
On Finding a Stable Roommate, Job, or Spouse: A Case Study Crossing

the Boundaries of Computer Science Courses

Owen Astrachan

Department of Computer Science

Duke University

Durham, NC 27706

ola@cs.duke.edu

Abstract

The use of real-world problems as the basis for assign-
ments in Computer Science courses is attractive for
many reasons. At the same time it is di�cult to �nd
such a problem that o�ers the same richness that is
found, for example, in sorting or searching. In this pa-
per a problem is presented that has many real-world in-
stances and which is pedagogically attractive at all lev-
els of Computer Science from the level of a non-major's
course to that of an advanced algorithms course.

1 Introduction

Sorting and searching have proven to be e�ective prob-
lems for use in Computer Science courses for many rea-
sons. They are easily coded by students in a CS1 course
(but see [Pat88] for how easy it is to get binary search
wrong) and are easily analyzed by students in intro-
ductory courses while providing material for advanced
courses as well. There is a wealth of material on both
problems ranging from the coverage given in most text-
books to the encyclopedic reference of [Knu73]. We tend
to view sorting and searching as easy to motivate for our
students in addition to being such a rich source of mate-
rial. What teacher of Computer Science has not either
literally or �guratively given students a phone book and
asked for both the number of Mary Smith and for the
owner of the number 555-1234?
Yet many students see these problems as contrived. In

addition, many colleges and universities are beginning
to o�er courses to non-majors that have a programming
component (e.g., [DH91], [Bie91]).

For students in such a course it is harder still to
motivate programmed solutions to sorting and search-
ing problems. With these factors in mind and primed
by [Pat91] to �nd a real-world problem, we have uncov-
ered a problem whose genesis is in the real world but
whose abstractions are rich with the potential for some
deep analysis. This is a problem whose solution is read-
ily understood by beginning programmers but which of-
fers the opportunity for students in advanced courses to
develop signi�cant improvements. In short, it is a prob-
lem worthy of study at many levels.

After describing the problem, we give some indica-
tions of its successful use in a variety of courses. Space
constraints prevent us from developing the problem as
fully as is done in our courses. Our intent here is to give
a
avor for some of the di�erent uses of the problem and
to provide an incentive for further investigation of the
problem.

2 The Problem

Medical students in their fourth year of medical school
undergo a process known as The Match. Since this pro-
cess will e�ectively decide where each student spends
from three to seven years in a residency program, it is
approached with great trepidation. This trepidation is
heightened by the fact that the methodology in Figure 1
accurately describes the process.

What causes the trepidation is that the pairings out-
put by the computer program constitute a legal obliga-

tion on the part of a medical student. Each student is
given one hospital and the student must serve a res-
idency at this hospital. Knowledge of the algorithm
used to generate the pairings is obviously a key factor
in determining how a resident should generate a list of
acceptable or desirable hospitals.

1. Each student ranks those hospitals at which a residency

is desired (usually about 15 such hospitals).

2. Each hospital ranks those students to whom a residency

might be o�ered (a hospital with n residencies typically

ranks more than n students).

3. These ranking lists serve as input to a computer pro-

gram. The output of the program is a pairing of hospi-

tals to students.

Figure 1: Methodology for The Match

2.1 Similar Problems

This Hospitals/Residents problem has a long history
whose telling ([Rot84], [GI89]) is interesting in and of
itself. It has many counterparts from Computer Sci-
ence and Game Theory which serve to further anchor
it in the real-world. The problem was �rst brought to
the attention of the academic world in Gale and Shap-
ley's paper [GS62] in the form of the problem of col-
lege admissions (although the Hospitals/Residents solu-
tion pre-dates this by roughly ten years.) In Computer
Science this is the problem of �nding a perfect match-
ing in a bipartite graph [GJ79] and is known as the
stable marriage problem (for reasons described later.)
Two books describe it in depth from di�erent points
of view [GI89], [Knu76]; the former covers more recent
results and is written more with implementation tech-
niques in mind than the latter which uses the problem
as the basis for studying several techniques of algorithm
analysis.

2.2 Stable Matchings

The algorithm actually used in the Hospital/Residents
problem [Nat91], [Rot84] has the property that it gener-
ates a stable matching. The matching is stable because
no two residents can both improve their selections by
switching hospitals (a symmetric property holds for the
hospitals.) If the matching was not stable there would
be little incentive for medical students to go through
the match.

The stable marriage problem is an abstraction of the
Hospitals/Residents problem that is easier to reason
about. In the stable marriage problem n men and n

women each rank order all members of the opposite sex.
Based on these rankings a pairing of women to men is
derived that is stable, i.e., no man and woman would
both be happier with each other than the spouse re-
ceived in the stable match. As an example, consider
the rankings of four men and four women as shown in
Figure 2.

man rankings woman rankings

1 2 4 1 3 1 2 1 4 3

2 3 1 4 2 2 4 3 1 2

3 2 3 1 4 3 1 4 3 2

4 4 1 3 2 4 2 1 4 3

Figure 2: An instance of the marriage problem

An unstable match is given by the pairs (1,1), (3,2),
(2,3) (4,4) where a pair consists of a woman's number
followed by a man's number. This match is unstable
since woman 4 prefers man 1 to her given partner (4)
and man 1 prefers woman 4 to his given partner (1).
A stable match is given by the pairs (1,4), (2,3), (3,2),
(4,1).

If instead of n men and n women we have 2n people
who desire to �nd roommates among each other than
we have the stable roommates problem.

Although each of these three problems is similar and
they all share some characteristics, each of them di�ers
from the others in interesting ways.

2.3 The Hospitals/Residents Algorithm

Since this problem is to be studied by students in a class
for non-majors with little programming expertise, and
since it is important that all students in introductory
courses have a laboratory experience [Tuc91], we have
developed a solution that is easy to understand because
it hides unnecessary details in code to which students
do not need access. We agree with the methods es-
poused in [Pat91] that low-level detail should be put into
callable, but separately compilable modules. We use a
version of Pascal that supports separately compilable
units; Modula-2 and Ada also provide such constructs.

The complete program consists of approximately 200
lines of code; we include the main loop of the program
in Figure 3 (lifted verbatim from the runnable code) to
illustrate both the actual algorithm used [Rot84] and
that our neophyte students can understand the algo-
rithm from the code. (Notes about the style of this
code are included in an appendix.)

2.4 Other sources of information

An informal survey of several data structures and
algorithms texts shows that only a few cover the
stable marriage problem [Kor86], [Sed90], [Wir76].
Sedgewick brie
y mentions the relationship to the Hos-
pitals/Residents problem, but none of the books either
gives or discusses solutions to this version of the prob-
lem. McVitie [MW71] discusses the stable marriage
problem and gives code for generating all stable matches

procedure MakeMatch(var hospitalList : HospitalListType;

var residentList : ResidentListType);

var

currentHospital, resident : integer;

begin

while PositionsExist(hospitalList) do begin fstill un�lled spots?g

currentHospital := OpenHospitalIndex(hospitalList); f�nd needy hosp.g

resident := NextPotentialMatch(currentHospital);

if IsAlreadyMatched(resident) then begin

if Prefers(resident,currentHospital) then begin fre-assign residentg

UnAssign(resident);

TentativelyAssign(resident,currentHospital);

end

end

else begin

TentativelyAssign(resident,currentHospital); fassign �rst timeg

end;

end;

end;

Figure 3: Hospitals/Residents main loop

in addition to solving the stable marriage problem. The
brief paper by Quinn [Qui85] discusses parallel algo-
rithms for solving the stable marriage problem.

3 The non-major's course

In this section we discuss those aspects of the problem
that have proven e�ective in our course for non-majors.
Most of this material is also covered in our �rst two
courses for majors when we discuss this problem. The
problem is particularly attractive for non-majors as we
can point out two references ([Rot84], [GS62]) from jour-
nals in areas in which many of our students do major.

There are many interesting properties of stable
matchings and the Hospital/Residents algorithm as it
is given in Figure 3. A partial list of those properties
that have been e�ective in generating interest is given
in Figure 4. Proofs of these properties or \theorems"
can be found in [GI89].

3.1 Using the problem

Programming is an integral part of our non-major's
course, but we cover only a subset of Pascal and we
expect our students to be more facile at reading and
modifying existing code than in developing their own
programs. The �rst laboratory exercise using the Hos-
pital/Residents program entails running the program on
several di�erent inputs. Students are given questions to

ascertain that they can interpret the output and that
they can generate input �les in the proper format.

Students are then asked to reason about the problem
in several ways. The order in which hospitals are consid-
ered is changed in two ways: (1) changing the physical
order of the hospitals in the input �le and (2) changing
the body of the function OpenHospitalIndex. Students
are asked to make generalizations and, as a result, the
�rst theorem in Figure 4 is discovered.

Finally, students note that it is not always the case
that each resident is o�ered a position (or that each hos-
pital �lls its positions.) This is in contrast to the stable
marriage problem for which a stable match can always
be found. Students are asked to reason about the di�er-
ences in the problems and o�er possible explanations.

This problem also lends itself to the study of many
ethical questions. In light of the the third theorem of
Figure 4 it is particularly interesting that the litera-
ture given to medical students [Nat91] assures them that
\You will be matched with your highest ranked hospital
that o�ers you a position." Resolving these two state-
ments leads to many interesting discussions.

It is also interesting to note that it is possible for a
hospital to receive a better group of interns by misrep-
resenting its true choices. This situation is asymmetric
to the resident's position and does not re
ect the analo-
gous situation in the stable marriage problem in which
lying does not yield an improvement for the sex whose
role corresponds to the hospitals' role above.

1. The order in which each hospital's resident list is considered does not a�ect the �nal match (exactly which hospital

index is returned by the function OpenHospitalIndex as shown in Figure 3 is unimportant as long as the hospital

has unsubscribed residency positions and has not exhausted its list of acceptable candidates.)

2. If some hospital does not �ll all its positions (remains undersubscribed) then this hospital will receive exactly the

same residents no matter what algorithm is used as long as a stable match is generated.

3. For any resident, the hospital assigned by the algorithm in Figure 3 is the lowest ranked hospital that could be

part of some stable match.

Figure 4: Theorems of the Hospital/Residents Problem

Finally, we return to this problem when we discuss
the concept of tractable and intractable problems in this
class. The stable marriage problem remains solvable in
polynomial time even if ties are permitted in rankings.
This is in sharp contrast to the stable roommates prob-
lem in which allowing ties in rankings changes the com-
plexity of the problem from polynomial to NP-complete.

4 The �rst course for majors

In our �rst course for majors (CS1) we expect a sig-
ni�cantly larger programming e�ort from the students.
For example, we do not cover records in our non-major's
course so that most of the code that manipulates arrays
of records is relegated to a unit and not available for
perusal. In our CS1 course we would adopt the same
approach initially, but allow the students access to the
unit after we have covered the appropriate material.

This allows us to consider an easy modi�cation of
the program which changes the complexity of the im-
plementation from O(n3) to O(n2) (where we assume
for simplicity that there are both n hospitals and n res-
idents.)

The current implementation of the boolean function
Prefers determines whether a resident prefers a hos-
pital to the resident's currently assigned hospital by
searching the resident's list of hospitals for both and
then comparing the result. We ask our students to
change this linear implementation to one that works
in constant time by constructing a preference ma-
trix Pr with the property that Pr[i; j] is the rank-
ing that resident i gives to hospital j (the procedure
TentativelyAssignmust be changed to use the matrix
as well, and another matrix Ph which gives the ranking
that hospital i gives resident j constructed.) The con-
struction of these matrices is easily done during the ini-
tialization of the other data structures in the program.
This problem allows the students to reason about the
classic time/space tradeo� since O(n2) storage is needed
for the matrix.

The current program also uses a prede�ned list unit

that we ask our students to examine and modify. We
give them a unit that implements a list as a record with
two �elds: an array and a count of the number of el-
ements in the list. We ask our students to change the
implementation to one using linked lists. The use of sep-
arate units for this is essential and our students learn
from experience that modularity makes programming
simpler and more adaptable to other tasks.

Finally, reasoning about correctness is an important
part of our �rst course. We ask our students to reason
about why the while loop in procedure MakeMatchmust
terminate (the key is the function NextPotentialMatch

which has the \fortunate" side-e�ect of moving down
a hospital's list of residents.) Since we have, at this
point, spent a great deal of time discussing why func-
tions should not have side-e�ects, we ask our students to
change the solution so that it conforms to the guidelines
we have developed in class.

5 The second course for majors

Many interesting data structures and algorithms for
both the stable marriage problem and the Hospi-
tals/Residents problem are covered in detail in [GI89].
We use some of these in our second course when we de-
velop elementary graph algorithms and data structures.
We also discuss lower bounds for the �rst time and in-
vestigate the
(n2) lower bound for the stable matching
problem (this proves to be a lower bound even if we ig-
nore the initialization of the data structures which is
clearly an
(n2) operation.)

As an example of the types of interesting problems we
examine in this course let us consider the total number
of stable matches (i.e., not just the one generated by
the algorithm shown in Figure 3) for a given problem
instance. It can be shown that for any n � 0, where n is
a power of two, that there is a problem instance of size
n with at least 2n�1 stable matchings. Given this expo-
nential bound it is quite interesting that a polynomial
algorithm | O(n5) | exists for constructing a com-
pact representation of all the stable matchings. While

this is at �rst glance disturbing, we remind our students
that as an example of recursion we have investigated an
algorithm for generating the power set of a given set.
This algorithm is, in fact, a compact (and polynomially
constructible) representation of an exponential number
of things.

This representation allows us to develop polynomial
algorithms for the stable marriage problem that gen-
erate egalitarian matches. Recall the third theorem of
Figure 4 as it relates to marriages. As noted above,
if the algorithm outlined in Figure 3 is used a sta-
ble match is generated that is optimal for hospitals.
We discuss this optimality as it relates to the mar-
riage problem and reason about \male-optimality" ver-
sus \female-optimality". Finally, we note that an egali-
tarian match treats both sexes equally. It is interesting
to note that although a sex-biased optimal matching can
be constructed in O(n2) time, the egalitarian algorithm
is O(n4).

6 More advanced courses

There are many modi�cations of the stable marriage
problem amenable to analysis and study in a more ad-
vanced algorithms course. The egalitarian match dis-
cussed in the context of our second course for majors is
generated using network
ow algorithms (again we usu-
ally hide these details in that course.) The egalitarian
matching algorithm can be generalized to an optimal
matching algorithm. The input to the optimal match-
ing algorithm is a sequence of preference lists in which
each person provides a real number ranking for the el-
ements on the preference list rather than just a rank
ordering. This allows a �ner granularity in preference
lists and permits di�erent optimizations (e.g., we can
either maximize or minimize the matches according to
how the real number weights are assigned.) This opti-
mization problem admits an O(n4 logn) solution.

As mentioned previously, we do discuss tractable and
intractable problems in our earlier courses, but only on
a super�cial level. In later algorithms or theory of com-
putation courses we �rst discuss in depth the concepts
of NP-completeness, reductions, and how this problem
relates to them. For example, as noted above allow-
ing ties in the ranking of the stable roommates problem
makes that problem NP-complete. This is shown by a
reduction from 3-SAT [GI89], [GJ79]. In addition, al-
though the stable marriage problem admits a polyomial
solution, and an e�cient representation of all stable
matchings can be constructed in polynomial time, the
problem of determining the number of stable matches
is #P-complete [GJ79]. This means that determining

the number of stable matches is hard (and may be hard
even if P=NP) in contrast to the decision problem of
determining if there is a stable match (the answer is al-
ways yes!), or the decision problem of determining if a
given pair is part of a stable match (which admits an
O(n2) solution.)

Finally we note that the three dimensional match-
ing problem, which corresponds to a stable marriage in
which there are three di�erent sexes (perhaps on some
other planet?), is NP-complete. This serves to rein-
force the idea that higher dimensionality often a�ects
the complexity of a problem (consider 2-SAT and 3-SAT
for example.)

7 Summary

We hope that we have o�ered an incentive for study-
ing the stable marriage problem in its many forms in
courses that cover a broad spectrum of Computer Sci-
ence. Our students have found it interesting and we
have been quite pleased with how versatile it is, gen-
erating interesting problems that can be discussed by
non-majors in their �rst course and by graduate stu-
dents in an algorithms course.

We close with a somewhat amusing anecdote re-
lating Santayana's warning of what happens to those
who choose not to study the history of the Hospi-
tals/Residents problem.

It appears that federal judges might be persuaded
to be part of a clerkship-match in order to forego the
kind of experiences reported in [Mar] and partially re-
produced below:

In their eagerness to capture the best
clerks, the judges have steadily pushed up the
hiring process; instead of looking for students
in their third year of law school as custom
once required, judges surreptitiously began re-
cruiting second-year students in fall and of-
fered some jobs as early as February, disrupt-
ing studies and making decisions on the basis
of fewer grades and
imsier evidence.

\It was positively surreal, the most ludi-
crous thing I've ever been through," said one
Stanford student who recently endured the
process.

: : :years ago, for instance, Judge Winter of-
fered a Yale student a clerkship at 11:35 and
gave her until noon to accept. At 11:55, as she
was trying to reach a California judge to whom
she had also applied, he withdrew his o�er.

Appendix

Space considerations prevent the inclusion of the code
we use for this problem. We will be happy to send it
electronically to any who request it. Alternatively, we
will return any Macintosh or IBM-compatible (5.25 or
3.5 inch) disk with the complete code if a return mailer
is provided.

The code given in Figure 3 is the version of the code
presented in our class for non-majors. We have found
that these students are better served by keeping pa-
rameters to a minimum. However, we do not want to
depend completely on global variables. To these stu-
dents, the only potential confusion is that the parame-
ter residentList is not used in the body of procedure
MakeMatch (these students have access to MakeMatch

and OpenHospitalIndex and to no other subprograms.)
The format of the input �le used by this program is

of residents

hospital list for resident 1

...

hospital list for resident n

of hospitals

of slots in hospital 1 resident list for hospital 1

...

of slots in hospital n resident list for hospital n

References

[Bie91] Alan W. Biermann. An overview course in
academic computer science: A new approach
for teaching nonmajors. In The Papers of the

Twenty-�rst SIGCSE Technical Symposium on

Computer Science Education, pages 236{239.
ACM Press, February 1991. SIGCSE Bulletin
V. 23 N. 1.

[DH91] Richard W. Decker and Stuart H. Hirsh�eld.
A survey course in computer science using
hypercard. In The Papers of the Twenty-

�rst SIGCSE Technical Symposium on Com-

puter Science Education, pages 229{235. ACM
Press, February 1991. SIGCSE Bulletin V. 23
N. 1.

[GI89] Dan Gus�eld and Robert W. Irving. The Sta-

ble Marriage Problem: Structures and Algo-

rithms. MIT Press, 1989.

[GJ79] Michael R. Garey and David S. Johnson. Com-
puters and Intractability A Guide to the The-

ory of NP-Completeness. W.H. Freeman and
Company, 1979.

[GS62] D. Gale and L.S. Shapley. College admissions
and the stability of marriage. American Math-

ematical Monthly, 69:9{15, 1962.

[Knu73] D.E. Knuth. The Art of Computer Program-

ming, volume 3. Addison-Wesley, 1973. Sort-
ing and Searching.

[Knu76] D.E. Knuth. Mariages Stables. Les Presses de
l'Universit�e Montr�eal, 1976.

[Kor86] James F. Korsh. Data Structures, Algorithms,

and Program Style. PWS Publishers, 1986.

[Mar] David Margolick. Annual race for clerks be-
comes a mad dash, with judicial decorum left
in the dust. New York Times, March 17, 1989.

[MW71] D.G. McVitie and L.B. Wilson. The stable
marriage problem. Communciations of the

ACM, 14(7):486{492, 1971.

[Nat91] National Resident Matching Program,
Evanston, Illinois. Handbook for students Par-
ticipating Through U.S. Medical Schools, April
1991.

[Pat88] Richard E. Pattis. Textbook errors in bi-
nary searching. In The Papers of the Nine-

teenth Technical Symposium on Computer Sci-

ence Eduction, pages 190{194. ACM Press,
February 1988. SIGCSE Bulletin V. 20 N. 1.

[Pat91] Richard E. Pattis. A Philosophy and Example
of CS-1 Programming Projects. In The Papers

of the Twenty-�rst SIGCSE Technical Sympo-

sium on Computer Science Education, pages
34{39. ACM Press, February 1991. SIGCSE
Bulletin V. 23 N. 1.

[Qui85] M.J. Quinn. A note on two parallel algorithms
to solve the stable marriage problem. BIT,
25:473{476, 1985.

[Rot84] Alvin E. Roth. The Evolution of the Labor
Market for Medical Interns and Residents: A
Case Study in Game Theory. Journal of Po-

litical Economy, 92(6):991{1016, 1984.

[Sed90] Robert Sedgewick. Algorithms in C. Addison-
Wesley, 1990.

[Tuc91] Allen B. Tucker, editor. Computing Curric-

ula 1991 Report of the ACM/IEEE-CS Joint

Curriculum Task Force. ACM Press, 1991.

[Wir76] Niklaus Wirth. Algorithms + Data Structures

= Programs. Prentice-Hall, 1976.

