A 2D Kinetic Triangulation with Near-Quadratic Topological Changes

Pankaj K. Agarwal
Computer Science Department
Box 90129, Duke University
Durham, NC 27708, USA
pankaj@cs.duke.edu

Yusu Wang
Computer Science Department
Box 90129, Duke University
Durham, NC 27708, USA
wys@cs.duke.edu

Hai Yu
Computer Science Department
Box 90129, Duke University
Durham, NC 27708, USA
fishhai@cs.duke.edu

Abstract
A triangulation of a set S of points in the plane is a subdivision of the convex hull of S into triangles whose vertices are points of S. Given a set S of n points in R^2, each moving independently, we wish to maintain a triangulation of S. The triangulation needs to be updated periodically as the points in S move, so the goal is to maintain a triangulation with small number of topological events, each being the insertion or deletion of an edge. We propose a kinetic data structure (KDS) that processes \(n^2 g(\sqrt[3]{\log n}) \) topological events, with high probability, if the trajectories of input points are algebraic curves of fixed degree. Each topological event can be processed in \(O(\log n) \) time. This is the first known KDS for maintaining a triangulation that processes near-quadratic number of topological events, and almost matches the \(\Omega(n^2) \) lower bound [1]. The number of topological events can be reduced to \(nk \cdot g(\sqrt[3]{\log k + \log n}) \) if only \(k \) of the points are moving.

Categories and Subject Descriptors: F.2.2 [Numerical Algorithms and Problems]: Geometrical problems and computations

General Terms: Algorithms, Theory

Keywords: Triangulation, kinetic data structures, random sampling

1. Introduction
A triangulation of a set S of points in R^2 is a subdivision of the convex hull of S into triangles whose vertices are points of S. Motivated by applications in several areas, including computer graphics, physical simulation, collision detection, and geographic information systems, triangulations have been widely studied in computational geometry and the above areas [9, 12]. With the advancement in technology, many applications, for instance, video games, virtual reality, dynamic simulations, and robotics call for maintaining a triangulation as the points move. For example, the arbitrary Eulerian-Lagrangian method [11] provides a way to integrate the motion of fluids and solids within a moving finite-element mesh. The time axis is discretized and the mesh vertices are moved between each time step so as to respect the interfaces between the different media. However, numerical problems arise when the mesh becomes too distorted, and the mesh generated depends on the discretization of time. Another approach to build more adaptive triangulations for such problems is to work in the space-time domain [13].

Given a set S of points in R^2, each moving independently, we wish to maintain a triangulation of S. As the points in S move, any fixed triangulation of S also deforms continuously. However, a triangulation computed for the initial configuration cannot be guaranteed to remain valid all the time. Therefore, it becomes necessary to update a triangulation over time by deleting some of the existing edges and inserting some other edges. We refer to each such insertion or deletion in the triangulation as a topological event. The topological events occur only at discrete time instances. In this paper we study how to maintain a triangulation so that the number of topological events is near quadratic.

1.1 Related work
Since Atallah’s seminal paper [7] on kinetic geometry, much work has been devoted to this area due to its importance in both theory and applications of computational geometry; see [3, 5, 14] for reviews on kinetic geometric algorithms and data structures. The early work on kinetic geometry mostly focused on bounding the number of combinatorial or topological changes in various geometric structures as the input objects move. Basch et al. [8] introduced a general framework, the so-called kinetic data structure (KDS), for maintaining a discrete attribute of objects in predictable motion. Their approach to maintain a given attribute \(A(t) \) for a continuously changing scene \(S(t) \) is as follows: at a given time \(t \), we create a proof of correctness of the attribute based on elementary tests called certificates. For each certificate, we compute the time at which it fails and put it in a global...
event queue. As the attribute cannot change while all tests remain valid, it is unnecessary to perform any computation until the first certificate fails. When a certificate fails, the discrete attribute is updated if it needs to be, and a new proof of correctness is constructed by making certain modifications to the previous proof of correctness. Their approach led to efficient algorithms for several kinematic problems [14].

In the context of triangulation, a longstanding open problem is to bound the number of topological events in the Delaunay triangulation of a set of moving points in \mathbb{R}^2. The best known upper bound is near-cubic if trajectories of input points are algebraic curves of fixed degree; the bound is cubic if the trajectories are linear [6]. Although it is conjectured that the number of topological changes is $O(n^2)$, no such bound is known even for maintaining an arbitrary triangulation of a set of moving points in \mathbb{R}^2. Agarwal et al. [2] described a scheme for maintaining a triangulation of a set of points that incurs roughly $n^{7/3}$ topological changes if the points are moving linearly. Chew [10] proved that the L_1 Delaunay triangulation of S changes $O(n^2 \alpha(n))$ times, where $\alpha(n)$ is the inverse Ackermann function; however, the L_1 Delaunay triangulation is not necessarily a triangulation of the convex hull of the point set.

Agarwal et al. [1] showed that the convex hull of a moving point set may change $\Theta(n^2)$ times if the points are moving linearly; this result immediately implies a lower bound $\Omega(n^2)$ on the number of topological changes to any triangulation. This lower bound on the number of topological events holds even if linear number of Steiner points are allowed [4].

1.2 Our results
Let $S = \{p_1, \ldots, p_n\}$ be a set of points moving in \mathbb{R}^2. Let $p_t(t) = (x_t(t), y_t(t))$ denote the position of p_t at time t, and let $S(t)$ denote the configuration of S at time t. We assume that $x_t(\cdot), y_t(\cdot)$ are polynomials of fixed degree. We describe a kinetic data structure for maintaining a triangulation of $S(t)$ that processes $n \cdot 2^O(\sqrt{n\log n} + \log n)$ topological events, each of which is insertion or deletion of an edge. Each topological event can be processed in $O(\log n)$ time. This is the first kinetic data structure for maintaining a triangulation that processes near-quadratic topological events. The number of events can be reduced to $nk \cdot 2^O(\sqrt{n\log n} + \log n)$ if only k of the points are moving.

Our algorithm relies on a randomized hierarchical scheme. We first describe the so-called fan triangulation (Section 2), originally introduced in [2], and then introduce the notion of constrained fan triangulation with respect to a planar subdivision (Section 3). We choose a random sample $R \subseteq S$, compute a triangulation of R recursively, and then compute the constrained fan triangulation of S with respect to the triangulation computed for R (Section 4). We analyze the events in constrained fan triangulation and show that if R is a random subset of appropriate size, the total number of events is near-quadratic (Section 5).

2. Fan Triangulation
Let $S = \{p_1, \ldots, p_n\}$ be a set of points (stationary) points in \mathbb{R}^2, sorted in non-increasing order of their y-coordinates, i.e., $y(p_1) \geq y(p_2) \geq \cdots \geq y(p_n)$. For a point $q \in \mathbb{R}^2$, let $S_q = \{p \in S \mid y(p) > y(q)\}$. Denote by $V(q)$ the set of vertices of $\partial\text{conv}(S_q)$ that are visible from q, i.e., $p \in V(q)$ if the relative interior of the segment qp does not intersect $\text{conv}(S_q)$. Furthermore, let $\rho(q)$ denote the point from $V(q)$ such that the oriented line \overrightarrow{qp} is the left tangent of $\text{conv}(S_q)$, and let $\gamma(q)$ denote the point from $V(q)$ such that the oriented line $\overrightarrow{q\gamma(q)}$ is the right tangent of $\text{conv}(S_q)$. Obviously, $V(q)$ is the subset of vertices on $\partial\text{conv}(S_q)$ lying between $\rho(q)$ and $\gamma(q)$, assuming that the vertices are ordered in counterclockwise direction.

The fan triangulation of S is constructed by sweeping a horizontal line h from $y = +\infty$ to $y = -\infty$. At any time the algorithm maintains the fan triangulation of points from S that lie above h. It updates the triangulation when the sweep line crosses a point $p_0 \in S$ by adding the edges $p_i p_j$ for all $p_i \in V(p_0)$; see Figure 1. The triangulation at the end of the sweep is the fan triangulation of S, which we denote as $\mathcal{F}(S)$.

We classify the edges of $\mathcal{F}(S)$ incident upon a point $p_i \in S$ into two classes:

(i) up edges: edges $p_i p_j$ so that $j < i$; p_j is also referred to as an up neighbor of p_i.
(ii) down edges: edges $p_i p_j$ so that $j > i$; p_j is also called a down neighbor of p_i. Furthermore, if $p_i = p(p_j) = p_j = p$, then edge $p_i p_j$ is referred to as a reflex edge, otherwise, it is a reflex edge.

The following properties of $\mathcal{F}(S)$ are straightforward to prove.

(F1) For $1 \leq i < n$, $p_i p_{i+1}$ is an edge of $\mathcal{F}(S)$.

(F2) For each point p_i, at most one of its down edges is a reflex edge. In particular, let $p_i p_{j_1}, p_i p_{j_2}, \ldots, p_i p_{j_k}$ be the sequence of the down edges incident upon p_i sorted in clockwise direction. Then either $j_1 < \cdots < j_k$ and $p_i = p(p_j)$ or $p_i = p(p_j)$ is not a reflex edge, or $j_1 > \cdots > j_k$ and $p_i = p(p_j)$ for $l < k$ ($l \leq k$ if $p_i p_{j_l}$ is not a reflex edge).

Now suppose we are given a set of moving points $S(t) = \{p_1(t), p_2(t), \ldots, p_n(t)\}$ in the plane, and we wish to maintain $\mathcal{F}(S(t))$ for any $t \in R$. As the points from S move, $\mathcal{F}(S(t))$ deforms continuously. But the topology of $\mathcal{F}(S(t))$ changes only at discrete times, which we refer to as events. Note the difference between events and topological events: an event may cause multiple topological events to the triangulation. As observed in [2], there are two types of events.

Ordering event. The y-coordinates of two points p_i and p_j become equal at time t_0. Assume that $y(p_i(t_0)) > y(p_j(t_0))$.

$\mathcal{F}(S(t_0))$. Let $p_0, p_{j_0}, p_{j_1}, \ldots, p_{j_k}$ be the sequence of vertices in $\mathcal{F}(p_i(t_0))$ ordered in counterclockwise direction along $\partial\text{conv}(S_0)$. Obviously, at time t_0, $p_0, p_1, p_2, \ldots, p_k, p_{j_k}$ are edges in $\mathcal{F}(S(t_0))$, while at time t_0, p_0, p_{j_0}, p_{j_1}, for all $1 \leq l \leq u$, and p_k, p_{j_k} are edges in $\mathcal{F}(S(t_0))$. So to update the triangulation, we delete the edges $p_0 p_{j_0}, p_{j_1} p_{j_2}, \ldots, p_{j_{k-1}}$ and insert the edges $p_0 p_1, p_1 p_2, \ldots, p_k p_{j_k}$ to obtain $\mathcal{F}(S(t_0))$. See Figure 2 (a). Hence, an ordering event induces $O(\sqrt{n \log n})$ topological events.
Figure 1. Construction of fan triangulation at various stages — the point denoted by double circle is being inserted, and the thick edges are added.

Figure 2. [a] Ordering event. Points denoted by hollow circles are from \(V_{p_i, p_j}(t_0) \). [b] Visibility event.

Visibility event. For a point \(p_j \in S \), either \(\rho(p_j) \) or \(\gamma(p_j) \) changes at time \(t_0 \). Suppose that \(p_k(t_0^\prime) = \rho(p_j(t_0^\prime)) \) and \(p_k(t_0^\prime) = \rho(p_j(t_0^\prime)) \) with \(y(p_k(t_0^\prime)) > y(p_k(t_0)) \); the other cases are symmetric. Then \(p_k(t_0), p_j(t_0), \) and \(p_k(t_0) \) are collinear. Furthermore, among all the convex edges incident upon \(p_j \) at \(t_0^\prime \), \(p_kp_j \) is the leftmost edge. It then follows from property (F2) of the fan triangulation that there is at most one edge (the reflex edge), say \(p_kp_l \), between \(p_kp_j \) and \(p_kp_k \) in clockwise order around \(p_j \). If \(p_kp_k \) does not exist, then \(p_k, p_j, \) and \(p_k \) are collinear on \(\partial \text{conv}(S(t_0)) \). To update the fan triangulation, we delete the edge \(p_kp_l \) (if it exists) and insert the edge \(p_kp_l \) (Figure 2 (b)). Each visibility event induces \(O(1) \) topological events.

In order to detect the above events, we maintain three families of certificates:

(i) For each edge \(p_kp_l \in \mathcal{F}(S(t)) \), the next time \(t_0 \) at which \(y(p_k(t_0)) = y(p_l(t_0)) \).

(ii) For each triangle \(p_kp_l, p_m \in \mathcal{F}(S(t)) \), with \(y(p_l) < y(p_k) < y(p_m) \), the next time \(t_0 \) at which \(p_k(t_0) \in p_l(t_0)p_m(t_0) \).

(iii) For each point \(p_k \), let \(p_L \) be the point with the minimum \(y \)-coordinate so that \(p_L = \rho(p_k) \) (resp. \(p_L = \gamma(p_k) \)) if it exists. We add the time \(t_0 \) at which \(p_L(t_0), p_k(t_0), \) and \(\rho(p_k(t_0)) \) (resp. \(\gamma(p_k(t_0)) \)) become collinear.

By our above discussion, it is easy to verify that these certificates detect all events. Moreover, each topological event can be processed in \(O(\log n) \) time, including the time spent in updating the global event queue.

3. Constrained Fan Triangulation

In this section we introduce the notion of constrained fan triangulation and show how to maintain it under motion. As earlier, let \(S = \{p_1, \ldots, p_n\} \) be a set of \(n \) (stationary) points in \(\mathbb{R}^2 \) sorted in non-increasing order of their \(y \)-coordinates, and let \(\Pi \) be a set of segments with pairwise-disjoint interiors whose endpoints lie in \(S \). We will be mostly interested in the case in which \(\Pi \) is a triangulation of a subset \(R \subset S \), but we give the definition for the general setting.

We construct the constrained fan triangulation of \(S \) by sweeping a horizontal line \(h \) from \(y = +\infty \) to \(y = -\infty \). Let \(\mathcal{F}^{(0)} = \Pi \), and let \(\mathcal{F}^{(i-1)} \) be the partial triangulation computed after the sweep line has processed \(p_{i-1} \). If the interior of segment \(p_i, p_j \), for \(j < i \), does not intersect \(\mathcal{F}^{(i-1)} \), then \(p_i, p_j \) is called visible with respect to \(\mathcal{F}^{(i-1)} \). Define \(\mathcal{V}(p_i) \), \(\rho(p_i) \), \(\gamma(p_i) \) similarly as before, under the modified concept of visibility (with respect to \(\mathcal{F}^{(i-1)} \)); note that \(\rho(p_i) \) and \(\gamma(p_i) \) might be different with respect to different \(\Pi \). When the sweep line crosses \(p_i \), we compute \(\mathcal{F}^{(i)} \) by adding the edges \(p_i, p_j \) for all vertices \(p_j \) from \(\mathcal{V}(p_i) \). See Figure 3. Note that unlike in the sweeping process to construct the fan triangulation, \(\mathcal{F}^{(i)} \) might not be a triangulation; it is possible that only one point from \(p_1, \ldots, p_{i-1} \) is visible from \(p_i \) due to the constraint \(\Pi \), in which case we add only one edge to \(\mathcal{F}^{(i)} \), and this “dangling” edge of \(\mathcal{F}^{(i)} \) will become part of a triangle at a later stage; see the edge incident upon \(p_2 \) in \(\mathcal{F}^{(6)} \) of Figure 3. The final triangulation \(\mathcal{F}^{(n)} \) is the constrained fan triangulation of \(S \) (with respect to \(\Pi \), denoted by \(\mathcal{F}(S, \Pi) \).

Observe that if \(\Pi = \partial \text{conv}(S) \), then \(\mathcal{F}(S, \Pi) = \mathcal{F}(S) \). If \(\Pi \) is a triangulation of a subset \(R \subset S \), then \(\Pi \) partitions \(S \) into various subsets: \(S_\Delta = S \cap \Delta \) (including vertices of \(\Delta \), where \(\Delta \in \Pi \) is a triangle or \(\Delta = \Sigma \) is the exterior of the convex hull of \(R \). By the above observation, the constrained fan triangulation \(\mathcal{F}(S, \Pi) \) restricted to \(S_\Delta \) is the same as \(\mathcal{F}(S_\Delta) \) for \(\Delta \in \Pi \). Hence, \(\mathcal{F}(S, \Pi) \) can be computed by constructing independently \(\mathcal{F}(S_\Delta) \) for each triangle \(\Delta \in \Pi \) and constructing \(\mathcal{F}(S_\Sigma, \partial \text{conv}(R)) \) within the exterior of \(\text{conv}(R) \), i.e., the constrained fan triangulation of \(S_\Sigma \) with respect to the boundary of \(\text{conv}(R) \).

The following properties of constrained fan triangulation are generalizations of (F1) and (F2).
(C1) For $j < i$, if p_j is the lowest vertex visible from p_i, then $p_i p_j$ is an edge in $\mathcal{F}(S, \Pi)$.

(C2) If p_{i_1}, \ldots, p_{i_k} are the down edges incident upon p_i sorted in clockwise direction so that no edges of \Pi lie between them, then either $j_1 < \cdots < j_k$ and $p_i = \rho(p_{j_l})$ for $l \leq k$ ($l \leq k$ if $p_i p_{j_k}$ is not a reflex edge), or $j_1 \geq \cdots \geq j_k$ and $p_i = \gamma(p_{i_l})$ for $l < k$ ($l < k$ if $p_i p_{j_k}$ is not a reflex edge).

Next, we describe how to maintain $\mathcal{F}(S, \Pi)$ as the points in S move. For the time being, assume that Π is a triangulation of a subset $R \subseteq S$ and that motion is such that the topology of Π does not change and remains a valid triangulation of R throughout the motion. In addition to ordering and visibility events, a new type of event, called crossing event, arises when a point of $S \setminus R$ crosses an edge of Π. In the following, we discuss each of them.

Ordering event. There are two points $p_i, p_j \in S$ so that (i) $p_i(t_0)$ is visible from $p_j(t_0)$ with respect to Π, and (ii) $y(p_i(t_0)) = y(p_j(t_0))$. An ordering event is processed in the same way as in Section 2. If $p_i(t_0)$ is not visible from $p_j(t_0)$, then $\mathcal{F}(S, \Pi)$ does not change at t_0. Note that, the visibility relation between two points cannot change only by a crossing or a visibility event described below.

Visibility event. For a point $p_k \in S$, either $\rho(p_k)$ or $\gamma(p_k)$ changes at time t_0, and p_k does not cross any edge of Π during $[t_0, t_0']$. We process this event in the same way as in Section 2. Note that $\rho(p_k)$ or $\gamma(p_k)$ could also change as p_k crosses some edge from S, which will be covered by the crossing event below.

Crossing event. A point p_k crosses an edge $p_l p_m$ of Π at time t_0; assume $y(p_i(t_0)) > y(p_j(t_0))$. Recall that Π is a triangulation of a subset of S, Π partitions \mathbb{R}^2 into several connected components, each region being either a triangle of Π or the exterior of $\text{conv}(\Pi)$. Suppose p_k moves from the region Δ^- to Δ^+. Let S^-_Δ (resp. S^+_Δ) be the subset of points of S in Δ^- (resp. Δ^+) at t_0. Then the crossing event corresponds to deleting p_k from S^-_Δ, inserting it into S^+_Δ, and updating $\mathcal{F}(S)$ in Δ^- and Δ^+. First, let us consider Δ^-. Given an arbitrary point $q \in S$, the star of q, denoted by $\text{St}(q)$, is the union of triangles adjacent to q. $\text{St}(q)$ is a star-shaped polygon with q in its kernel — every point in $\text{St}(q)$ is visible from q. The link of q, denoted by $\text{Lk}(q)$, is defined as $\partial \text{St}(q)$. $\text{Lk}(q)$ is a closed polygonal curve. If $q \in \partial \text{conv}(S)$, then $q \in \text{Lk}(q)$; otherwise q lies in the interior of $\text{St}(q)$. Given the fan triangulation of S, $\text{Lk}(q)$ consists of a convex chain, corresponding to the up neighbors of q, a y-monotone polygonal chain, corresponding to the down neighbors of q, and one more edge that connects the lowest neighbor of q to an up neighbor of q (or to q if $q \notin \partial \text{conv}(S)$); see Figure 4.

If $p_i \in \partial \text{conv}(S)$ at time t_0 (in which case Δ^- represents the exterior of $\text{conv}(\Pi)$), we can simply remove edges $p_i p_j$ and $p_j p_k$ from $\mathcal{F}(S(t_0), \Pi)$. We now assume that $p_i(t_0) \notin \partial \text{conv}(S(t_0))$, implying that $p_i(t_0) \notin \text{Lk}(p_i(t_0))$.

The following lemma is straightforward to prove.

Lemma 3.1. Within Δ^-, any edge from $\mathcal{F}(S(t_0), \Pi)$ not incident upon p_k at time t_0 is present in $\mathcal{F}(S(t), \Pi)$ for all $t \in [t_0, t_0']$.

In view of Lemma 3.1, we delete the edges incident upon p_k at time t_0 and re-triangulate within $\text{Lk}(p_i(t_0))$. The portion of the triangulation on and outside $\text{Lk}(p_i(t_0))$ remains unchanged. We re-triangulate within $\text{Lk}(p_i(t_0))$ (as follows (Figure 4)). Let $Q = \{p_0 = p, q_1, \ldots, q_{k-1}, q_k = p_i\}$ be the sequence of vertices on $\text{Lk}(p_i)$, where $q_1, q_2, \ldots, q_{k-1}$ is the convex chain formed by the up neighbors of p_i, and $y(p_j) > y(q_{j+1}) > y(q_{j+2}) > \cdots > y(q_k)$. Since q_1, \ldots, q_k are already in convex position, we only visit q_{j+1}, \ldots, q_k in order. Without loss of generality, assume that p_k lies to the right of the edg $p_j p_k$ at time t_0, i.e., p_j crosses p_k from right to left; the other case can be handled symmetrically. Suppose we have processed q_{j+1}, \ldots, q_k, i.e., added the new edges incident upon them. We maintain a subsequence of Q

\[
q_{k+1} = \langle q_{j+1}, p_j, q_{j+2}, \ldots, q_k, p_i \rangle
\]

i.e., the vertices that appear on the left boundary of the convex hull of q_{j+1}, \ldots, q_k. If $q_j(q_k), \ldots, q_k(q_k)$ are visible from q_k, we then add the edges $q_j(q_{j+1}, q_{j+2}, \ldots, q_k, p_i)$, delete q_{j+1}, \ldots, q_k, and repeat this process for q_{k+1} until q_k.

Next, we describe how to insert p_k into Δ^+ and construct $\mathcal{F}(S_{\Delta^+} \cup \{p_k\})$ at time t_0 from $\mathcal{F}(S_{\Delta^+})$. Roughly speaking, we need to do opposite of what we did in Δ^-. That is, we identify $\text{Lk}(p_i(t_0))$ in $\mathcal{F}(S_{\Delta^+} \cup \{p_k\})$, delete the edges of $\mathcal{F}(S_{\Delta^+})$ that lie within the polygon formed by $\text{Lk}(p_i(t_0))$, and connect p_k to all the vertices on $\text{Lk}(p_i(t_0))$ to form $\mathcal{F}(S_{\Delta^+} \cup \{p_k\})$. We assume that Δ^+ lies to the left of $p_k p_j$. The following procedure performs these steps simultaneously.

Let p_k be the vertex in Δ^+ adjacent to the edge $p_j p_k$ at time t_0. If p_k does not exist, then $p_k p_j$ is an edge of $\text{conv}(S)$, and p_k becomes a vertex of $\text{conv}(S)$, in which case we simply add the triangle $p_j p_k p_i$. We thus assume that p_k exists. We add the edges $p_i p_j, p_k p_i$, and $p_k p_j$. We maintain a stack S of triangles. Initially, we push $p_j p_k$ and $p_k p_i$ to S.
Figure 4. Re-triangulation of $\text{St}(p_{t}(s_{1}^{-}))$ after deleting p_t. The thick polygonal chain in (a) is $\text{Lk}(p_{t}(s_{1}^{-}))$.

(with the latter being on the top of S). We perform the following procedure until S becomes empty. An example is illustrated in Figure 6. For a triangle $p_{t}p_{w}p_{z}$ with $y(p_{w}) > y(p_{z})$, we define the region $\tau(p_{w}p_{z})$ to be the intersection of the following three halfplanes: (i) $y > y(p_{z})$; (ii) the halfplane bounded by the line $p_{w}p_{z}$ containing p_{z}; and (iii) the halfplane bounded by the line $p_{w}p_{z}$ that does not contain p_{z}; see Figure 5. Intuitively, this region contains points that potentially should be visible to p_{t} if edge $p_{w}p_{z}$ does not exist.

Figure 5. If p_{w} lies inside the shaded region $\tau(p_{w}p_{z})$, then an edge flip is performed.

1. Remove the top triangle $p_{w}p_{z}p_{t}$ from S. Assume that $y(p_{w}) > y(p_{z})$.
2. If $p_{w}p_{z}$ is an edge of the convex hull, or $y(p_{z}) > y(p_{w})$, go to Step 1.
3. Let p_{t} be the other vertex adjacent to edge $p_{w}p_{z}$. If $p_{t} \notin \tau(p_{w}p_{z})$, go to Step 1.
4. Delete the edge $p_{w}p_{z}$, and insert the edge $p_{w}p_{t}$ (an edge flip).
5. Push the triangle $p_{w}p_{z}p_{t}$ to S.
6. Push the triangle $p_{t}p_{z}p_{w}$ to S.

By induction, one easily observe that the above algorithm constructs a valid triangulation F within Δ^{+}. Let F^{-} and F^{+} denote the fan triangulation within Δ^{+} at time t_{0}^{+} and t_{0}^{-} respectively.

Lemma 3.2. F as constructed by the above procedure is the same as F^{+}.

Proof. Observe that if an edge from F or F^{+} does not have p_{t} as an endpoint, then the edge is present in F^{-} as well, because the newly added edges in F or F^{+} are all adjacent to p_{t}. Therefore, we only have to prove that the above procedure correctly identifies $\text{Lk}(p_{t})$ in F^{+}. Let $Q = \{p_{t} = q_{0}, q_{1}, \ldots, q_{w} = p_{t}\}$ be the sequence of neighbors of p_{t} in the resulting triangulation F. To prove the lemma, we need to show that (i) for any $q_{z}q_{u}$ and $0 \leq z \leq u$ exists in F^{+}, and (ii) for any $p_{w}p_{z} \in F^{+}$, $p_{t} \in Q$. The first claim is easily shown by induction on the order in which the edges were added by the above procedure. At any time, the newly added edge is guaranteed to be present in F^{+}. We sketch the proof for the second claim below.

We prove the second claim by contradiction. By the first claim, Q is a subset of $\text{Lk}(p_{t})$ at time t_{0}^{+} in F^{+}. Therefore, similar to $\text{Lk}(p_{t})$, Q consists of a convex chain $q_{0}, q_{1}, \ldots, q_{w}$, corresponding to the up neighbors of p_{t} in Q, a y-monotone polygonal chain q_{w+1}, \ldots, q_{w}, corresponding to the down neighbors of p_{t} in Q, and edge $q_{w}q_{w+1}$ (i.e., $p_{w}p_{z}$). Moreover, edges $p_{w}q_{0}, \ldots, p_{w}q_{w}$ are ordered in clockwise or counterclockwise order around p_{t}. Assume that q_{w} and q_{w+1} are two consecutive vertices of Q such that there exists a point $q \in \text{Lk}(p_{t})$ lying between points q_{w} and q_{w+1} along $\text{Lk}(p_{t})$. Obviously, q lies inside the wedge formed by $p_{w}q_{0}$ and $\overrightarrow{p_{w}q_{0}}$, as $\text{Lk}(p_{t})$ is star-shaped. We now distinguish two cases, each of which leads to a contradiction.

1. $s + 1 \leq w$. As q_{0}, \ldots, q_{w} form a subset of a convex chain, triangle $p_{t}q_{w}q_{w+1}$ contains point q (Figure 7 (a)). By construction, $p_{t}q_{w}q_{w+1}$ is a triangle in F. But F is a valid triangulation, so triangle $p_{t}q_{w}q_{w+1}$ cannot contain any of the input point, a contradiction.
2. $s + 1 > w$. Recall that q lies in the wedge formed by the rays $p_0 q_0$ and $p_0 q_{0 + 1}$. If $q \in \tau(p_0 q_0 q_{0 + 1})$, then we arrive at the same contradiction as in case 1 (Figure 7(b)). So q lies in the halfplane bounded by $p_0 q_{0 + 1}$ and does not contain p_0. Moreover, since $q_{0 + 1}$ lies on the y-monotone part of $Lk(p_0)$ and q lies between q_0 and $q_{0 + 1}$ along $Lk(p_0)$, we have $y(q) > y(q_{0 + 1})$, implying that $q \in \tau(p_0 q_0 q_{0 + 1})$. As q_0 and $q_{0 + 1}$ are two consecutive neighbors of p_0 in F, $p_0 q_0 q_{0 + 1}$ must have been processed at some moment. The fact that $p_0 q$ was not added at that time implies that there was no other triangle, say, $p_0 q q_{0 + 1} \in F^-$, incident upon edge $q_0 q_{0 + 1}$ and $p_0 \notin \tau(p_0 q q_{0 + 1})$. Notice that q is not contained in either triangle $p_0 q q_{0 + 1}$ or $p_0 q_0 q_{0 + 1}$. Now assume p_0 lies below $q_{0 + 1}$ (Figure 7(c)). However, in this case, edge $p_0 q_0$ could not have been present in F^- as it crosses edge $q_0 q_{0 + 1}$, but both points q and $q_{0 + 1}$ are above p_0. Contradiction. The other case in which p_0 lies above line $p_0 q_0$ can be handled similarly (Figure 7(d)).

This proves the second claim, and the lemma follows.

Note that the number of topological events induced by a crossing event is proportional to the old degree plus the new degree of p_0. Each topological event can be handled in $O(\log n)$ time, including the time spent in updating the global event queue.

To detect all the three types of events, we can maintain the same three families of certificates as for a fan triangulation.

4. Hierarchical Fan Triangulation

We now use the constrained fan triangulation to define a hierarchical fan triangulation \mathcal{F}. Let $\emptyset = R_0 \subseteq R_1 \subseteq \cdots \subseteq R_k = S$. Set $\mathcal{F}_0 = \emptyset$, and for $i \geq 1$, define $\mathcal{F}_i = \mathcal{F}(R_i, \mathcal{F}_{i-1})$, i.e., \mathcal{F}_i is the constrained fan triangulation of R_i with respect to \mathcal{F}_{i-1}. By construction, \mathcal{F}_i is the fan triangulation of R_i and $\mathcal{F}_{i-1} \subseteq \mathcal{F}_i$. Set $\mathcal{F} = \mathcal{F}_w$. See Figure 8 for an example.

Hereditary event. As the points move, each \mathcal{F}_i deforms continuously. The topology of \mathcal{F} changes when there is an ordering, a visibility, or a crossing event in one of \mathcal{F}_i, and it can be processed as described in Sections 2 and 3. However, a topological change in \mathcal{F}_i also propagates changes in \mathcal{F}_j for $j > i$, as the insertion or deletion of an edge in \mathcal{F}_i affects the visibility of points in R_j. We refer to an event in \mathcal{F}_{i+1} caused by another event in \mathcal{F}_i as a hereditary event of \mathcal{F}_{i+1}. We process hereditary events as follows. If $\text{conv}(R_i)$ changes, i.e., a point $q \in R_i$ appears or disappears on $\text{conv}(R_i)$, we update \mathcal{F}_{i+1} within the exterior of $\text{conv}(R_i)$ by inserting or deleting q as described in the crossing event of Section 3. The number of topological events in this case is proportional to the new degree (if q is inserted) or old degree (if q is deleted) of q within the exterior of $\text{conv}(R_i)$. Moreover, if a triangle Δ in \mathcal{F}_i is destroyed due to an edge insertion or deletion, we simply delete all the edges of \mathcal{F}_{i+1} lying inside Δ. As destroying a triangle unavoidably leads to creation of other triangle(s), we only describe how we perform reconstruction after creating a new triangle. Suppose a triangle Δ is created in \mathcal{F}_i, we reconstruct affected portion of \mathcal{F}_{i+1}. More specifically, let $R^\Delta_{i+1} = R_{i+1} \cap \Delta$. We construct the fan triangulation $\mathcal{F}(R^\Delta_{i+1})$ inside Δ. The number of topological events in each newly created triangle Δ can be bounded by $O(|R^\Delta_{i+1}|)$. Each topological event induced by hereditary events can be handled in $O(\log n)$ time, including the time spent in updating the global event queue.

In the next section, we analyze the performance of the hierarchical fan triangulation, assuming that R_i is a random subset of R_{i+1} of an appropriate size.

5. Analysis

In the hierarchical fan triangulation \mathcal{F} defined in Section 4, let $w = \left\lceil \sqrt{\log n / \log \log n} \right\rceil$ be the number of levels in \mathcal{F}, and R_{i-1} a random subset of R_i of size

$$\min \left\{ |R_i|, 5|R_i|^{\frac{1}{w+1}} \log |R_i| \right\},$$

for $1 < i < w$. In this section, we show that \mathcal{F} has near-quadratic number of topological changes as promised. To do
this, let us first focus on a specific level of the construction of T. For notational convenience, let $P = R_1$, $R = R_{i-1}$, $T(P) = F_i$, $T(R) = F_{i-1}$, $n = |P|$ and $r = n^{1-i/4}$, for some $1 < i \leq w$. It follows that $T(P) = F(P, T(R))$, and $|R| = \min(n, 5r \log n)$.

Let $p, p_1, p_2, p_3 \in P, t, t_1, t_2 \in R$, and $m \in \mathbb{N}$. Let $h(p_1, p_2)$ be the open halfplane to the left of the oriented line p_1p_2. We define

\[
\langle p_1, p_2, p_3; t \rangle = \{p \in P \mid p(t) \in \Delta p(p_2(t))p_3(t)\},
\]

\[
\langle p_1, p_2; t_1, t_2 \rangle_s = \{p \in P \mid \exists t \in [t_1, t_2], p(t) \in p_1(p_2(t))\},
\]

\[
\langle p_1, p_2; t_1, t_2 \rangle_h = \{p \in P \mid \exists t \in [t_1, t_2], p(t) \in h(p_1, p_2)(t)\},
\]

\[
\langle p; m; t \rangle\rho = \rho^k(p(t)) \mid 1 \leq k \leq m\}
\]

\[
\langle p; m; t \rangle\gamma = \gamma^h(p(t)) \mid 1 \leq k \leq m\}
\]

We then let

\[
R_1 = \{\langle p_1, p_2, p_3; t \rangle \mid p_1, p_2, p_3 \in P, t \in R\},
\]

\[
R_2 = \{\langle p_1, p_2; t_1, t_2 \rangle_s \mid p_1, p_2 \in P, t_1, t_2 \in R\},
\]

\[
R_3 = \{\langle p_1, p_2; t_1, t_2 \rangle_h \mid p_1, p_2 \in P, t_1, t_2 \in R\},
\]

\[
R_4 = \{\langle p; m; t \rangle\rho \mid p \in P, m \in \mathbb{N}, t \in R\},
\]

\[
R_5 = \{\langle p; m; t \rangle\gamma \mid p \in P, m \in \mathbb{N}, t \in R\}.
\]

Finally, let $X = (P, R)$ be the range space with $R = \bigcup_{1 \leq j \leq 9} R_j$. We have the following lemma.

Lemma 5.1. $|R| = O(n^3)$.

Proof. Consider three points p_1, p_2, and p_3 of P. As t increases, $\langle p_1, p_2, p_3; t \rangle$ changes only when some point $q \in P$ moves in or out of the triangle $p_1p_2p_3$. For any point q, this can only happen constant number of times. Thus $\langle p_1, p_2, p_3; t \rangle$ can change $O(n)$ times as t goes from $-\infty$ to $+\infty$ for fixed p_1, p_2, and p_3. There are $O(n^3)$ different choices of p_1, p_2, p_3, implying that $|R_1| = O(n^3)$. Similarly we can prove $|R_2| = O(n^3)$ and $|R_3| = O(n^3)$. For any $p, q \in P$ if $y(q(t)) < y(q(t))$, let $\theta(q(t), q(t))$ denote the angle formed by pq and $+x$-direction at time t; $\theta(q(t), q(t))$ is undefined at t otherwise. The number of changes to $\rho(p)$ is the same as the complexity of the upper envelope of $\{\theta(p(t), q(t)) \mid q \neq p, q \in P\}$, which can be bounded by $\lambda_4(n)$ [10], where $\lambda_4(n)$ is the maximum length of a Davenport-Schinzel sequence of order s. The value of s depends on the maximum degree of polynomial of the trajectories of points in P; for example, $s = 4$ if points move linearly. For fixed p and m, as t increases, $\langle p; m; t \rangle\rho$ changes only when $\rho(q)$ changes for some $q \in P$. There are at most n different choices for p and m each, thus we have $|R_4| = O(n^3\lambda_4(n))$, which is slightly larger than $O(n^3)$. Similarly $|R_5| = O(n^3\lambda_4(n))$. Putting everything together, $|R| = O(n^3\lambda_4(n)) = O(n^3)$.

As time t varies, the topological structure of $T(P)$ may change; features such as edges or triangles may appear or disappear. The lifetime of a feature is the period between two of its consecutive appearance and disappearance. If an edge or a triangle occurs more than once, we count each occurrence as a different feature.

By (1), Lemma 5.1, and standard results from random sampling theory [15], R is a $(1/r)$-net of the range space X with high probability. Thus we obtain the following lemmas.

Lemma 5.2. With high probability,

(a) At any time, there are less than n/r points of P inside any triangle of $T(P)$.

(b) Less than n/r points of P can cross any edge ever appearing in $T(R)$ during its lifetime.

(c) Less than n/r points of P can ever appear in $h(p, q)$ during the period when $p, q \in R$ are two neighboring points on the convex hull of R in clockwise order.

Lemma 5.3. With high probability,

(a) For any $p \in P, m \in \mathbb{N}, t \in R$,

$$|\langle p; m; t \rangle\rho| < (|\langle p; m; t \rangle\rho \cap R| + 1) \cdot n/r.$$

(b) For any $p \in P, m \in \mathbb{N}, t \in R$,

$$|\langle p; m; t \rangle\gamma| < (|\langle p; m; t \rangle\gamma \cap R| + 1) \cdot n/r.$$

Proof. Suppose that

$$\langle p; m; t \rangle\rho \cap R = \{\rho^k(p(t)), \rho^{2k}(p(t)), \ldots, \rho^{nk}(p(t))\},$$

where $1 \leq i_1 < i_2 < \cdots < i_m \leq m$ and $h = |\langle p; m; t \rangle\rho \cap R|$. Let $i_0 = 0$ and $i_{m+1} = m + 1$. We have

$$|\langle p; m; t \rangle\rho| = \left(\sum_{j=1}^{i_0} (\rho^{i_j-i_{j-1}}(p(t)))^{i_j-i_{j-1}-1} + 1)\right)$$

$$\cup \{\rho^{i_{j+1} - i_j}(p(t)), \rho^{i_{j+2} - i_{j+1}}(p(t)), \ldots, \rho^{i_m - i_{m-1}}(p(t))\}.$$

Moreover, by properties of a $(1/r)$-net of X, we know that with high probability,

$$|\rho^{i_j - i_{j-1}}(p(t)); i_j - i_{j-1} - 1; t| < n/r - 1,$$

for $1 \leq j \leq h + 1$. We thus obtain

$$|\langle p; m; t \rangle\rho| < (h + 1) \cdot (n/r - 1) + h \leq (h + 1) \cdot n/r.$$

We can prove (b) in a similar manner.

Lemma 5.4. If a point $p \in P$ lies on an edge of $T(R)$ at time t_0, then both $\deg(p(t_0^-))$ and $\deg(p(t_0^+))$ are bounded by n/r with high probability.

Proof. If $p(t_0^-)$ or $p(t_0^+)$ lies in the interior of $\text{conv}(R)$, then we have $\deg(p(t_0^-)) \leq n/r$ or $\deg(p(t_0^+)) \leq n/r$ with high probability by Lemma 5.2 (a). If p crosses an edge p_1p_2 of $\partial \text{conv}(R)$ at t_0, say, from inside to outside, then at t_0^+ all points adjacent to p lie in the open halfplane bounded by p_1p_2 that is disjoint from $\text{conv}(R)$. It then follows from Lemma 5.2 (c) that $\deg(p(t_0^+)) \leq n/r$. A symmetric argument shows $\deg(p(t_0^-)) \leq n/r$ if p moves from the exterior to the interior of $\text{conv}(R)$ at t_0.

For a set $A \subseteq P$ of points, let $\Psi(A)$ denote the total number of topological changes to $T(A)$ over time. We will bound $\Psi(P)$ in terms of $\Psi(R)$, where R is a $(1/r)$-net with respect to the range space X. For simplicity, we will omit the phrase “with high probability”. We now bound the number of topological changes induced by each type of events as discussed in Section 3 and 4.
Hereditary events. Each hereditary event either causes to re-triangulate $\mathcal{T}(P)$ inside $O(1)$ triangles of $\mathcal{T}(R)$, or insert or delete a point of R that appears or disappears on $\partial \text{conv}(R)$. By Lemma 5.2 (a) and 5.4, each such event induces $O(n/r)$ topological changes. Since each hereditary event is caused by a topological event of $\mathcal{T}(R)$, the total number of topological changes induced by hereditary events is $O(n/r) \cdot \Psi(R)$.

Crossing events. By Lemma 5.2 (b), at most n/r points cross an edge of $\mathcal{T}(R)$ during its lifetime. By Lemma 5.4, each such event induces $O(n/r)$ topological changes. Since there are $O(\Psi(R) + |R|)$ distinct edges in $\mathcal{T}(R)$ over the entire history, the total number of topological changes induced by crossing events is

$$O \left(\left(\frac{n}{r} \right) \cdot \left(\frac{n}{r} \right) \cdot (\Psi(R) + |R|) \right) = O(n^2 \cdot \log(n)/r^2) \cdot \Psi(R).$$

Visibility events. Recall that a visibility event occurs when there is a change in $\theta(p)$ or $\gamma(p)$ with respect to $\Delta \in \mathcal{T}(R)$ for some point $p \in P_0$ (recall P_0 is the set of points of P inside Δ). As discussed earlier, each such event induces a constant number of topological changes. Therefore, we only need to bound the number of visibility events.

A visibility event occurs due to the collinearity of p and two other points q and z, where p, q and z lie within the same face, say Δ, of $\mathcal{T}(R)$. If Δ is a triangle in $\mathcal{T}(R)$, then by Lemma 5.2, $O(n/r)$ points can ever appear in Δ during its lifetime. Using a lower-envelope argument as in the proof of Lemma 5.1, it can be shown that the number of visibility events happening to p while $p \in \Delta$ is $O(\lambda_n(n/r))$. Since there are $O(\Psi(R) + |R|)$ triangles in $\mathcal{T}(R)$ over the entire history, the total number of visibility events inside $\text{conv}(R)$ is

$$O \left(\left(\frac{n}{r} \right) \cdot \lambda_n(n/r) \cdot (\Psi(R) + |R|) \right) = O(n^2 \cdot \log(n)/r^2) \cdot \Psi(R).$$

Next, suppose a point $p \notin \text{conv}(R)$ causes a visibility event. Let h_1 (resp. h_2) be the horizontal line passing through the highest (resp. lowest) point of R. We distinguish two cases: (a) p lies between h_1 and h_2 and to the left (resp. right) of $\text{conv}(R)$, and $\gamma(p)$ (resp. $\rho(p)$) changes; and (b) otherwise.

It is easy to observe that case (b) corresponds to a change of arg $\max_{p \in R} \theta(p(t_0), q(t_0))$ or arg $\min_{p \in R} \theta(p(t_0), q(t_0))$ at time t_0. Therefore, there are $O(n \lambda_n(n)) = O(n^2 \cdot \log(n))$ number of such events by a similar lower-envelope argument, as in the proof of Lemma 5.1.

![Figure 9](image) Shaded region is $\text{conv}(R)$, and the thick chain is $\mathcal{V}(p)$.

Now consider case (a) (depicted in Figure 9). Assume without loss of generality that p lies to the left of $\text{conv}(R)$. Let p_1p_2 be the edge on $\text{conv}(R)$ that is hit by the ray emanating from p towards its right (assuming p_1, p_2 are in clockwise order). Observe that p, q, z must all be in the triangle pp_1p_2, and therefore $p, q, z \notin h(p_1, p_2)$. Thus, during the period when p_1, p_2 are two neighboring points on $\text{conv}(R)$ in clockwise order, the number of events that three points of P in $h(p_1, p_2)$ become collinear is $O(n^2/r^3)$, by Lemma 5.2 (c). If points move along algebraic trajectories, $\text{conv}(R)$ changes $O(|R| \lambda_n(|R|)) = O(|R|^2 \cdot \log n)$ times [16]. Therefore there are $O(n^2 \cdot \log(n)/r^2)$ such events.

In total, the number of topological changes to the triangulation of P caused by visibility events is bounded by

$$O(n^3 \cdot |R|^2 \cdot \log(n)/r^3 + n^2 \cdot \log(n)) = O(n^2 \cdot \log(n)/r^2) \cdot \Psi(R).$$

Ordering events. The number of topological changes induced by an ordering event at time t_0 when the y-coordinates of two mutually visible points p and q become equal is proportional to $|\mathcal{V}(p_{t_0})|$, i.e., the number of points that are visible from both p and q at time t_0. If p and q lie inside a triangle face of $\mathcal{T}(R)$, then $|\mathcal{V}(p_{t_0})| = O(n/r)$. Since there are $O(n/r)^2$ ordering events, the total number of topological changes induced by such events is $O(n^2/r^2)$. Now assume that p and q lie in the exterior of $\text{conv}(R)$, and let I be the set of such events. Obviously, $|I| \leq n^2$. Denote by m_i the number of points of R on $\mathcal{V}(p_{t_0})$ for the i-th such event from I. By Lemma 5.3, the total number of topological changes caused by this type of events is at most

$$\sum_{i} (m_i + 2)n/r = O(n^3/r^3) + n/r \cdot \sum_{i} m_i. \tag{2}$$

Lemma 5.5. $\sum_{i \leq 4} m_i = O(n^2 \cdot |R|^2 \cdot \log(n)/r^2)$.

Proof. Suppose two points p and q lying outside $\text{conv}(R)$ induce an ordering event at time t_0, i.e. $y(p(t_0)) = y(q(t_0))$ and p is visible from q at t_0. Let $z_1, z_2, z_3 \in R$ be three consecutive points on $\text{conv}(R)$ in clockwise order at t_0 and $z \in \mathcal{V}(p_{t_0})$. Recall that $h(z_1, z)$ is the open halfplane to the left of z_1z. We have that $p, q \in h(z_1, z) \cup h(z, z_2)$ as z is visible to both p and q. For fixed edges z_1z and z_2z of $\text{conv}(R)$, z can only be involved in $O(n^2/r^3)$ such events, because, by Lemma 5.2 (c), only $O(n/r)$ points ever appear in $h(z_1, z)$ (resp. $h(z, z_2)$) during the lifetime of edge z_1z (resp. z_2z). Let u_i be the total number of times that z is involved in such an event. Since convex \mathcal{R} may change $O(|R| \lambda_n(|R|)) = O(|R|^2 \cdot \log n)$ times as points in R move [16], we have $\sum_i u_i = O(|R|^2 \cdot \log(n)/r^2)$. Using a simple double counting argument, we obtain that $\sum_{i \leq 4} m_i = \sum_{i \leq 4} u_i$. This proves the lemma.

It follows from the above lemma that the total number of topological changes induced by ordering events is bounded by

$$O(n^3/r^3 + n^2 \cdot |R|^2 \cdot \log(n)/r^3) = O(n^2 \cdot |R|^2 \cdot \log(n)/r^3).$$

Putting everything together and substituting the values of $|R|$ and r, we obtain the following recurrence for $\Psi(P)$.

$$\Psi(P) \leq O(n^{2+1/4} \cdot \log^3 n) + O(n^{2+1/4} \cdot \log n) \cdot \Psi(R).$$

Returning to the hierarchical fan triangulation, let n_0 be the size of R_t, then

$$\Psi(n_0) \leq c_1 n_0^2/4 \cdot \log(n_0) \cdot \Psi(n_{n-1}) + c_2 n_0^{2+1/4} \cdot \log^3 n_0,$$

where $c_1, c_2 > 0$ are constants, and

$$n_{n-1} = |R_{n-1}| = \min\{n, 5n_{n-1}^{-1/4} \log n_0\}.$$
It can be easily verified by induction that the solution to the above recurrence is
\[
\Psi(n_i) \leq n^{-1/3} \log^3(n_i) 2^c,
\]
where \(c\) is a large enough constant. In particular, for \(i = w\), i.e. the hierarchical fan triangulation, we have
\[
\Psi(n) = n^{-2/3} 2^{O(\sqrt{\log n \cdot \log \log n})}.
\]
We conclude with the following main result.

Theorem 5.6. Let \(S\) be a set of \(n\) points moving in \(\mathbb{R}^2\). If the motion of \(S\) is algebraic, a triangulation of \(S\) can be maintained that processes \(n^{-2/3} 2^{O(\sqrt{\log n \cdot \log \log n})}\) topological events, and each topological event requires \(O(\log n)\) time.

As a special case of our problem, let us consider a scenario in which only \(k\) out of \(n\) points are moving. By extending our previous technique, we can show that there exists a triangulation whose number of topological changes is roughly \(O(nk)\). We describe this triangulation briefly.

The overall framework follows that for the case with \(n\) moving points. The major difference is that, at each level of the hierarchical fan triangulation, instead of sampling the points all at once, we sample the static and moving points separately. For any point set \(P\), let \(P^s \subseteq P\) be the set of static points in \(P\), and \(P^t \subseteq P\) be the set of moving points in \(P\).

Set \(w = \left[\sqrt{\log k / \log \log n} \right]\). Let \(\emptyset = R_0 \subseteq R_1 \subseteq \cdots \subseteq R_w = S\), such that for \(1 < i \leq w\), \(R_{i-1}^t\) is a random subset of \(R_i^t\) of size \(R_{i-1}^t\) is a random subset of \(R_i^t\) of size
\[
\min \left\{ |R_i^t|, O(|R_i^t| \cdot |R_i^t|^{-1/3} \log |R_i^t|) \right\},
\]
and \(R_{i-1}^t\) is a random subset of \(R_i^t\) of size
\[
\min \left\{ |R_i^t|, O(|R_i^t|^{-1/3} \log |R_i^t|) \right\}.
\]
We construct the hierarchical fan triangulation \(\mathcal{F}\) of \(S\) as described in Section 4.

Let \(n_i = |R_i^t|\) and \(k_i = |R_i^t|\), for \(1 \leq i \leq w\). By the same method as in \([2]\), one can show that the fan triangulation \(\mathcal{F}_1\) changes \(O(k_1^{1/3} \lambda_d(n_k)) = O(n_1 k_1^{1/3} \log n_k)\) times. Using this fact, and by similar analysis as above, it can be shown that the number of topological changes to \(\mathcal{F}_i\) is bounded by \(n_i k_i^{1/3} \log^3(n_i) 2^c\) for some constant \(c\), for \(1 \leq i \leq w\). In particular, the number of topological changes to the hierarchical fan triangulation is \(nk \cdot 2^{O(\sqrt{\log n \cdot \log \log n})}\). Without going into the details, we conclude with the following theorem.

Theorem 5.7. Let \(S\) be a set of \(n\) points in \(\mathbb{R}^2\), with \(k\) of them moving with algebraic trajectories of bounded degree. A triangulation of \(S\) can be maintained that processes \(nk \cdot 2^{O(\sqrt{\log n \cdot \log \log n})}\) topological events, and each topological event requires \(O(\log n)\) time.

6. Conclusions

In this paper, we have described a triangulation whose number of topological changes for a set of \(n\) moving points in \(\mathbb{R}^2\) is bounded by \(n^2 2^{O(\sqrt{\log n \cdot \log \log n})}\). Our result almost matches the \(\Omega(n^{1/3})\) lower bound, and improves over the previously best known result \([2]\) by nearly a factor of \(n^{1/3}\). If only \(k\) points of the point set are moving, the number of topological changes can be reduced to \(nk \cdot 2^{O(\sqrt{\log k \cdot \log \log n})}\).

Although the triangulation that we maintain is conceptually simple, it is not clear how to randomize the algorithm efficiently. It will be interesting to find a simple deterministic triangulation, easy to implement, and with near-quadratic number of topological changes. A major open problem in this area is of course bounding the number of topological events in the Delaunay triangulation of a set of moving points. The best known upper bound is near cubic and the best known lower bound is quadratic \([6]\).

Another interesting problem is whether Steiner points can help to reduce the complexity of kinetic triangulations. Agarwal et al. \([1]\) showed that the \(\Omega(n^2)\) lower bound on the total number of topological changes to a triangulation still holds even if \(O(n)\) Steiner points are allowed and can move along any continuous trajectories. However, we expect that with the introduction of Steiner points, a much simpler triangulation with near-quadratic number of topological changes may be found.

Acknowledgments

The authors would like to thank Herbert Edelsbrunner, Leo Guibas, Alper Unışorg and the anonymous referees for their helpful comments.

References

