
CHAPTER ELEVENA Simple and EÆ
ient Algorithmfor High-Quality Line LabelingAlexander Wol� 1 Lars Knipping2 Mar
 van Kreveld3Ty
ho Strijk3 Pankaj K. Agarwal411.1 INTRODUCTIONThe interest in algorithms that automati
ally pla
e labels on maps, graphs, or di-agrams has in
reased with the advan
e in type-setting te
hnology and the amountof information to be visualized. However, though manually labeling a map is es-timated to take �fty per
ent of total map produ
tion time (Morrison, 1980), mostgeographi
 information systems (GIS) o�er only very basi
 label-pla
ement features.In pra
ti
e, a GIS user is still for
ed to invest several hours in order to eliminatemanually all label-label and label-feature interse
tions on a map.In this 
hapter, we suggest an algorithm that labels one of the three 
lassesof map obje
ts, namely polygonal 
hains, su
h as rivers or streets. Our method issimple and eÆ
ient. At the same time, it produ
es results of high aestheti
al quality.It is the �rst that ful�lls both of the following two requirements: it allows 
urvedlabels and runs in O(n2) time, where n is the number of points of the polyline.In order to formalize what good line labeling means, we studied Imhof's rulesfor positioning names on maps (Imhof, 1975). His well-established 
atalogue oflabel pla
ement rules also provides a set of guidelines that refers to labeling linearobje
ts. (For a general evaluation of quality for label-pla
ement methods, see (vanDijk et al., 1999).) Imhof's rules 
an be put into two 
ategories, namely hardand soft 
onstraints. Hard 
onstraints represent minimum requirements for de
entlabeling:(H1) A label must be pla
ed at least at some distan
e � from the polyline.(H2) The 
urvature of the 
urve along whi
h the label is pla
ed is bounded fromabove by the 
urvature of a 
ir
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A Simple and EÆ
ient Algorithm for High-Quality Line Labeling 2(H3) The label must neither interse
t itself nor the polyline.Soft 
onstraints on the other hand help to express preferen
es between a
-
eptable label positions. They formalize aestheti
 
riteria and help to improve thevisual asso
iation between line and label. A label should(S1) be 
lose to the polyline,(S2) have few in
e
tion points,(S3) be pla
ed as straight as possible, and(S4) be pla
ed as horizontally as possible.We propose an algorithm that produ
es a 
andidate strip along the inputpolyline. This strip has the same height as the given label, 
onsists of re
tangularand annular segments, and ful�lls the hard 
onstraints. In order to optimize soft
onstraints, we use one or a 
ombination of several evaluation fun
tions.The 
andidate strip 
an be regarded as a simpli�
ation of the input poly-line. The algorithm for 
omputing the strip is similar to the Douglas-Peu
ker line-simpli�
ation algorithm (Douglas and Peu
ker, 1973) in that it re�nes the initialsolution re
ursively. However, in 
ontrast to a simpli�ed line, the strip is never al-lowed to interse
t the given polyline. The strip-generating algorithm has a runtimeof O(n2), where n is the number of points on the polyline. The algorithm requireslinear storage.Given a strip and the length of a label, we propose three evaluation fun
tionsfor sele
ting good label 
andidates within the strip. These fun
tions optimize the�rst three soft 
onstraints. Their implementation is des
ribed in detail in (Knip-ping, 1998). We 
an 
ompute in linear time a pla
ement of the label within thestrip so that the 
urvature or the number of in
e
tions of the label is minimized.Sin
e it is desirable to keep the label as 
lose to the polyline as possible (whilekeeping a minimum distan
e) we also investigated the dire
ted label-polyline Haus-dor� distan
e. This distan
e is given by the distan
e of two points; a) the pointp on the label that is furthest away from the polyline and b) the point p0 on thepolyline that is 
losest to p. Under 
ertain 
onditions we 
an �nd a label positionthat minimizes this distan
e in O(n logn) time (Knipping, 1998). Here we give asimple algorithm that �nds a near-optimal label pla
ement a

ording to this 
rite-rion in O(nk + k log k) time, where k is the ratio of the length of the strip and themaximum allowed dis
repan
y to the exa
t minimum Hausdor� distan
e.If a whole map is to be labeled, we 
an also generate a set of near-optimallabel 
andidates for ea
h polyline, and use them as input to general map-labelingalgorithms as (Edmondson et al., 1997; Kakoulis and Tollis, 1998; Wagner andWol�, 1998). Some of these algorithms a

ept a priority for ea
h 
andidate; in our
ase we 
ould use the result of the evaluation fun
tion.In his list of guidelines for good line labeling, Imhof also re
ommends thelabeling of a polyline at regular intervals, espe
ially between jun
tions with otherpolylines of the same width and 
olor. River names e.g. tend to 
hange belowthe mouths of large tributaries. This problem 
an be handled by extending ouralgorithms as follows. We 
ompute our strip and generate a set of the, say ten best
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andidates for ea
h river segment that is limited by tributaries of equal type.Then we 
an view ea
h river segment as a separate feature, and again use a generalmap-labeling algorithm to label as many segments as possible. Prioritizing ea
hlabel 
andidate with its distan
e to the 
loser end of the river segment would give
andidates in the middle of a segment a higher priority and thus tend to in
reaselabel-label distan
es along the polyline.This 
hapter is stru
tured as follows. In the next se
tion we brie
y reviewprevious work on line labeling. In Se
tion 11.3 we explain how to 
ompute a bu�eraround the input polyline that prote
ts the strip from getting too 
lose to thepolyline and from sharp bends at 
onvex verti
es. In Se
tion 11.4 we give thealgorithm that 
omputes the strip and in Se
tion 11.5 we show how this strip 
anbe used to �nd good label 
andidates for the polyline. Finally, in Se
tion 11.6we des
ribe our experiments. Our implementation of the strip generator for x-monotonous polylines and the three evaluation fun
tions 
an be tested on-line atthe URL http://www.inf.fu-berlin.de/map-labeling/lines.11.2 PREVIOUS WORKFor an extensive bibliography about map labeling in general, see (Wol� and Strijk,1996). The problem of automated line labeling has been treated before. In (Doer-s
hler and Freeman, 1992; Barrault and Le
ordix, 1995; Alexander and Hantman,1995; Edmondson et al., 1997; Kramer, 1997) only re
tangular labels are allowed;
urved labels are not 
onsidered. In (Freeman, 1988) a set of label-pla
ement rulessimilar to those of (Imhof, 1975) is listed, followed by a rough des
ription of analgorithm. An analysis of Figure 8 in (Freeman, 1988) shows that river names arebroken into shorter pie
es that are then pla
ed parallel to segments of the river.Ea
h pie
e ends before it would run into the river or end too far from the 
urrentriver segment.In (Barrault, 1997) 
urved labels are taken into a

ount. First, an input poly-line is split into se
tions depending on its length and jun
tions (forks) with otherpolylines. For details of this step, see (Barrault and Le
ordix, 1995). Then thepolyline is treated with an adaptation of an operator from morphologi
al mathe-mati
s, 
losure, that is a mixture of an erosion and a dilation. This operator yieldsa baseline for label 
andidates where the polyline does not bend too abruptly. It isnot 
lear how this is done algorithmi
ally; no asymptoti
 runtime bounds are given.Finally, simulated annealing is used in order to �nd a good global label pla
ement,i.e. a pla
ement that maximizes the number of features that re
eive a label and atthe same time takes into a

ount the 
artographi
 quality of ea
h label position.In (Poon et al., 1998) a more theoreti
al problem is analyzed; an instan
eof axis-parallel line segments is labeled with re
tangular labels of 
ommon height.While the length of ea
h label equals that of the 
orresponding line segment, thelabel height is to be maximized.While the restri
tion to re
tangular labels is a

eptable for te
hni
al maps orroad maps (where roads must be labeled with road numbers), we feel that 
urvedlabels are a ne
essity for high-quality line labeling. The method we suggest is the�rst that ful�lls both of the following two requirements: it allows 
urved labels and



A Simple and EÆ
ient Algorithm for High-Quality Line Labeling 4its runtime is in O(n2). The runtime thus only depends on the number of pointsof the polyline, and not on other parameters su
h as the resolution of the outputdevi
e. Note that the time bound holds even if the approximate Hausdor� distan
eis used to sele
t good label 
andidates within the strip as long as we 
hoose theparameter k linear in n.11.3 A BUFFER AROUND THE INPUT POLYLINEIn order to redu
e the sear
h spa
e for good label 
andidates, we generate a stripalong the input polyline that is (a) likely to 
ontain good label positions and (b) easyto 
ompute. Generating our strip 
onsists of two major tasks. First, we 
ompute abu�er around the polyline that our strip must not interse
t. Se
ond, we generatean initial strip and re�ne it re
ursively. Ea
h re�nement step brings the strip 
loserto the polyline, but also introdu
es additional in
e
tions.The input to our algorithm 
onsists of a polyline P = (p1; : : : ; pn) with pointspi = (xi; yi), a minimum label-polyline distan
e ", a maximum 
urvature 1=r, anda label height h. It makes sense to 
hoose r � " but the algorithm does not dependon this. We assume that P is x-monotonous, i.e. x1 < : : : < xn. Non-monotonouspolylines 
an be split up into monotonous pie
es of maximum length in linear timeby a simple greedy algorithm. That algorithm goes sequentially through the edgesof the polyline. Whenever adding the 
urrent edge to the 
urrent pie
e would makethat pie
e non-monotonous, a new pie
e is started with the 
urrent edge.For ease of presentation we dire
t P from p1 to pn and only label the upper(i.e. left) side of the polyline. We use r-disk (r-ar
) as shorthand for a disk (ar
)of radius r. We say that pi is at a right turn of P if pi+1 lies to the right of thedire
ted line through pi�1 and pi, see p3 or p4 in Figure 11.1.
r 2" B(P )Pp3 D4
D1

D7 D10
D11p1

p4
D1

D4 D7
D11Figure 11.1 The boundary of the ("; r)-bu�er B(P ) (bold dashed line) of the input polyline P(bold solid line).We de�ne the ("; r)-bu�er B(P ) in two steps. First let the "-bu�er be theunion of all "-disks whose 
enter lies on P , see the light-shaded area in Figure 11.1.Se
ond we add 
ertain pie
es of r-disks Di pla
ed at right turns pi of P . Theirtask is to bound the 
urvature of our strip. The 
enter mi of Di is pla
ed on theangular bise
tor bi of the adja
ent edges of P su
h that Di tou
hes and 
ontains



A Simple and EÆ
ient Algorithm for High-Quality Line Labeling 5the "-disk 
entered at pi, see Figure 11.2. Let Di be the part of Di that is left ofthe "-bu�er and tou
hes the "-disk, see the dark-shaded areas in Figure 11.1. ThenB(P ) is the union of the "-bu�er and the Di for ea
h right turn pi.To simplify the 
al
ulation of the strip, we also pla
e r-disks D1 and Dn at theendpoints p1 and pn of P , respe
tively. Let bn be the normal to the edge pn�1pn inpn. Then the 
enter of Dn lies on bn su
h that Dn tou
hes and 
ontains the "-disk
entered at pn, see Dn in Figure 11.2. The pla
ement of D1 is analogous.In order to 
ompute the boundary of the ("; r)-bu�er we �rst 
ompute thatof the "-bu�er. This is simple sin
e the x-monotoni
ity of P guarantees that the"-bu�er does not have any holes.For 
omputing the 
andidate strip it is important that we have a

ess to theelements of the outer fa
e of the ("; r)-bu�er in the order in whi
h they o

ur. We
ompute the ("; r)-bu�er in two phases.In the �rst phase, for ea
h right turn pi we follow the boundary of the "-bu�er from ti to the right until we interse
t the boundary of Di for the �rst time.This interse
tion point is denoted by ri, see Figure 11.2. The ar
 from ti to ri,oriented 
lo
kwise, is the right ar
 Ri, one of the two parts of the boundary of Diwe are interested in. The left ar
s Li that go 
ounter
lo
kwise from ti to li 
an be
omputed analogously. A spe
ial 
ase arises if ti lies in the interior of the "-bu�er.Then Ri or Li is empty, and we have to follow P from pi in both dire
tions until wearrive at a point or edge that 
orresponds to an ar
 or line segment on the upperpart of the "-bu�er. From there, we 
an 
ontinue as usual.
DiRiLi mitipi�1 pi+1pibili riP Rntn pnmnbnrnDnFigure 11.2 Pla
ing r-disks Di at right turns pi of the input polyline P .Clearly, this pro
edure has a worst-
ase runtime of O(n2). The worst 
aseo

urs if there are a linear number of right turns pi where we have to walk overa linear number of segments of the "-bu�er until we hit li or ri, i.e. if r is large
ompared to the length of the edges of P . However, in pra
ti
e one 
an expe
tto walk only over a 
onstant number of segments of the "-bu�er; then the runningtime is �(n), see Se
tion 11.6. The worst-
ase running time 
an be improved usingmore sophisti
ated data stru
tures, but we omit this improvement here as it makesthe algorithm more 
ompli
ated.In the se
ond phase, we in
rementally extend the "-bu�er to the ("; r)-bu�erusing the left and right ar
s we just 
omputed. We maintain B
urr, the outer fa
eof the union of the "-bu�er and the areas Di we have pro
essed so far. Initially letB
urr be the boundary of the "-bu�er and let the interior of B
urr the interior of the"-bu�er. Let the r-ar
 Ai be the union of Li and Ri. Note that Ai is the part ofthe boundary of Di that is a potential part of the outer fa
e of the ("; r)-bu�er. Forea
h right turn pi we 
he
k whether Ai lies 
ompletely in the interior of B
urr. If
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ient Algorithm for High-Quality Line Labeling 6this is not the 
ase we extend B
urr by using the appropriate parts of Ai.The boundary of the "-bu�er 
onsists of a linear number of line and ar
 seg-ments to whi
h we add O(n) ar
s of type Ai. One 
an prove that ea
h of these ar
s
an 
ontribute at most three pie
es to the outer fa
e of B(P ). Our implementationdoes not depend on this result, but it shows that the outer fa
e of B(P ) has linear
omplexity. Due to the in
remental 
onstru
tion this is also an upper bound forthe size of B
urr.Given these observations it is easy to devise an O(n2)-algorithm that 
omputesthe boundary of the outer fa
e of B(P ). We store B
urr in a doubly 
onne
ted list.Sin
e the length of this list is linear we 
an a�ord to s
an the whole list when wesear
h for interse
tions with the 
urrent ar
 Ai. If we 
onsider 
arefully whetherwe enter or leave the interior of the area delimited by B
urr, we 
an update B
urr inlinear time for ea
h right turn. We omit details here.In our implementation of the se
ond phase we use a similar tri
k as in the �rstphase to avoid a quadrati
 runtime in many 
ases. We exploit the fa
t that an ar
Ai usually spans only a 
onstant number of elements of B
urr.11.4 A CANDIDATE STRIPOn
e we have the outer fa
e of the ("; r)-bu�er, we 
ompute the baseline of the label
andidate strip and re�ne it re
ursively. We refer to the line and ar
 segments thatdelimit the bu�er on the upper side between l1 and rn as baseline obje
ts. We havea

ess to these obje
ts in the order in whi
h they appear on the boundary of thebu�er's outer fa
e. We start with an ar
 A that tou
hes the �rst and last obje
t Oiand Ok, respe
tively. We bend A towards the bu�er until it hits a third obje
t Oj .There, we split A into two pie
es, its 
hildren. We 
onne
t the 
hildren of A witha pie
e of Oj that initially has length zero. Then we re
ursively bend the 
hildrenfurther towards the bu�er, see Figure 11.3. While we bend, the portion of Oj that
onne
ts the 
hildren of A is growing. Note that there are two phases: in the �rst,the radius of the ar
s in
reases while it de
reases in the se
ond. The re
ursion endswhere Oi and Ok are adja
ent on the bu�er (sin
e there is no Oj then) and in these
ond phase where the 
urvature of an ar
 would ex
eed 1=(r + h), h the labelheight.For ea
h level of the re
ursion, the sequen
e of ar
s we obtain in this way formsa 
ontinuous 
urve L. If we dire
t L from left to right, it be
omes obvious that theradius of all ar
s that turn right (i.e. towards the bu�er) is at least r and the radiusof ar
s that turn left is at least r + h. By using L as the baseline of our strip ofheight h we ensure that all ar
s that form the upper boundary and the baseline ofthe strip have at least radius r. Thus the strip ful�lls the 
urvature 
onstraint H2.Sin
e the baseline of the strip 
annot interse
t the "-bu�er it is 
lear that the stripalso ful�lls the distan
e 
onstraint H1. The non-self-interse
tion 
onstraint H3 
aneasily be kept by ending the re
ursion where the distan
e between Oi and Ok is lessthan 2h.If the number of in
e
tions is to be kept small, the re
ursion 
an also bestopped whenever the dire
ted distan
e of a strip segment to the polyline is belowa given threshold. However this is diÆ
ult to 
he
k without the Voronoi diagram



A Simple and EÆ
ient Algorithm for High-Quality Line Labeling 7

r 2"h P outer fa
e of B(P )Figure 11.3 re�ning the 
andidate strip: �rst level (solid), se
ond level (dashed), third level(densely dotted), and forth level (dotted)of the points and (open) edges of P .It is possible to add two interesting re�nement levels. In both, an ar
 of thebaseline does not ne
essarily tou
h three obje
ts on the boundary of the bu�er'souter fa
e. For a strip with more re
tangular segments one 
ould add a re�nementlevel between level 2 and 3 of the leftmost strip segment in Figure 11.3. Note thatthe radii of the annular strip segments there in
rease up to level 2 and then de
reaseagain. Re
tangular segments in an additional re�nement level 
an thus be viewed asannular segments with in�nite radius. On the other hand, to make the strip followP as 
losely as possible, a �nal re�nement level 
ould be added where all annularstrip segments are delimited by two ar
s with radius r and r + h. The baseline ofthis strip is part of the 
urve on whi
h a disk of radius r + h is rolled around thebu�er if the disk must always tou
h the bu�er but not interse
t its interior.In order to determine the third obje
t on an ar
, we test ea
h obje
t betweenthe left- and rightmost obje
t in 
onstant time. Thus we need linear time for ea
hlevel of the re
ursion. As with the Douglas-Peu
ker line-simpli�
ation algorithm,the number of re
ursion levels depends on the distribution of the input data and
an vary from 
(logn) to O(n). Given the outer fa
e of the ("; r)-bu�er the strip
an hen
e be 
omputed in O(n2) time, while the average 
ase 
an be expe
ted tobe in O(n logn).11.5 FINDING GOOD LABEL POSITIONSIn order to satisfy the soft 
onstraints, we evaluate label 
andidates within the stripa

ording to 
urvature, number of in
e
tions, or dire
ted label-polyline Hausdor�distan
e. (We de�ne the 
urvature of a label as the sum over 
urvature timeslength of ea
h label segment. The 
urvature of a re
tangular segment is 0; that ofan annular segment with ar
s of radius r1 and r2 = r1 + h is 1=r1.) For all three
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tions, the basi
 idea is the same. We dis
retize the spa
e of label
andidates su
h that the dis
rete spa
e has linear size and 
ontains minima. Thenwe sear
h the dis
rete spa
e for a minimum.For 
urvature and number of in
e
tions it is easy to see that there is a min-imizing label 
andidate that starts or ends with one of the re
tangular or annularsegments of the strip. In order to �nd a minimum, we push a label of the givenlength through the strip and stop whenever a new segment starts (or ends). To
ompute the measure of the 
urrent 
andidate, we only have to do a 
onstant num-ber of updates given the value at the previous position. This is how we 
an �nd apla
ement minimizing 
urvature or number of in
e
tions in linear time.For Hausdor� distan
e, the dis
retization is more diÆ
ult. We only take intoa

ount the baseline of the strip. In order to 
ompute eÆ
iently the distan
e be-tween the baseline of a label 
andidate and the polyline P , we need to know the
losest obje
t (point or edge) of P for every point on the whole baseline. Inter-se
ting the baseline with the Voronoi diagram of the obje
ts of P would yield thisinformation and lead to an O(n logn) algorithm under 
ertain 
onditions (Knipping,1998).However, 
omputing the Voronoi diagram for a set of points and line segmentsis not a trivial task in pra
ti
e. Therefore we implemented a simpler algorithmthat �nds a near-optimal label pla
ement as follows. Given an integer k, we splitthe baseline into k pie
es of equal length. Let 
 be the length of su
h a pie
e.We approximate the distan
e between ea
h pie
e and P by the distan
e of thepie
e's midpoint from P . This 
an be done by brute for
e in O(nk) time with O(k)storage. Then we pro
eed as above: we push the label through the strip, stop atea
h midpoint and evaluate the 
urrent label position. Its Hausdor� distan
e to Pis within 
 from the maximum over the distan
es of all baseline pie
es 
overed bythe label. For fast a

ess to this approximate maximum, we keep the appropriatedistan
es in a priority queue. During the exe
ution of the algorithm, we mustinsert the distan
e of ea
h pie
e at most on
e into the queue. The same holdsfor deletions. Ea
h su
h operation 
osts O(log k) time, hen
e we 
an 
ompute anoptimal pla
ement among all those starting at a midpoint of a baseline pie
e inO(nk + k log k) time with O(k) storage. The triangle inequality guarantees thatthis pla
ement is at most 
 further away from P than a pla
ement minimizing theexa
t dire
ted Hausdor� distan
e. A detailed des
ription of the implementation ofthe above evaluation fun
tions 
an be found in (Knipping, 1998) (in German).11.6 EXPERIMENTAL RESULTSIn order to analyze our line-labeling algorithm, we applied it to syntheti
 and to real-world data. The latter is taken from the CIA-map data at the URL ftp://gatekeeper.de
.
om/pub/graphi
s/data/
ia-wdb/db.tar.Z, see Figures 11.4 and 11.5. In both�gures, labels were pla
ed a

ording to the approximated Hausdor� distan
e.The syntheti
 data belongs to three di�erent example 
lasses. Due to la
k ofspa
e we 
an only present our results on one 
lass. For more detailed informationin
luding graphs depi
ting the frequen
y of 
ru
ial operations, see our Web page.For the example 
lass RandomWalk we use random numbers �xi and �yi
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Dor

dogneFigure 11.4 A pie
e of the Dordogne (109 points). Above with 
andidate strip and labelpla
ement (shaded grey), below with lettering
Figure 11.5 A pie
e of the Guadalquivir (130 points)

Figure 11.6 RandomWalk with 400 pointsthat we draw from a normal distribution with mean 0 and standard deviation 1.In order to get an x-monotonous polyline we 
hoose the x-
oordinates as follows:x1 = 0 and xi = xi�1 + j�xij. Then we s
ale all xi by xn su
h that 0 = x1 < x2 <: : : < xn = 1. Similarly, we set the y-
oordinates to y1 = 0 and yi = yi�1+�yi=100.Figure 11.6 shows an instan
e of RandomWalk with the 
andidate strip of thelast re�nement level, not 
ounting the additional levels mentioned in Se
tion 11.4.The grey regions indi
ate an optimal label pla
ement within the strip minimiz-ing 
urvature, number of in
e
tions, and approximative Hausdor� distan
e (left toright, shaded light to dark). The parameters for the strip 
omputation were mini-mum label-polyline distan
e " = 0:005, 
urvature bound r = 0:01, and label heighth = 0:02. More examples 
an be found in (Knipping, 1998) or generated on ourWeb page.We generated 50 RandomWalk examples with 100, 200, : : :, 1000 points toanalyze the performan
e of our C++ implementation. We used the SunPRO-CC
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+ + + + + + + + + +
strip generation 2

2 2 2 2 2 2 2 2 2 2

Figure 11.7 Strip generation time
ompiler with optimizer 
ags -fast -O3 and measured runtimes on a Sun Ultra-Spar
 250. We prepared two graphs, see Figures 11.7 and 11.8. In both, the y-axisgives the average CPU time (in se
onds) and the x-axis gives the number n ofpoints of the polyline. The points on our graphs give the results averaged over all50 examples; the extent of the verti
al bars indi
ates the minimum and maximumruntime among these 50 examples.Figure 11.7 shows the running times of the "-bu�er, ("; r)-bu�er and stripgeneration for RandomWalk. Note that the three 
urves are additive; i.e. the top-most 
urve 
orresponds to the total runtime. The two additional re�nement levelsmentioned in Se
tion 11.4 were in
luded.
05
1015
2025
30

100 300 500 700 900

Hausdor� distan
e, RandomWalk 3

3 3 3 3 3 3 3 3 3 3
urvature, RandomWalk +

+ + + + + + + + + +Figure 11.8 Running times for label pla
ementIn Figure 11.8 we give the runtimes for pla
ing labels within the pre-
omputedstrip a

ording to 
urvature and approximated Hausdor� distan
e. Here the param-eters were 
urvature r = 8=n, minimum distan
e " = 2=n, label height h = 10=n,and label length ` = 50=n. For minimizing the Hausdor� distan
e we set the ap-proximation parameter 
 to 1=(2n). We omitted the 
urve for number of in
e
tionssin
e it is identi
al to that of 
urvature. Other than in the des
ription in Se
-tion 11.5 we used lists instead of priority queues for the approximated Hausdor�distan
e, hen
e the quadrati
 runtime behaviour.
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ient Algorithm for High-Quality Line Labeling 1111.7 CONCLUSIONWe have presented a new and 
on
eptually simple method for high-quality line label-ing. It is the �rst that ful�lls both of the following two requirements: it allows 
urvedlabels and its worst-
ase runtime is in O(n2). We introdu
ed a 
on
ept of gradualre�nement that is similar to the idea of the Douglas-Peu
ker line-simpli�
ation al-gorithm. This 
on
ept allows to introdu
e additional appli
ation-dependent 
riteriaand to stop the re�nement when these 
riteria are met.An experimental evaluation of our algorithm shows that it usually runs insub-quadrati
 time and generally yields good results in pra
ti
e. However, sin
ewe redu
e the sear
h spa
e for good label 
andidates to a one-dimensional strip, itis 
lear that we 
annot hope to �nd an optimal label pla
ement in every 
ase. Asthe following example indi
ates, a more 
exible strategy in the bu�er 
onstru
tionmight help to over
ome problems 
aused by the redu
tion of the sear
h spa
e.
Figure 11.9 Disturbing e�e
ts of the de�nition of the ("; r)-bu�er. (The upper part of its outerfa
e is marked by bold grey ar
s; the input polyline below 
onsists of bold bla
k line segments.)In Figure 11.9 we depi
ted all r-ar
s at right turns of the input polyline P .The parameter r was 
hosen large 
ompared to the average segment length of P . Asa result, some of the ar
s that 
ontribute to the ("; r)-bu�er are quite distant fromthe input polyline P . They were 
aused by right turns in
ident to two very steepbut short edges of P . It would be desirable to remove these ar
s. However, we mustensure that the resulting strip does not violate the 
urvature 
onstraint H2. This 
anbe done as follows. After the �rst phase of the ("; r)-bu�er 
omputation we 
omputethe dire
ted Hausdor� distan
e of ea
h r-ar
 Ai to the "-bu�er between li and ri. Inorder of des
ending distan
e we 
he
k for ea
h Ai whether the 
orresponding "-ar
lies 
ompletely in the area Dj of another r-ar
 Aj . If this is the 
ase, we removeAi. Then we pro
eed to the se
ond phase of the bu�er 
omputation as usual. Notethat the resulting outer fa
e of the bu�er still 
onsists ex
lusively of r-ar
s and linesegments. Thus the strip will still keep H2.An alternative approa
h is as follows. We observed that our pla
ement of ther-disks is good if the the adja
ent edges of the polyline are long enough. Then thedire
ted Hausdor� distan
e between the ar
 Ai and the "-bu�er is minimized. How-ever, in general the pla
ement of the r-disks is too in
exible. It 
ould 
ertainly beimproved if we tried to minimize the aformentioned distan
e during the pla
ement.Then the pla
ement of the r-disks would take into a

ount not only the adja
entedges of the polyline but all of the polyline (or the "-bu�er) between li and ri.Finally we would like to a
knowledge a simple and elegant idea of Mike Loner-gan, University of Glamorgan, Pontypridd. He suggested to put the "-bu�er aroundthe label (and thus simply thi
ken the strip by 2") instead of the polyline. Unfor-tunately, this does not solve the problem of pla
ing the r-
ir
les.
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