Poirot: Private Contact Summary Aggregation

Chenghong Wang1, David Pujol1, Yanping Zhang1, Johes Bater1, Matthew Lentz1,4, Ashwin Machanavajjhala1, Kartik Nayak1, Lavanya Vasudevan1,2,3 and Jun Yang1

1Computer Science Department, Duke University
2Department of Family Medicine and Community Health, Duke University
3Duke Global Health Institute
4VMware Research
Poirot: In a Nutshell

Physical distancing between individuals is key to preventing the spread of a disease such as COVID-19

We want:

• Functionality: Measure physical interactions through “contact events”
• Privacy: Ensure that the resulting data cannot be linked back to an individual
How will Poirot be used?

Provide actionable information to individual users and decision makers in a privacy-preserving manner.
Threat Model

- **Users**
 - semi-honest
 - Learns their own #contacts with locations and times plus differentially-private aggregated statistics

- **Admins**
 - untrusted
 - Untrusted administrators: learn differentially-private aggregate statistics

- **Auth Server**
 - semi-honest
 - Learns the set of participating users

- **Poirot Server N**
 - semi-honest, assume non-collusion
 - Learns the set of participating users + some metadata.
Poirot Design

Collection

Permission
-1 Month
Auth Server >> Poirrot Server
ID, {Attr}
Code
(1) Code
(2) Poirrot Server
(3) Code
(4) Poirrot Server
(5)

Discover Contacts
Cont.
Advertisements
< [Time, Loc, Dist>
< [Time, Loc, Dist>

Upload Summary
Daily
of contacts per location bin
Summary
Period (1hr): 9/22 10:00
Data: [2, 0, 5, …]

Processing
What is the average number of contacts for <location, time> pair?

Poirrot Server 1...
Poirrot Server N

Users
Admins

MPC
Noise
f

Individuals
Administrators

Average Contacts Per Day
By Location
Dining Hall
High
Med
Low

Collection Processing Usage (University Example)
Poirot Design -> Data Collection-> Private Permissioning

~1 Month

Auth Server

ID, {Attr}

Code

Poirot Server

Code

{Token T}
Poirot Design -> Data Collection -> Discover Contacts
Poirot Design -> Data Collection -> Upload Summary

Servers only learn metadata about contact summaries
Multiparty Computation (MPC) allows computing on secret-shared data, Differential Privacy ensures released statistics do not reveal individual’s data.
Poirot Design-> Data Processing

Raw statistics

Distorted statistics
Poirot-> Evaluation-Accuracy

• Dataset: Copenhagen Network Study dataset
Poirot-> Evaluation-Performance

<table>
<thead>
<tr>
<th>Case</th>
<th># of Locations</th>
<th>Time</th>
<th>User Population</th>
<th>App execution time (ms)</th>
<th>Server execution time (s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Duke</td>
<td>256</td>
<td>24</td>
<td>20K</td>
<td>366.1</td>
<td>94.4</td>
</tr>
<tr>
<td>NC</td>
<td>100</td>
<td>1</td>
<td>10M</td>
<td>6.0</td>
<td>776.1</td>
</tr>
<tr>
<td>Copenhagen</td>
<td>1</td>
<td>24</td>
<td>705</td>
<td>1.68</td>
<td>0.015</td>
</tr>
</tbody>
</table>
Conclusion

• Provide accurate information about physical interactions.
• Guarantees individual’s contact privacy
• Our system scales to large, realistic deployment scenarios.

https://poirot.cs.duke.edu/