
CHAPTER ELEVENA Simple and EÆient Algorithmfor High-Quality Line LabelingAlexander Wol� 1 Lars Knipping2 Mar van Kreveld3Tyho Strijk3 Pankaj K. Agarwal411.1 INTRODUCTIONThe interest in algorithms that automatially plae labels on maps, graphs, or di-agrams has inreased with the advane in type-setting tehnology and the amountof information to be visualized. However, though manually labeling a map is es-timated to take �fty perent of total map prodution time (Morrison, 1980), mostgeographi information systems (GIS) o�er only very basi label-plaement features.In pratie, a GIS user is still fored to invest several hours in order to eliminatemanually all label-label and label-feature intersetions on a map.In this hapter, we suggest an algorithm that labels one of the three lassesof map objets, namely polygonal hains, suh as rivers or streets. Our method issimple and eÆient. At the same time, it produes results of high aesthetial quality.It is the �rst that ful�lls both of the following two requirements: it allows urvedlabels and runs in O(n2) time, where n is the number of points of the polyline.In order to formalize what good line labeling means, we studied Imhof's rulesfor positioning names on maps (Imhof, 1975). His well-established atalogue oflabel plaement rules also provides a set of guidelines that refers to labeling linearobjets. (For a general evaluation of quality for label-plaement methods, see (vanDijk et al., 1999).) Imhof's rules an be put into two ategories, namely hardand soft onstraints. Hard onstraints represent minimum requirements for deentlabeling:(H1) A label must be plaed at least at some distane � from the polyline.(H2) The urvature of the urve along whih the label is plaed is bounded fromabove by the urvature of a irle with radius r.1Institut f�ur Mathematik und Informatik, Ernst-Moritz-Arndt-Universit�at, Jahnstra�e 15a, D-17487 Greifswald, Germany, awolff�mail.uni-greifswald.de2Sender Freies Berlin, Forkenbekstra�e 52, D-14199 Berlin, Germany, knipping�altus.de3Department of Computer Siene, Utreht University, The Netherlands, fmar,tyhog�s.uu.nl, supported by the Duth Organization for Sienti� Researh (N.W.O.) andthe ESPRIT IV LTR Projet No. 21957 (CGAL)4Center for Geometri Computing, Department of Computer Siene, Duke University,Durham, NC, U.S.A., pankaj�s.duke.edu, supported by Army Researh OÆe MURI grantDAAH04-96-1-0013, by a Sloan fellowship, by NSF grants EIA{9870724 and CCR{9732787, andby a grant from the U.S.-Israeli Binational Siene Foundation.



A Simple and EÆient Algorithm for High-Quality Line Labeling 2(H3) The label must neither interset itself nor the polyline.Soft onstraints on the other hand help to express preferenes between a-eptable label positions. They formalize aestheti riteria and help to improve thevisual assoiation between line and label. A label should(S1) be lose to the polyline,(S2) have few inetion points,(S3) be plaed as straight as possible, and(S4) be plaed as horizontally as possible.We propose an algorithm that produes a andidate strip along the inputpolyline. This strip has the same height as the given label, onsists of retangularand annular segments, and ful�lls the hard onstraints. In order to optimize softonstraints, we use one or a ombination of several evaluation funtions.The andidate strip an be regarded as a simpli�ation of the input poly-line. The algorithm for omputing the strip is similar to the Douglas-Peuker line-simpli�ation algorithm (Douglas and Peuker, 1973) in that it re�nes the initialsolution reursively. However, in ontrast to a simpli�ed line, the strip is never al-lowed to interset the given polyline. The strip-generating algorithm has a runtimeof O(n2), where n is the number of points on the polyline. The algorithm requireslinear storage.Given a strip and the length of a label, we propose three evaluation funtionsfor seleting good label andidates within the strip. These funtions optimize the�rst three soft onstraints. Their implementation is desribed in detail in (Knip-ping, 1998). We an ompute in linear time a plaement of the label within thestrip so that the urvature or the number of inetions of the label is minimized.Sine it is desirable to keep the label as lose to the polyline as possible (whilekeeping a minimum distane) we also investigated the direted label-polyline Haus-dor� distane. This distane is given by the distane of two points; a) the pointp on the label that is furthest away from the polyline and b) the point p0 on thepolyline that is losest to p. Under ertain onditions we an �nd a label positionthat minimizes this distane in O(n logn) time (Knipping, 1998). Here we give asimple algorithm that �nds a near-optimal label plaement aording to this rite-rion in O(nk + k log k) time, where k is the ratio of the length of the strip and themaximum allowed disrepany to the exat minimum Hausdor� distane.If a whole map is to be labeled, we an also generate a set of near-optimallabel andidates for eah polyline, and use them as input to general map-labelingalgorithms as (Edmondson et al., 1997; Kakoulis and Tollis, 1998; Wagner andWol�, 1998). Some of these algorithms aept a priority for eah andidate; in ourase we ould use the result of the evaluation funtion.In his list of guidelines for good line labeling, Imhof also reommends thelabeling of a polyline at regular intervals, espeially between juntions with otherpolylines of the same width and olor. River names e.g. tend to hange belowthe mouths of large tributaries. This problem an be handled by extending ouralgorithms as follows. We ompute our strip and generate a set of the, say ten best



A Simple and EÆient Algorithm for High-Quality Line Labeling 3label andidates for eah river segment that is limited by tributaries of equal type.Then we an view eah river segment as a separate feature, and again use a generalmap-labeling algorithm to label as many segments as possible. Prioritizing eahlabel andidate with its distane to the loser end of the river segment would giveandidates in the middle of a segment a higher priority and thus tend to inreaselabel-label distanes along the polyline.This hapter is strutured as follows. In the next setion we briey reviewprevious work on line labeling. In Setion 11.3 we explain how to ompute a bu�eraround the input polyline that protets the strip from getting too lose to thepolyline and from sharp bends at onvex verties. In Setion 11.4 we give thealgorithm that omputes the strip and in Setion 11.5 we show how this strip anbe used to �nd good label andidates for the polyline. Finally, in Setion 11.6we desribe our experiments. Our implementation of the strip generator for x-monotonous polylines and the three evaluation funtions an be tested on-line atthe URL http://www.inf.fu-berlin.de/map-labeling/lines.11.2 PREVIOUS WORKFor an extensive bibliography about map labeling in general, see (Wol� and Strijk,1996). The problem of automated line labeling has been treated before. In (Doer-shler and Freeman, 1992; Barrault and Leordix, 1995; Alexander and Hantman,1995; Edmondson et al., 1997; Kramer, 1997) only retangular labels are allowed;urved labels are not onsidered. In (Freeman, 1988) a set of label-plaement rulessimilar to those of (Imhof, 1975) is listed, followed by a rough desription of analgorithm. An analysis of Figure 8 in (Freeman, 1988) shows that river names arebroken into shorter piees that are then plaed parallel to segments of the river.Eah piee ends before it would run into the river or end too far from the urrentriver segment.In (Barrault, 1997) urved labels are taken into aount. First, an input poly-line is split into setions depending on its length and juntions (forks) with otherpolylines. For details of this step, see (Barrault and Leordix, 1995). Then thepolyline is treated with an adaptation of an operator from morphologial mathe-matis, losure, that is a mixture of an erosion and a dilation. This operator yieldsa baseline for label andidates where the polyline does not bend too abruptly. It isnot lear how this is done algorithmially; no asymptoti runtime bounds are given.Finally, simulated annealing is used in order to �nd a good global label plaement,i.e. a plaement that maximizes the number of features that reeive a label and atthe same time takes into aount the artographi quality of eah label position.In (Poon et al., 1998) a more theoretial problem is analyzed; an instaneof axis-parallel line segments is labeled with retangular labels of ommon height.While the length of eah label equals that of the orresponding line segment, thelabel height is to be maximized.While the restrition to retangular labels is aeptable for tehnial maps orroad maps (where roads must be labeled with road numbers), we feel that urvedlabels are a neessity for high-quality line labeling. The method we suggest is the�rst that ful�lls both of the following two requirements: it allows urved labels and



A Simple and EÆient Algorithm for High-Quality Line Labeling 4its runtime is in O(n2). The runtime thus only depends on the number of pointsof the polyline, and not on other parameters suh as the resolution of the outputdevie. Note that the time bound holds even if the approximate Hausdor� distaneis used to selet good label andidates within the strip as long as we hoose theparameter k linear in n.11.3 A BUFFER AROUND THE INPUT POLYLINEIn order to redue the searh spae for good label andidates, we generate a stripalong the input polyline that is (a) likely to ontain good label positions and (b) easyto ompute. Generating our strip onsists of two major tasks. First, we ompute abu�er around the polyline that our strip must not interset. Seond, we generatean initial strip and re�ne it reursively. Eah re�nement step brings the strip loserto the polyline, but also introdues additional inetions.The input to our algorithm onsists of a polyline P = (p1; : : : ; pn) with pointspi = (xi; yi), a minimum label-polyline distane ", a maximum urvature 1=r, anda label height h. It makes sense to hoose r � " but the algorithm does not dependon this. We assume that P is x-monotonous, i.e. x1 < : : : < xn. Non-monotonouspolylines an be split up into monotonous piees of maximum length in linear timeby a simple greedy algorithm. That algorithm goes sequentially through the edgesof the polyline. Whenever adding the urrent edge to the urrent piee would makethat piee non-monotonous, a new piee is started with the urrent edge.For ease of presentation we diret P from p1 to pn and only label the upper(i.e. left) side of the polyline. We use r-disk (r-ar) as shorthand for a disk (ar)of radius r. We say that pi is at a right turn of P if pi+1 lies to the right of thedireted line through pi�1 and pi, see p3 or p4 in Figure 11.1.
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D11Figure 11.1 The boundary of the ("; r)-bu�er B(P ) (bold dashed line) of the input polyline P(bold solid line).We de�ne the ("; r)-bu�er B(P ) in two steps. First let the "-bu�er be theunion of all "-disks whose enter lies on P , see the light-shaded area in Figure 11.1.Seond we add ertain piees of r-disks Di plaed at right turns pi of P . Theirtask is to bound the urvature of our strip. The enter mi of Di is plaed on theangular bisetor bi of the adjaent edges of P suh that Di touhes and ontains



A Simple and EÆient Algorithm for High-Quality Line Labeling 5the "-disk entered at pi, see Figure 11.2. Let Di be the part of Di that is left ofthe "-bu�er and touhes the "-disk, see the dark-shaded areas in Figure 11.1. ThenB(P ) is the union of the "-bu�er and the Di for eah right turn pi.To simplify the alulation of the strip, we also plae r-disks D1 and Dn at theendpoints p1 and pn of P , respetively. Let bn be the normal to the edge pn�1pn inpn. Then the enter of Dn lies on bn suh that Dn touhes and ontains the "-diskentered at pn, see Dn in Figure 11.2. The plaement of D1 is analogous.In order to ompute the boundary of the ("; r)-bu�er we �rst ompute thatof the "-bu�er. This is simple sine the x-monotoniity of P guarantees that the"-bu�er does not have any holes.For omputing the andidate strip it is important that we have aess to theelements of the outer fae of the ("; r)-bu�er in the order in whih they our. Weompute the ("; r)-bu�er in two phases.In the �rst phase, for eah right turn pi we follow the boundary of the "-bu�er from ti to the right until we interset the boundary of Di for the �rst time.This intersetion point is denoted by ri, see Figure 11.2. The ar from ti to ri,oriented lokwise, is the right ar Ri, one of the two parts of the boundary of Diwe are interested in. The left ars Li that go ounterlokwise from ti to li an beomputed analogously. A speial ase arises if ti lies in the interior of the "-bu�er.Then Ri or Li is empty, and we have to follow P from pi in both diretions until wearrive at a point or edge that orresponds to an ar or line segment on the upperpart of the "-bu�er. From there, we an ontinue as usual.
DiRiLi mitipi�1 pi+1pibili riP Rntn pnmnbnrnDnFigure 11.2 Plaing r-disks Di at right turns pi of the input polyline P .Clearly, this proedure has a worst-ase runtime of O(n2). The worst aseours if there are a linear number of right turns pi where we have to walk overa linear number of segments of the "-bu�er until we hit li or ri, i.e. if r is largeompared to the length of the edges of P . However, in pratie one an expetto walk only over a onstant number of segments of the "-bu�er; then the runningtime is �(n), see Setion 11.6. The worst-ase running time an be improved usingmore sophistiated data strutures, but we omit this improvement here as it makesthe algorithm more ompliated.In the seond phase, we inrementally extend the "-bu�er to the ("; r)-bu�erusing the left and right ars we just omputed. We maintain Burr, the outer faeof the union of the "-bu�er and the areas Di we have proessed so far. Initially letBurr be the boundary of the "-bu�er and let the interior of Burr the interior of the"-bu�er. Let the r-ar Ai be the union of Li and Ri. Note that Ai is the part ofthe boundary of Di that is a potential part of the outer fae of the ("; r)-bu�er. Foreah right turn pi we hek whether Ai lies ompletely in the interior of Burr. If



A Simple and EÆient Algorithm for High-Quality Line Labeling 6this is not the ase we extend Burr by using the appropriate parts of Ai.The boundary of the "-bu�er onsists of a linear number of line and ar seg-ments to whih we add O(n) ars of type Ai. One an prove that eah of these arsan ontribute at most three piees to the outer fae of B(P ). Our implementationdoes not depend on this result, but it shows that the outer fae of B(P ) has linearomplexity. Due to the inremental onstrution this is also an upper bound forthe size of Burr.Given these observations it is easy to devise an O(n2)-algorithm that omputesthe boundary of the outer fae of B(P ). We store Burr in a doubly onneted list.Sine the length of this list is linear we an a�ord to san the whole list when wesearh for intersetions with the urrent ar Ai. If we onsider arefully whetherwe enter or leave the interior of the area delimited by Burr, we an update Burr inlinear time for eah right turn. We omit details here.In our implementation of the seond phase we use a similar trik as in the �rstphase to avoid a quadrati runtime in many ases. We exploit the fat that an arAi usually spans only a onstant number of elements of Burr.11.4 A CANDIDATE STRIPOne we have the outer fae of the ("; r)-bu�er, we ompute the baseline of the labelandidate strip and re�ne it reursively. We refer to the line and ar segments thatdelimit the bu�er on the upper side between l1 and rn as baseline objets. We haveaess to these objets in the order in whih they appear on the boundary of thebu�er's outer fae. We start with an ar A that touhes the �rst and last objet Oiand Ok, respetively. We bend A towards the bu�er until it hits a third objet Oj .There, we split A into two piees, its hildren. We onnet the hildren of A witha piee of Oj that initially has length zero. Then we reursively bend the hildrenfurther towards the bu�er, see Figure 11.3. While we bend, the portion of Oj thatonnets the hildren of A is growing. Note that there are two phases: in the �rst,the radius of the ars inreases while it dereases in the seond. The reursion endswhere Oi and Ok are adjaent on the bu�er (sine there is no Oj then) and in theseond phase where the urvature of an ar would exeed 1=(r + h), h the labelheight.For eah level of the reursion, the sequene of ars we obtain in this way formsa ontinuous urve L. If we diret L from left to right, it beomes obvious that theradius of all ars that turn right (i.e. towards the bu�er) is at least r and the radiusof ars that turn left is at least r + h. By using L as the baseline of our strip ofheight h we ensure that all ars that form the upper boundary and the baseline ofthe strip have at least radius r. Thus the strip ful�lls the urvature onstraint H2.Sine the baseline of the strip annot interset the "-bu�er it is lear that the stripalso ful�lls the distane onstraint H1. The non-self-intersetion onstraint H3 aneasily be kept by ending the reursion where the distane between Oi and Ok is lessthan 2h.If the number of inetions is to be kept small, the reursion an also bestopped whenever the direted distane of a strip segment to the polyline is belowa given threshold. However this is diÆult to hek without the Voronoi diagram
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r 2"h P outer fae of B(P )Figure 11.3 re�ning the andidate strip: �rst level (solid), seond level (dashed), third level(densely dotted), and forth level (dotted)of the points and (open) edges of P .It is possible to add two interesting re�nement levels. In both, an ar of thebaseline does not neessarily touh three objets on the boundary of the bu�er'souter fae. For a strip with more retangular segments one ould add a re�nementlevel between level 2 and 3 of the leftmost strip segment in Figure 11.3. Note thatthe radii of the annular strip segments there inrease up to level 2 and then dereaseagain. Retangular segments in an additional re�nement level an thus be viewed asannular segments with in�nite radius. On the other hand, to make the strip followP as losely as possible, a �nal re�nement level ould be added where all annularstrip segments are delimited by two ars with radius r and r + h. The baseline ofthis strip is part of the urve on whih a disk of radius r + h is rolled around thebu�er if the disk must always touh the bu�er but not interset its interior.In order to determine the third objet on an ar, we test eah objet betweenthe left- and rightmost objet in onstant time. Thus we need linear time for eahlevel of the reursion. As with the Douglas-Peuker line-simpli�ation algorithm,the number of reursion levels depends on the distribution of the input data andan vary from 
(logn) to O(n). Given the outer fae of the ("; r)-bu�er the stripan hene be omputed in O(n2) time, while the average ase an be expeted tobe in O(n logn).11.5 FINDING GOOD LABEL POSITIONSIn order to satisfy the soft onstraints, we evaluate label andidates within the stripaording to urvature, number of inetions, or direted label-polyline Hausdor�distane. (We de�ne the urvature of a label as the sum over urvature timeslength of eah label segment. The urvature of a retangular segment is 0; that ofan annular segment with ars of radius r1 and r2 = r1 + h is 1=r1.) For all three



A Simple and EÆient Algorithm for High-Quality Line Labeling 8evaluation funtions, the basi idea is the same. We disretize the spae of labelandidates suh that the disrete spae has linear size and ontains minima. Thenwe searh the disrete spae for a minimum.For urvature and number of inetions it is easy to see that there is a min-imizing label andidate that starts or ends with one of the retangular or annularsegments of the strip. In order to �nd a minimum, we push a label of the givenlength through the strip and stop whenever a new segment starts (or ends). Toompute the measure of the urrent andidate, we only have to do a onstant num-ber of updates given the value at the previous position. This is how we an �nd aplaement minimizing urvature or number of inetions in linear time.For Hausdor� distane, the disretization is more diÆult. We only take intoaount the baseline of the strip. In order to ompute eÆiently the distane be-tween the baseline of a label andidate and the polyline P , we need to know thelosest objet (point or edge) of P for every point on the whole baseline. Inter-seting the baseline with the Voronoi diagram of the objets of P would yield thisinformation and lead to an O(n logn) algorithm under ertain onditions (Knipping,1998).However, omputing the Voronoi diagram for a set of points and line segmentsis not a trivial task in pratie. Therefore we implemented a simpler algorithmthat �nds a near-optimal label plaement as follows. Given an integer k, we splitthe baseline into k piees of equal length. Let  be the length of suh a piee.We approximate the distane between eah piee and P by the distane of thepiee's midpoint from P . This an be done by brute fore in O(nk) time with O(k)storage. Then we proeed as above: we push the label through the strip, stop ateah midpoint and evaluate the urrent label position. Its Hausdor� distane to Pis within  from the maximum over the distanes of all baseline piees overed bythe label. For fast aess to this approximate maximum, we keep the appropriatedistanes in a priority queue. During the exeution of the algorithm, we mustinsert the distane of eah piee at most one into the queue. The same holdsfor deletions. Eah suh operation osts O(log k) time, hene we an ompute anoptimal plaement among all those starting at a midpoint of a baseline piee inO(nk + k log k) time with O(k) storage. The triangle inequality guarantees thatthis plaement is at most  further away from P than a plaement minimizing theexat direted Hausdor� distane. A detailed desription of the implementation ofthe above evaluation funtions an be found in (Knipping, 1998) (in German).11.6 EXPERIMENTAL RESULTSIn order to analyze our line-labeling algorithm, we applied it to syntheti and to real-world data. The latter is taken from the CIA-map data at the URL ftp://gatekeeper.de.om/pub/graphis/data/ia-wdb/db.tar.Z, see Figures 11.4 and 11.5. In both�gures, labels were plaed aording to the approximated Hausdor� distane.The syntheti data belongs to three di�erent example lasses. Due to lak ofspae we an only present our results on one lass. For more detailed informationinluding graphs depiting the frequeny of ruial operations, see our Web page.For the example lass RandomWalk we use random numbers �xi and �yi
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dogneFigure 11.4 A piee of the Dordogne (109 points). Above with andidate strip and labelplaement (shaded grey), below with lettering
Figure 11.5 A piee of the Guadalquivir (130 points)

Figure 11.6 RandomWalk with 400 pointsthat we draw from a normal distribution with mean 0 and standard deviation 1.In order to get an x-monotonous polyline we hoose the x-oordinates as follows:x1 = 0 and xi = xi�1 + j�xij. Then we sale all xi by xn suh that 0 = x1 < x2 <: : : < xn = 1. Similarly, we set the y-oordinates to y1 = 0 and yi = yi�1+�yi=100.Figure 11.6 shows an instane of RandomWalk with the andidate strip of thelast re�nement level, not ounting the additional levels mentioned in Setion 11.4.The grey regions indiate an optimal label plaement within the strip minimiz-ing urvature, number of inetions, and approximative Hausdor� distane (left toright, shaded light to dark). The parameters for the strip omputation were mini-mum label-polyline distane " = 0:005, urvature bound r = 0:01, and label heighth = 0:02. More examples an be found in (Knipping, 1998) or generated on ourWeb page.We generated 50 RandomWalk examples with 100, 200, : : :, 1000 points toanalyze the performane of our C++ implementation. We used the SunPRO-CC
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Figure 11.7 Strip generation timeompiler with optimizer ags -fast -O3 and measured runtimes on a Sun Ultra-Spar 250. We prepared two graphs, see Figures 11.7 and 11.8. In both, the y-axisgives the average CPU time (in seonds) and the x-axis gives the number n ofpoints of the polyline. The points on our graphs give the results averaged over all50 examples; the extent of the vertial bars indiates the minimum and maximumruntime among these 50 examples.Figure 11.7 shows the running times of the "-bu�er, ("; r)-bu�er and stripgeneration for RandomWalk. Note that the three urves are additive; i.e. the top-most urve orresponds to the total runtime. The two additional re�nement levelsmentioned in Setion 11.4 were inluded.
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+ + + + + + + + + +Figure 11.8 Running times for label plaementIn Figure 11.8 we give the runtimes for plaing labels within the pre-omputedstrip aording to urvature and approximated Hausdor� distane. Here the param-eters were urvature r = 8=n, minimum distane " = 2=n, label height h = 10=n,and label length ` = 50=n. For minimizing the Hausdor� distane we set the ap-proximation parameter  to 1=(2n). We omitted the urve for number of inetionssine it is idential to that of urvature. Other than in the desription in Se-tion 11.5 we used lists instead of priority queues for the approximated Hausdor�distane, hene the quadrati runtime behaviour.



A Simple and EÆient Algorithm for High-Quality Line Labeling 1111.7 CONCLUSIONWe have presented a new and oneptually simple method for high-quality line label-ing. It is the �rst that ful�lls both of the following two requirements: it allows urvedlabels and its worst-ase runtime is in O(n2). We introdued a onept of gradualre�nement that is similar to the idea of the Douglas-Peuker line-simpli�ation al-gorithm. This onept allows to introdue additional appliation-dependent riteriaand to stop the re�nement when these riteria are met.An experimental evaluation of our algorithm shows that it usually runs insub-quadrati time and generally yields good results in pratie. However, sinewe redue the searh spae for good label andidates to a one-dimensional strip, itis lear that we annot hope to �nd an optimal label plaement in every ase. Asthe following example indiates, a more exible strategy in the bu�er onstrutionmight help to overome problems aused by the redution of the searh spae.
Figure 11.9 Disturbing e�ets of the de�nition of the ("; r)-bu�er. (The upper part of its outerfae is marked by bold grey ars; the input polyline below onsists of bold blak line segments.)In Figure 11.9 we depited all r-ars at right turns of the input polyline P .The parameter r was hosen large ompared to the average segment length of P . Asa result, some of the ars that ontribute to the ("; r)-bu�er are quite distant fromthe input polyline P . They were aused by right turns inident to two very steepbut short edges of P . It would be desirable to remove these ars. However, we mustensure that the resulting strip does not violate the urvature onstraint H2. This anbe done as follows. After the �rst phase of the ("; r)-bu�er omputation we omputethe direted Hausdor� distane of eah r-ar Ai to the "-bu�er between li and ri. Inorder of desending distane we hek for eah Ai whether the orresponding "-arlies ompletely in the area Dj of another r-ar Aj . If this is the ase, we removeAi. Then we proeed to the seond phase of the bu�er omputation as usual. Notethat the resulting outer fae of the bu�er still onsists exlusively of r-ars and linesegments. Thus the strip will still keep H2.An alternative approah is as follows. We observed that our plaement of ther-disks is good if the the adjaent edges of the polyline are long enough. Then thedireted Hausdor� distane between the ar Ai and the "-bu�er is minimized. How-ever, in general the plaement of the r-disks is too inexible. It ould ertainly beimproved if we tried to minimize the aformentioned distane during the plaement.Then the plaement of the r-disks would take into aount not only the adjaentedges of the polyline but all of the polyline (or the "-bu�er) between li and ri.Finally we would like to aknowledge a simple and elegant idea of Mike Loner-gan, University of Glamorgan, Pontypridd. He suggested to put the "-bu�er aroundthe label (and thus simply thiken the strip by 2") instead of the polyline. Unfor-tunately, this does not solve the problem of plaing the r-irles.
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