Desc

26

Policy Enforcement

Shared
Heap

App

Stub

mRPC
Library

key: “dog”

Processing Flow / Time

Desc

mRPC

Frontend

mRPC

ACL

Policy NIC

key: “dog”

Desc Desc

27

key: “dog”

Policy Enforcement

Shared
Heap

App

Stub

mRPC
Library

key: “dog”

Processing Flow / Time

Desc

mRPC

Frontend

mRPC

ACL

Policy NIC

key: “dog”

Desc Desc

28

key: “cat”

App 😈

Policy Enforcement

Shared
Heap

App

Stub

mRPC
Library

key: “dog”

Processing Flow / Time

Desc

mRPC

Frontend

mRPC

ACL

Policy NIC

key: “dog”

Desc

29

Private
Heap

Copy

key: “dog”

Policy Enforcement

Shared
Heap

App

Stub

mRPC
Library

key: “dog”

Processing Flow / Time

Desc

mRPC

Frontend

mRPC

ACL

Policy NIC

key: “dog”

Desc Desc

30

key: “cat”

App

Private
Heap

Copy

key: “dog” key: “dog”

😧

Evaluation

31

Does mRPC deliver smaller latency and higher
goodput compared to existing solutions?

Does mRPC enforce policy efficiently?

Can mRPC improve real-world application’s
performance?

Evaluation: Large RPC Goodput

• TCP transport

• Keep 128 concurrent

RPCs to hide latency

Speed-up by 3.1x

32
Evaluated on testbed of servers with 100 Gbps Mellanox
Connect-X5 NICs and Xeon 5215 CPUs

Evaluation: Small RPC Latency

Median Latency
(μs)

P99 Latency
(μs)

eRPC 3.6 4.1
mRPC 7.6 8.7
eRPC + Proxy 11.3 15.6
mRPC + NullPolicy 7.9 9.1

• RDMA transport

• 64-byte RPC requests, 8-byte replies

Speed-up by 1.7x

33

Evaluation: Policy Enforcement

• Filter RPCs based on string matching on one field

• 1% requests will not pass

<6% overhead

34

Evaluation: DeathStarBench

• TCP transport

• Measured over 250 secs @ 20 reqs/sec

Speed-up by 2.5x

35

RPC-as-a-library cannot meet both manageability and efficiency

mRPC: Reimagined RPC as a managed system service

Efficient policy enforcement

Upgrade of RPC implementation without shutting down user applications

Summary

36

https://github.com/phoenix-dataplane/phoenix

https://github.com/phoenix-dataplane/phoenix

