
On Approximate Geodesic-Distance Queries

amid Deforming Point Clouds⋆

Pankaj K. Agarwal1, Alon Efrat2, R. Sharathkumar1, and Hai Yu3

1 Department of Computer Science, Duke University.
{pankaj,sharath}@cs.duke.edu

2 Department of Computer Science, The University of Arizona.
alon@cs.arizona.edu

3 Google Inc., New York, NY.
fishhai@google.com

Abstract: We propose data structures for answering a geodesic-distance query be-
tween two query points in a two-dimensional or three-dimensional dynamic environ-
ment, in which obstacles are deforming continuously. Each obstacle in the environ-
ment is modeled as the convex hull of a continuously deforming point cloud. The
key to our approach is to avoid maintaining the convex hull of each point cloud ex-
plicitly but still able to retain sufficient geometric information to estimate geodesic
distances in the free space.

1 Introduction

The geodesic-distance query problem in an obstacle-present environment
arises in motion planning, assembly planning, gaming industry, computational
geometry, and related fields. The goal is to construct a suitable data structure
based on the geometry of the environment, so that the length of a short-
est obstacle-avoiding path between two query points can be reported quickly.
This was the focal of motion planning. However, most of the existing work
has focused on answering geodesic distance queries in a static environment or
when each obstacle moves as a rigid body. There are several reasons to study
geodesic-distance query problems when the queries are time dependent and
obstacles are deforming continuously:

• With the availability of sensing and tracking technology, it is possible
to monitor many geo-temporal phenomena in real time. Wild fires, areas

⋆ Work on this paper is supported by NSF under grants CNS-05-40347, CFF-06-
35000, and DEB-04-25465, by ARO grants W911NF-04-1-0278 and W911NF-07-
1-0376, by an NIH grant 1P50-GM-08183-01, by a DOE grant OEG-P200A070505,
and by a grant from the U.S.–Israel Binational Science Foundation. Part of the
work was done while the last author was at Duke University.

2 Pankaj K. Agarwal, Alon Efrat, R. Sharathkumar, and Hai Yu

contaminated by hazardous gas, regions under surveillance of enemy forces
(in military applications), and regions with bad atmospheric conditions (in
flights scheduling applications) can all be modeled as obstacles deforming
in time, where one wishes to find a short path avoiding all the obstacles
within some time frame.

• In an environment with a large numbers of moving obstacles one might
wish to hierarchically cluster the obstacles and represent each cluster by
its convex hull. Answering motion-planning queries can be done by either
avoiding all obstacles within a cluster, if possible, or solving the problem
with the convex hulls of the children sub-clusters. Obstacles might change
their trajectory, start or stop being vertices of the convex hulls, and move
from cluster to a sibling cluster, according to their location.

• The asteroid avoidance problem is to plan the path of a robot from source
to destination while avoiding moving obstacles and not exceeding a given
velocity. This important problem is known to be PSPACE-hard [17]. A
natural heuristic to the problem is to dividing the free space and time
domain into fine enough cells, so that within each region obstacles can be
considered static with respect to the velocity of the robot, and the (portion
of the) shortest path is constrained to the cell. One could use our algo-
rithm as a tool to answer many geodesic distance queries in different time
intervals or to recompute shortest paths after refining the time intervals.

Motivated by these applications, we focus on a model in which each ob-
stacle is represented as the convex hull of a dynamic point cloud, e.g., it may
correspond to a squad of enemy troops in motion, a scatter of spreading wild
fire, or a cluster of asteroids. In the following, we introduce the model of
motion to be followed throughout the paper and define our problem formally.

Model of motion. We use the kinetic data structure (KDS for short) frame-
work proposed by Basch et al. [6] to handle dynamics of the environment. Let
τ denote the time parameter. A moving point p(τ) in R

d, for d = 2, 3, is a
function p : R → R

d. We call p(τ) algebraic if each individual coordinate of
p(τ) (a real-valued function) is an algebraic function of τ . We use point clouds
to model a deforming convex polytope P (τ) in R

d. In this point-cloud model,
let S(τ) = {p1(τ), · · · , pn(τ)} be a finite set of moving points in R

d, and
a deforming convex polytope P (τ) is defined to be conv S(τ) — the convex
hull of S(τ). We emphasize that points in S(τ) are allowed to change their
trajectories at any moment if needed.

In the KDS framework, we maintain a data structure on the fly, accom-
panied by a set of geometric predicates, called certificates, to serve as a proof
of correctness for the maintained data structure. Since the current motion of
objects are known, the KDS is able to predict the time (called failure time)
at which each certificate becomes invalid. All the failure times are scheduled
in a global queue called event queue. The KDS does nothing until the time
reaches the first failure time in the event queue. At that moment, an event
occurs, and the KDS processes this event by updating the data structure to

On Approximate Geodesic-Distance Queries amid Deforming Point Clouds 3

restore its correctness, as well as updating the certificates and the event queue
accordingly. The KDS then moves on towards the next event.

As mentioned above, a change of trajectory or speed for an object is al-
lowed, and it is assumed that the KDS is notified about the change when
it occurs. A KDS is called local if each moving object is involved in a small
number of certificates. A local KDS is able to quickly respond to the motion
change of an object, by recomputing the failure times of all the certificates in-
volving the object. All our KDS’s are local and therefore accommodate motion
changes efficiently.

Problem statement. Let F be a path-connected closed subset in R
d, for

d = 2, 3. For two points s, t ∈ F, a geodesic path between s and t within
F, denoted by ΠF(s, t), is a path from s to t completely lying inside F and
with minimum length. The geodesic distance between s and t, denoted by
dF(s, t), is the length of ΠF(s, t). In this paper, the subset F in question is
the free space of a set P of k pairwise disjoint convex polytopes in R

d, that is,
F = R

d \ int
⋃

P∈P
P . A path (line segment, point) is free (with respect to P)

if it lies in F. So ΠF(s, t) is the shortest free path between s and t.
Let P(τ) be a collection of pairwise disjoint deforming convex polytopes in

R
2 or R

3, each defined by the point-cloud model, and let F(τ) be the free space
of P(τ). Our problem is to maintain a certain data structure as τ varies, so
that at any τ , the geodesic distance between any two query points s, t ∈ F(τ)
can be reported.

Many existing data structures for geodesic-distance queries in static en-
vironments (to be reviewed shortly) are quite complicated and unlikely to
render efficient kinetic data structures for dynamic environments. Given this
situation and taking into account practical considerations, our goal in this
paper is to design a kinetic data structure that meets the following criteria:

(a) The number of events of the KDS is small, ideally nearly O(n) in R
2 and

nearly O(n2) in R
3. In particular, one cannot maintain each polytope in

P(τ) explicitly as the point cloud deforms because the number of events
for maintaining P(τ) alone would be Ω(n2) in R

2 [2] and Ω(n3) in R
3 in

the worst case.
(b) The KDS provides a flexible tradeoff between the query time and the

number of events.
(c) The KDS handles motion changes and transient obstacles (i.e., obstacles

in P(τ) may be added or deleted) efficiently.

As a compromise, we allow that the data structure only reports a (reasonable)
approximation of the geodesic distance, and that the query time can depend
on the number of obstacles (but not their total complexity).

Related work. Geodesic-distance queries in a static environment have been
extensively studied. Chiang and Mitchell [8] proposed a polynomial sized data
structure that answers geodesic-distance query amid polygonal obstacles in R

2

4 Pankaj K. Agarwal, Alon Efrat, R. Sharathkumar, and Hai Yu

in O(log n) time; n is the total number of obstacle vertices. They also pro-
posed tradeoffs between space and query time. Chen [7] observed that an
algorithm of Clarkson [9] can be turned into a data structure of size O(n2) to
support (1 + ε)-approximate geodesic-distance queries in O(ε−1 log n) time,
for a fixed parameter ε. He also designed a data structure of size O(n log n)
to answer (6 + ε)-approximate geodesic-distance queries in O(log n) time (see
also [5]). Very few results are known on geodesic-distance queries in R

3. Agar-
wal et al. [1] designed a data structure of size O(n6m1+δ), for 1 ≤ m ≤ n2

and for any δ > 0, to store a convex polytope P with n vertices in R
3 so

that the geodesic-distance query for any two points on P can be answered
in O((

√
n/m1/4) log n) time. Har-Peled [11] considered the same problem

but allowed (1 + ε)-approximations for ε > 0, and showed that a (1 + ε)-
approximation of the geodesic distance between two query points can be re-
ported in O(ε−3/2 log n + ε−3) time. Recently, Agarwal et al. [3] have devel-
oped data structure for answering geodesic-distance queries in R

3 from a fixed
source point.

We are not aware of any existing work on geodesic-distance queries in the
dynamic environment. For an account of extensive work on collision detection
and motion planning in dynamic environments, we refer the readers to [14, 18]
and the references therein.

Our results. We present simple kinetic data structures for answering approx-
imate geodesic-distance queries amidst a collection P of k pairwise disjoint
deforming convex polytopes in R

2 and R
3. Each polytope P ∈ P is defined as

the convex hull of a set of moving points, each moving along a bounded-degree
algebraic trajectory. Let n be the total number of such points.

In R
2, for a prescribed parameter ε > 0, our kinetic data structure uses

O(n/
√

ε) space and processes O(λc(n)/
√

ε) events in total, where λc(n) is the
maximum length of Davenport-Schinzel sequences of order c on n symbols and
is nearly linear (throughout the paper, c denotes a constant integer related
to the degree of the motion). Processing each event takes O(log2 n) time. It
can be used to report, in O((k/

√
ε) log(k/ε)) time, a (1 + ε)-approximation

to the geodesic distance between two arbitrary query points s, t in the free
space. In R

3, for a prescribed parameter 1 ≤ m ≤ n, our data structure uses
O(n) space and processes O(nλc(n/m)) events in total, each of which can be
handled in O(log2 n) time. At any moment, given two query points s, t in the
free space, the data structure is able to return, in O(mk log(n/m)) time, an
O(kst)-approximation to the geodesic distance between s and t, where kst is
the number of polytopes intersected by the line segment st and is expected
to be small in practice. Our data structures are simple enough to allow for
points defining the polytopes to be inserted or deleted or change their motion
in polylogarithmic time per event.

On Approximate Geodesic-Distance Queries amid Deforming Point Clouds 5

2 Geodesic Distance Queries in R
2

For notational convenience, we will omit the time parameter τ when no con-
fusion arises. Let P = {P1, · · · , Pk} be a collection of k pairwise disjoint de-
forming convex polygons, where each Pi is defined as the convex hull of a set
Si of ni moving points. Instead of explicitly maintaining each Pi, we maintain
a certain “sketch” P̃i of each Pi, so that the geodesic distance between any
two points s, t in the free space F is approximately preserved. More formally,
a set P̃ = {P̃1, · · · , P̃k} of convex polygons is called an ε-sketch of P if

(i) P̃i ⊆ Pi, for each 1 ≤ i ≤ k;

(ii) for any two points s, t ∈ F, dF(s, t) ≤ (1 + ε)deF
(s, t), where F ⊆ F̃ is the

free space of P̃.

Since F ⊆ F̃, deF
(s, t) is well-defined for any pair s, t ∈ F and dF(s, t) ≥

deF
(s, t).

We construct an ε-sketch of P as follows. Set r =
⌈
2π/
√

2ε
⌉
. For 0 ≤ j < r,

let uj = (cos(j
√

2ε), sin(j
√

2ε)). The set N = {uj | 0 ≤ j < r} forms a

uniform set of directions in R
2. For 1 ≤ i ≤ k and 0 ≤ j < r, let pj

i =
arg maxp∈Si

〈uj , p〉 denote the extremal point of Si in the direction uj ∈ N.

Let S̃i = {pj
i | 0 ≤ j < r}, P̃i is the convex hull of S̃i and P̃ = {P̃1, · · · , P̃k}.

Maintaining P̃ as P deforms over time is straightforward. For each Si and
each uj ∈ N, we use a kinetic tournament1 to keep track of the extreme point

pj
i . Note that p0

i , p
1
i , · · · , pr−1

i are in convex position and naturally represent

P̃i in this order. (Although Pi deforms continuously, P̃i may change discontin-
uously at certain time instances; a change of extremal point in some direction
uj may result in a discontinuous change in the shape of P̃i.) When a point p is
inserted or deleted or changes its trajectory, we update O(1/

√
ε) kinetic tour-

naments involving that point. A point cloud can also be added to or removed
from the environment in a straightforward manner.

Lemma 1. P̃ is an ε-sketch of P.

Proof. Clearly, for 1 ≤ i ≤ k, S̃i ⊆ Si and as such P̃i ⊆ Pi. Hence P̃ satisfies
(i). We next prove P̃ also satisfies (ii).

Let s, t be two points in F. Consider a geodesic path Π = ΠeF
(s, t,). If

Π ⊆ F, then Π is also ΠF(s, t,) and there is nothing more to prove. So from

now on we assume that Π intersects F̃ \ F.

1 A kinetic tournament [6] can be used to maintain the maximum (or minimum) of
a set S of n moving points on the real line. The total number of events is O(λc(n)),
each of which can be processed in O(log2 n) time. Every point in S participates in
O(log n) certificates, and hence a motion update can be performed in O(log2 n)
time. Similarly, a moving point can be inserted into or deleted from the kinetic
tournament in O(log2 n) time.

6 Pankaj K. Agarwal, Alon Efrat, R. Sharathkumar, and Hai Yu

tΠ′

Π
s

Fig. 1. Surgery on the path Π from s to t to make it free; shaded area represents
eF \ F, which consists of a set of convex polygons.

By our construction, F̃ \ F consists of a set of convex polygons whose
interiors are pairwise disjoint (see Figure 1). For each such polygon O, one of

its edges called the base of O is an edge of P̃i for some i, and the other edges
called the dome of O come from a subsequence of edges of Pi. Let pj

ip
j+1

i be

the base of O. Since pj
i (resp., pj+1

i) is an extreme point of Pi in direction uj

(resp., uj+1), any point on the dome of O is extreme only in some direction
between uj and uj+1 on S

1. In other words, the outward unit normal of a
point on the dome O lies in the interval [uj , uj+1]

Let O be one of these polygons intersected by Π . Since O is convex and
Π cannot cross the base of O, Π ∩O is a line segment between two points p, q
on the dome of O. We modify Π to bypass O, by replacing the segment pq on
Π with the path Πpq between p and q along the dome of O. Clearly, Πpq ⊆ F.
This surgery increases the length of Π , but by not much. More precisely, Let
z be the intersection of the two tangents of O at p and q respectively. By the
discussion in the preceding paragraph, we have ∠pzq ≥ π −

√
2ε. Hence,

|Πpq| ≤ |pz|+ |qz| ≤ |pq|/ sin(∠pzq/2) ≤ |pq|/ sin
(
π/2−

√
ε/2

)

≤ |pq|/(1− ε/2) ≤ (1 + ε)|pq|.
Here, the first inequality follows from a standard convexity argument, the sec-
ond inequality follows from elementary trigonometry, and the last inequality
assumes ε ≤ 1.

We perform the above surgery on Π for each of the polygons in F̃ \ F

intersected by the original path Π . In the end, the new path Π ′ lies in F.
Therefore dF(s, t) ≤ |Π ′| ≤ (1 + ε)deF

(s, t), and P̃ is indeed an ε-sketch of P.
�

The total number of vertices of P̃ is O(k/
√

ε). For query points s, t ∈ F,
we use the algorithm of Hershberger and Suri [13] to compute deF

(s, t) in

time O
(
|P̃| log |P̃|

)
= O((k/

√
ε) log(k/ε)) and return (1+ ε)deF

(s, t) which is a
(1 + ε)-approximation of dF(s, t) by the preceding lemma.

Theorem 1. Let P = {P1, · · · , Pk} be a collection of pairwise disjoint deform-
ing convex polygons in R

2, where each Pi is defined as the convex hull of a set

On Approximate Geodesic-Distance Queries amid Deforming Point Clouds 7

of ni moving points. Let n =
∑k

i=1
ni. There is a kinetic data structure that

reports, in O((k/
√

ε) log(k/ε)) time, a (1 + ε)-approximation to the geodesic
distance between two arbitrary query points s, t in the free space. The data
structure has O(n/

√
ε) size and processes O(λc(n)/

√
ε) events in total, each

requiring O(log2 n) time. A point (used for defining one of the convex hulls)
can be inserted or deleted or change its motion in O((1/

√
ε) log2 n) time.

3 Geodesic-Distance Queries in R
3

In this section we consider the geodesic-distance query problem amidst three-
dimensional dynamic point clouds. We first describe the data structure for the
case of one single point cloud; and then extend it to multiple point clouds.

3.1 Single polytope

Consider a single polytope P defined as the convex hull of a set S of n moving
points in R

3. We start by considering the special case in which the query
points s, t both lie on the surface of P (boundary query) and then extend to
the case in which s, t are two arbitrary points in the free space F (generic
query). In the former case, it is well known that ΠF(s, t) is also a path lying
on the boundary of P , i.e., dF(s, t) = d∂P (s, t).

Existing data structures for geodesic-distance query on the boundary of
a convex polytope P [11] make use of the Dobkin-Kirkpatrick hierarchy [10]
of P . However, as in the two-dimensional case, we do not want to explic-
itly maintain P explicitly, nor its Dobkin-Kirkpatrick hierarchy. The starting
point of our algorithm is the work of Hershberger and Suri [12], in which a
linear-time procedure is proposed for computing a constant-factor approxima-
tion for the geodesic-distance between two points s, t ∈ ∂P . Their procedure
makes use of the two unit normals us and ut at s and t respectively to guide
the computation. Briefly, if the angle between us and ut is small (say, less
than π/2), then the Euclidean distance‖st‖ is a good approximation to their
geodesic distance; otherwise, there is a point p ∈ ∂P such that ‖sp‖ + ‖pt‖
is a good approximation, and moreover up makes small angles with both us

and ut, where up is the normal to a plane containing p, avoiding the interior
of P , and pointing away from P . In our case, since the polytope will not be
explicitly maintained, we do not know the normals at s and t and therefore
need a more careful design.

Data structure. For a unit vector u ∈ S
2, we denote the plane 〈p, u〉 = 0

(p ∈ R
3) by hu and the great circle hu∩S

2 on S
2 by gu. For a set X ⊆ R

3 and
a unit vector u ∈ S

2, we denote by ⇓u(X) the projection of X onto hu. On the
positive hemisphere S

2
+ (i.e., the closed hemisphere of S

2 lying on or above
the xy-plane), we choose a (π/8)-net N, that is, for any u, v ∈ N, ∠u, v ≥ π/8,
and for any u ∈ S

2
+, there is a v ∈ N so that ∠u, v ≤ π/8 (here ∠u, v denotes

8 Pankaj K. Agarwal, Alon Efrat, R. Sharathkumar, and Hai Yu

the angle between u and v). It can be shown that |N| = O(1). For each u ∈ N,
we fix arbitrarily a pair {ux, uy} of orthogonal unit vectors in the plane hu.
We maintain the following information:

(I1) for each u ∈ N, the convex hull Cu of ⇓u(S) in the plane hu;
(I2) for each Cu, an auxiliary data structure Du so that given a point p ∈ hu,

it returns, in O(log n) time, the (at most) four edges of Cu that the rays
from p in directions ±ux,±uy first hit.

The data structure can be readily maintained under motion. Each Cu can
be maintained efficiently using a kinetic convex hull algorithm2. The data
structure Du is a balanced binary tree over the edges of Cu. Since |N| = O(1),
we obtain the following.

Lemma 2. The data structure uses O(n) space and can be maintained under
motion in O(log2 n) time per event, with a total of O(nλc(n)) events.

Answering a boundary query. A face f of P is called positive with respect
to a direction u ∈ S

2 if 〈uf , u〉 ≥ 0, where uf is the outward unit normal of f ,
and negative if 〈uf , u〉 ≤ 0. The positive faces form a connected component on
∂P called positive component, and similarly the negative faces form a nega-
tive component. The boundary between the positive and negative components
consists of a sequence Eu of edges of P called horizon edges. It can be shown
that, for any u ∈ S

2, ⇓u(Eu) = Cu, i.e., the projection of the horizon edges is
the set of edges of the convex hull of ⇓u(S).

For u ∈ S
2, let Iu = {p ∈ R

3 | ⇓u(p) lies inside Cu}. The set Iu forms an
infinite prism containing P , and Iu ∩F consists of two connected components
separated by the horizon edges Eu. Given two points s, t ∈ Iu ∩F, we say that
u separates s from t if s, t lie in these two connected components respectively.
As a convention, if either s or t lies on Eu, then u also separates s and t.
(When s, t are both on ∂P , this definition is equivalent to s, t lie in positive
and negative components of ∂P respectively; the general definition presented
here will be useful later for generic queries.)

The following procedure estimates the geodesic distance between two query
points s and t lying on the boundary of P .

2 A kinetic convex hull algorithm [4, 6] can be used to maintain the convex hull of
a set S of n moving points in R

2. There are O(nλc(n) log n) events in total, each
of which can be processed in O(log2 n) time. In addition, each point participates
in O(log n) certificates and hence a motion update can be performed in O(log2 n)
time. A moving point can also be inserted or deleted in O(log2 n) time [4].

On Approximate Geodesic-Distance Queries amid Deforming Point Clouds 9

Boundary Query (s, t)
s, t: two points on the boundary of P

(1) Nst ← {u ∈ N | u separates s, t};
(2) for each direction u ∈ Nst

d[u]← ‖q ⇓u(s)‖1,
where q is the point closest to ⇓u(s) on Cu under the L1-norm;

(3) D ← ‖st‖+
√

2 ·maxu∈Nst
d[u];

(by convention, maxu∈Nst
d[u] = 0 if Nst = ∅)

(4) return D;

Since s, t are on the boundary of P , they lie inside Iu ∩ F for any u ∈ S
2. So

step (1) is well defined.

⇓u(s)

s4

Cu

s2 s1

v1

v3

v2

v4

s3

uy

ux

Fig. 2. Using (I2) to test whether u separates s, t, and to compute the closest point
of ⇓u(s) on Cu under L1-norm.

In step (1), we need to decide for a direction u ∈ N whether u separates
s from t. This can be done as follows. Let v1v2 and v3v4 be the two edges of
Cu that ⇓u(s) projects onto in directions ±uy (see Figure 2). Let pi ∈ S be
such that ⇓u (pi) = vi, for i = 1, 2, 3, 4. By examining whether s lies above
or below the tetrahedron p1p2p3p4 along direction u, one can decide which
component of Iu ∩ F contains s. (Recall that s ∈ F, so it does not lie inside
the tetrahedron.) A similar statement holds for t. Hence deciding whether u
separates s, t can be done in O(log n) time using (I2).

Since |N| = O(1), step (1) takes O(log n) time and step (3) takes O(1)
time. The lemma below shows that step (2) also takes O(log n) time using
(I2). Hence the total time for answering a query is O(log n).

Lemma 3. Let p be any point lying inside Cu. Let s1, · · · , s4 be the four pro-
jections of p onto Cu in directions ±ux,±uy. In the plane hu equipped with
the coordinate frame {ux, uy}, one of s1, · · · , s4 is a point on Cu that is closest
to p under L1-norm.

10 Pankaj K. Agarwal, Alon Efrat, R. Sharathkumar, and Hai Yu

Proof. For any line ℓ ⊂ hu, let p1 and p2 be the projections of p onto ℓ in
direction ux (or −ux) and uy (or −uy) respectively. It is easy to verify that if
ℓ makes an angle ≤ π/4 with ux or −ux, then p2 is the point on ℓ closest to
p (under L1-norm), and otherwise p1 is the closest. So either p1 or p2 realizes
the closest point to p. Now, consider the projections of p in direction ux to all
the lines containing an edge of Cu. The point s1 is closest to p among all such
projections (see Figure 2). Similarly, s2 (resp., s3, s4) is the point closest to p
among all projections of p onto these lines in direction −ux (resp., uy,−uy).
Hence, the closest point on Cu to p must be one of s1, · · · , s4. �.

Next we show that Boundary Query indeed produces a constant-factor
approximation to d∂P (s, t). Observe that, if two points s, t ∈ ∂P are separated
along a direction u ∈ N, then s lies on the positive component and t lies on
the negative component, or vice versa. In particular, if there are outward unit
normals us and ut of P at s and t that lie on different sides of the great circle
gu on S

2, then u separates s from t.

Lemma 4. D ≤ 3 · d∂P (s, t).

Proof. If Nst = ∅, then trivially D = ‖st‖ ≤ d∂P (s, t). So assume Nst 6= ∅.
Let u be any direction in Nst. Since u separates s, t, one of s, t lies on the
positive component and the other lies on the negative component. Hence by
continuity, Π∂P (s, t) intersects Eu at some point p. Note that ⇓u(p) ∈ Cu. Let
q be defined as in (2) of Boundary Query. Then,

d∂P (s, t) ≥ ‖sp‖ ≥ ‖ ⇓u(s) ⇓u(p)‖ ≥ ‖ ⇓u(s) ⇓u(p)‖1/
√

2

≥ (1/
√

2) · ‖q ⇓u(s)‖1 = (1/
√

2) · d[u].

Since trivially d∂P (s, t) ≥ ‖st‖, we have

‖st‖+
√

2 · d[u] ≤ 3 · d∂P (s, t).

As this is true for any u ∈ Nst, we have D ≤ 3 · d∂P (s, t) as claimed. �

For a plane h ⊆ R
3 avoiding P , we use h+ to denote the halfspace bounded

by h and containing P . For two non-parallel planes h1, h2 both avoiding P ,
the boundary of h+

1 ∩h+

2 is called a wedge, and the dihedral angle of h1, h2 in
the quadrant h+

1 ∩ h+
2 is the angle of this wedge. It is shown in [12] that, for

any two points p, q on a wedge W of angle θ, dW (p, q) ≤ ‖pq‖/ sin(θ/2).

Lemma 5. D ≥ (sin(π/16)/
√

2) · d∂P (s, t).

Proof. Let us, ut be the outward unit normals of P at s and t respectively (if
the normal is not unique, choose one arbitrarily). We first consider the case in
which the angle between us and ut (denoted by ∠us, ut) is at most π/2. Let W
be the wedge formed by the two tangent planes of P at s and t with normals
us and ut respectively. The angle of W is π − ∠us, ut ≥ π/2. Therefore,

On Approximate Geodesic-Distance Queries amid Deforming Point Clouds 11

d∂P (s, t) ≤ dW (s, t) ≤ ‖st‖/ sin(π/4) =
√

2 · ‖st‖.

Hence D ≥ ‖st‖ ≥ (1/
√

2) · d∂P (s, t).
Next consider the case ∠us, ut ≥ π/2. Let γ be the middle point on the

geodesic arc between us, ut on S
2, and η ∈ S

2
+ be the direction orthogonal to

the great circle of S
2 passing through γ. Since N is a (π/8)-net of S

2
+, there

exists a direction u ∈ N for which ∠u, η ≤ π/8. Using elementary spherical
geometry, it can be shown that us and ut lie on different sides of gu and thus
u separates s, t; furthermore, the angle between us and the plane hu is at least
(1/2) ·∠us, ut − π/8 ≥ π/8, implying that ∠us, v ≤ π − π/8 for all v ∈ gu.

Eu

u

p

t

s

Cu

⇓u(s)
q

⇓u(t)⇓u(p)

(a) (b)

Fig. 3. Illustration for the proof of Lemma 5.

Let p be a point on Eu such that ⇓u(p) = q for q defined in (2) of Bound-

ary Query. Since p ∈ Eu, there is an outward unit normal up at p such that
up ∈ gu; in particular, ∠us, up ≤ π − π/8 by the preceding discussion. Let W
be the wedge formed by the two tangent planes of P at s and p with normals
us and up respectively. The angle of W is π − ∠us, up ≥ π/8. So,

d∂P (s, p) ≤ dW (s, p) ≤ ‖sp‖/ sin(π/16).

Similarly, d∂P (p, t) ≤ ‖pt‖/ sin(π/16). Then we have

d∂P (s, t) ≤ d∂P (s, p) + d∂P (p, t)

≤
(
‖sp‖+ ‖pt‖

)
/ sin(π/16)

≤
(
‖ ⇓u(s) ⇓u(p)‖+ ‖ ⇓u(t) ⇓u(p)‖ + 〈s− t, u〉

)
/ sin(π/16)

≤
(
2 · ‖ ⇓u(s) ⇓u(p)‖ + ‖ ⇓u(s) ⇓u(t)‖+ 〈s− t, u〉

)
/ sin(π/16)

≤
(
2 · ‖ ⇓u(s) ⇓u(p)‖ +

√
2 · ‖st‖

)
/ sin(π/16)

≤
(
2 · ‖ ⇓u(s) ⇓u(p)‖1 +

√
2 · ‖st‖

)
/ sin(π/16)

=
(
2 · d[u] +

√
2 · ‖st‖

)
/ sin(π/16).

12 Pankaj K. Agarwal, Alon Efrat, R. Sharathkumar, and Hai Yu

Hence, D ≥ ‖st‖+
√

2 · d[u] ≥ (sin(π/16)/
√

2) · d∂P (s, t). �

By Lemmas 4 and 5, it immediately follows that:

Lemma 6. Boundary Query(s, t) returns a constant-factor approximation
to d∂P (s, t) in O(log n) time.

Answering a generic query. Now we generalize the above boundary query
to generic queries in which s, t are two arbitrary points in F. The data struc-
ture remains the same as in (I1) and (I2). We only have to slightly change
line (1) of the query procedure Boundary Query to the following.

(1’) Nst ← {u ∈ N | u separates s, t, or ⇓u(s) or ⇓u(t) lies outside Cu};

Note that (I2) can be used to determine whether a point p ∈ hu lies inside Cu

or not. So (1’) takes O(log n) time. We name the resulting query procedure
Generic Query.

Lemma 7. Generic Query(s, t) returns a constant-factor approximation to
dF(s, t) in O(log n) time.

Proof. We first prove the following claim: dF(s, t) = d∂P ′(s, t), where P ′ =
conv S ∪ {s, t}. When either s or t does not lie on the boundary of P , there
are two cases. If s and t are visible to each other, then clearly ΠF(s, t) is the
line segment between s and t, which also appears as an edge on the boundary
of P ′. If s and t are not visible, then ΠF(s, t) consists of three components:
a line segment from s to a point s′ ∈ ∂P , a geodesic path from s′ to a point
t′ ∈ ∂P (which lies on the boundary of P), and a line segment from t′ to t.
Note that no points in the interior of the path Π∂P (s′, t′) are visible to either
s or t, as otherwise ΠF(s, t) can be shortcutted. Hence ΠF(s, t) must lie on
the boundary of P ′, and the claim follows.

Therefore, to compute dF(s, t), it suffices to compute d∂P ′(s, t). Imagine
running Boundary Query (s, t) on P ′. Lemma 6 then guarantees that it
would return a constant-factor approximation. Let N′

st be the set produced
at line (1) of its execution, and Nst be the set produced at line (1’) of
Generic Query. Consider a direction u ∈ N. If both ⇓u (s) and ⇓u (t) lie
inside Cu, then clearly u ∈ Nst if and only if u ∈ N′

st. If either ⇓u(s) or ⇓u(t)
lies outside Cu, we have u ∈ Nst; but at the same time, one of ⇓u(s),⇓u(t)
must lie on the corresponding C′

u for P ′ and therefore u ∈ N′

st. Hence, N′

st is
the same as Nst. The correctness of Generic Query then follows. �

Remark. It is possible to modify Generic Query so that it also reports a
free path between s, t whose length is within a constant factor of dF(s, t),
although P is not explicitly maintained. We omit the details.

On Approximate Geodesic-Distance Queries amid Deforming Point Clouds 13

3.2 Tradeoffs

So far we have described a kinetic data structure for the approximate geodesic-
distance query problem on the boundary of a single polytope, which uses O(n)
space, processes O(nλc(n)) events, each requiring O(log2 n) processing time,
and answers queries in O(log n) time. These performance bounds are favorable
when there are many queries. However, when the number of queries is expected
to be small, then a scheme to trade query efficiency for kinetic maintenance
efficiency is desirable. We present such a scheme by using generalized linear
programming [15].

Let m be an adjustable integer parameter between 1 and n. We divide S
into m groups S1, · · · , Sm, each of size n/m (assume for the sake of simplic-
ity that n is a multiple of m). For each u ∈ N, instead of maintaining Cu

directly as in (I1), we maintain the convex hull Cu,i of ⇓u (Si) in the plane
hu, for each i = 1, · · · , m, using the kinetic convex hull algorithm. Clearly,
the total size of the data structure remains O(n). The total number of events
is m ·O((n/m)λc(n/m)) = O(nλc(n/m)), and the time to process each event
remains O(log2 n).

We next explain how to compute the projection of an arbitrary point
p ∈ hu onto Cu in direction uy, in O(m log(n/m)) time using the Cu,i’s. By
handling each of the other directions −uy,±ux similarly, we thereby fulfill
(I2). The query times of both Boundary Query and Generic Query are
dominated by the query time provided here.

For simplicity, assume that hu is xy-plane, p is the origin, and uy is +y-axis.
We first describe a simple but slower procedure that runs in O(m2 log(n/m))
time, which will become useful later. We only consider the upper chain C+

u,i

of each Cu,i in direction uy, that is, the upper part of Cu,i lying between its
two extreme vertices along ±x-axis. We further divide each C

+

u,i into two sub-

chains, the left chain L
+

u,i which lies to the left of +y-axis, and the right chain

R+

u,i which lies to the right of +y-axis. If there is an edge of C+

u,i intersecting
+y-axis, it does not belong to either subchains. For each pair of left chain
L+

u,i and right chain R+

u,j , since they are disjoint, we can use an algorithm of
Overmars and van Leeuwen [16] to compute their common outer tangent line
ℓi,j in O(log |L+

u,i|+log |R+

u,j |) = O(log(n/m)) time. Let pi,j be the intersection

of ℓi,j with +y-axis. We can compute all such pi,j ’s in time O(m2 log(n/m)).
Let v1v2 be the edge of Cu that contains the sought projection of p, and

ℓ be the line containing v1v2. Assume without loss of generality that v1 lies
to the left of +y-axis and v2 to the right. Consider the left chain L+

u,a that v1

belongs to as a vertex, and the right chain R+

u,b that v2 belongs to as a vertex.

Observe that the line ℓ is tangent to both L+
u,a and R

+

u,b and thus is their
common tangent. As such, the intersection pa,b of ℓa,b (i.e., ℓ) with +y-axis
is exactly the sought projection of p. For a common tangent ℓi,j other than
ℓa,b, observe that pi,j belongs to conv L+

u,i ∪R+

u,i ⊆ conv ⇓u(S) and hence lies

14 Pankaj K. Agarwal, Alon Efrat, R. Sharathkumar, and Hai Yu

below pa,b on +y-axis. Thus, the highest point on +y-axis among all pi,j ’s is
the projection of p onto Cu in direction +y.

Next we improve the time for finding the projection to O(m log(n/m)),
by formulating it as an LP-type problem. Consider the following optimization
problem specified by pairs (H, w), where H =

{
⇓u(Si) | i = 1, · · · , m} and

w : 2H → R is a function that maps each subset G ⊆ H to the y-coordinate
of the projection of p (the origin) onto conv

⋃
X∈G

X in direction +y (w(G) =
−∞ if the projection does not exist). For a subset G ⊆ H with w(G) > −∞,
a basis of G is a minimal subset B of G with w(B) = w(G). The goal is to
compute a basis B of H, from which the value of w(H) then can be computed
from w(B). We verify the following properties of (H, w):

Finite basis: every subset of H has a basis of size at most two. For a
subset G ⊆ H with w(G) > −∞, Let v1v2 be the edge on conv

⋃
X∈G

X that
p projects onto in direction +y. Let X1, X2 ∈ G be elements of G that contain
v1, v2 respectively. Then clearly {X1, X2} is a basis of G. See Figure 4.

Monotonicity: for any F ⊆ G ⊆ H, w(F) ≤ w(G). This is because F ⊆ G

implies conv
⋃

X∈F
X ⊆ conv

⋃
X∈G

X .

Locality: for any F ⊆ G ⊆ H with w(G) = w(F) > −∞, and any X ∈ H,
w(G) < w(G∪{X}) implies w(F) < w(F∪{X}). Let ℓ be the line containing the
edge of conv

⋃
X∈G

X that p projects onto. The condition w(G) < w(G∪{X})
implies that X contains a point lying above ℓ. By w(F) = w(G) and F ⊆ G, it
can be shown that ℓ is also the line containing the edge of conv

⋃
X∈F X that

p projects onto. It follows that w(F) < w(F ∪ {X}).

v2

X2

p

v1

X1

Fig. 4. Reducing computing the projection to an LP-type problem.

Matoušek et al. [15] showed that such an optimization problem (H, w) can
be solved in O(|H| · T + E · log |H|) expected time, where T is the time to
test whether w(B) = w(B ∪ {X}) for some basis B and element X ∈ H,
and E is the time to compute a basis of B ∪ {X} for some basis B and
element X ∈ H. In our context, |H| = m. Furthermore, any basis consists of

On Approximate Geodesic-Distance Queries amid Deforming Point Clouds 15

at most two elements in H, both T and E are in O(log(n/m)), by applying
the aforementioned slower procedure. Hence, the projection of p on Cu can be
computed in O(m log(n/m)) expected time.

Theorem 2. Let P be the convex hull of a set of n points in R
3 under algebraic

motion. For any parameter 1 ≤ m ≤ n, there is a kinetic data structure
that can be used to report, in O(m log(n/m)) expected time, a constant-factor
approximation to the geodesic distance between two arbitrary query points s, t
in the free space. The data structure has O(n) size and processes O(nλc(n/m))
events in total, each requiring O(log2 n) time. A point (used for defining one of
the convex hulls) can be inserted or deleted or change its motion in O(log2 n)
time.

3.3 Multiple polytopes

Let P = {P1, · · · , Pk} be a collection of k pairwise disjoint deforming convex
polytopes in R

3, where each Pi is the convex hull of a set of ni moving points.
Set n =

∑k
i=1

ni. We maintain a separate data structure of Theorem 2 for
each Pi. The total space of these data structures is

∑
i O(ni) = O(n), and the

total number of events is
∑

i O(niλc(ni/m)) = O(nλc(n/m)).
Let s, t be two query points in the free space F. As observed in [12], one

can obtain an O(k)-approximation to the geodesic distance between s, t by
summing up the query results for each of the k separate data structures. We
can improve the approximation factor to O(kst) by a simple trick, where kst

is the number of polytopes in P intersected by the line segment st, as follows:
among the k returned distances, we simply add up those whose values are
Ω(‖st‖). We omit the details.

Theorem 3. Let P be a collection of k deforming obstacles each of which is
the convex hull of a dynamic point cloud under algebraic motion. Let n be the
total number of points in all the point clouds. For any parameter 1 ≤ m ≤ n,
there is a kinetic data structure that can be used to report, in O(mk log(n/m))
expected time, a O(kst)-approximation to the geodesic distance between two
arbitrary query points s, t in the free space. The data structure has O(n) size
and processes O(nλc(n/m)) events in total, each requiring O(log2 n) time. A
point (used for defining one of the convex hulls) can be inserted or deleted or
change its motion in O(log2 n) time.

References

1. P. K. Agarwal, B. Aronov, J. O’Rourke, and C. Schevon, Star unfolding of a
polytope with applications, SIAM J. Comput., 26 (1997), 1689–1713.

2. P. K. Agarwal, L. Guibas, J. Hershberger, and E. Veach, Maintaining the extent
of a moving point set, Discrete Comput. Geom., 26 (2001), 353–374.

16 Pankaj K. Agarwal, Alon Efrat, R. Sharathkumar, and Hai Yu

3. P. K. Agarwal, R. Sharathkumar, and H. Yu, Approximate Euclidean shortest
paths amid convex obstacles, Proc. 20th ACM-SIAM Sympos. Discrete Algo-

rithms, to appear.
4. G. Alexandron, H. Kaplan, and M. Sharir, Kinetic and dynamic data structures

for convex hulls and upper envelopes, Comput. Geom. Theory Appl, 36 (2007),
144–158.

5. S. Arikati, D. Chen, L. Chew, G. Das, M. Smid, and C. Zaroliagis, Planar
spanners and approximate shortest path queries among obstacles in the plane,
Proc. 4th European Sympos. Algorithms, 1996, pp. 514–528.

6. J. Basch, L. J. Guibas, and J. Hershberger, Data structures for mobile data, J.

Algorithms, 31 (1999), 1–28.
7. D. Chen, On the all-pairs Euclidean short path problem, Proc. 6th Annu. ACM-

SIAM Sympos. Discrete Algorithms, 1995, pp. 292–301.
8. Y.-J. Chiang and J. S. B. Mitchell, Two-point Euclidean shortest path queries

in the plane, Proc. 10th Annu. ACM-SIAM Sympos. Discrete Algorithms, 1999,
pp. 215–224.

9. K. Clarkson, Approximation algorithms for shortest path motion planning, Proc.

19th Annu. ACM Sympos. Theory Comput., 1987, pp. 56–65.
10. D. P. Dobkin and D. G. Kirkpatrick, Determining the separation of preprocessed

polyhedra — a unified approach, Proc. 17th Internat. Colloq. Automata Lang.

Program., 1990, pp. 400–413.
11. S. Har-Peled, Approximate shortest-path and geodesic diameter on convex poly-

topes in three dimensions, Discrete Comput. Geom., 21 (1999), 217–231.
12. J. Hershberger and S. Suri, Practical methods for approximating shortest paths

on a convex polytope in R
3, Comput. Geom. Theory Appl., 10 (1998), 31–46.

13. J. Hershberger and S. Suri, An optimal algorithm for Euclidean shortest paths
in the plane, SIAM J. Comput., 28 (1999), 2215–2256.

14. M. Ling and D. Manocha, Collision and proximity queries, in: Handbook of

Discrete and Computational Geometry (J. Goodman and J. O’Rourke, eds.),
CRC Press, 2nd edition, 2004, pp. 787–808.

15. J. Matoušek, M. Sharir, and E. Welzl, A subexponential bound for linear pro-
gramming, Algorithmica, 16 (1996), 498–516.

16. M. Overmars and J. van Leeuwen, Maintenance of configurations in the plane,
J. Comput. Syst. Sci., 23 (1981), 166–204.

17. J. Reif and M. Sharir, Motion planning in the presence of moving obstacles, J.

Assoc. Comput. Mach., 41 (1994), 764–790.
18. J. van den Berg, Path Planning in Dynamic Environments, Ph.D. Thesis,

Utrecht University, 2007.

