
Approximate Euclidean Shortest Paths amid Convex Obstacles∗

Pankaj K. Agarwal R. Sharathkumar Hai Yu

Department of Computer Science

Duke University, Durham NC 27708

July 3, 2008

Abstract

We develop algorithms and data structures for the approximate Euclidean shortest path problem
amid a set P of k convex obstacles in R

2 and R
3, with a total of n faces. The running time of our

algorithms is linear in n, and the size and query time of our data structure are independent of n.
Our approeach is to quickly compute a small sketch Q of P whose size is independent of n and then
compute approximate shortest paths with respect to Q.

∗Work on this paper is supported by NSF under grants CNS-05-40347, CFF-06-35000, and DEB-04-25465, by
ARO grants W911NF-04-1-0278 and W911NF-07-1-0376, by an NIH grant 1P50-GM-08183-01, by a DOE grant OEG-
P200A070505, and by a grant from the U.S.–Israel Binational Science Foundation.

1

1 Introduction

The Euclidean shortest-path problem is defined as follows: Given a set of pairwise-disjoint convex
polyhedral obstacles in R

2 or R
3 and two points s and t, compute the shortest path between s and t

that avoids the interior of the obstacles. This problem has received much attention in computational
geometry and robotics; see, e.g., the survey paper [15] for a comprehensive review. Let n denote the
total complexity of the obstacles. In two dimensions, Hershberger and Suri [14] presented an optimal
O(n log n)-time algorithm for computing the exact Euclidean shortest path between two points amid
polygonal obstacles. In three dimensions, Canny and Reif [5] proved that the problem is NP-Hard
even if the obstacles are a set of parallel triangles, and the best known exact algorithm runs in time
singly exponential in n [20]. When the obstacles are convex, Sharir [22] showed that the exact shortest
path can be computed in nO(k), where k is the number of obstacles.

The known lower-bound results have motivated researchers to develop fast algorithms for comput-
ing approximate shortest paths and for computing shortest paths in special cases. Papadimitriou [17]
gave an O(n4(L + log(n/ε))/ε2)-time algorithm for computing an ε-approximate shortest path, i.e., a
path whose length is at most (1 + ε) times the length of the shortest path. Here L is the number of
bits of precision in the model of computation. A rigorous analysis of Papadimitriou’s algorithm was
later given by Choi et al. [8]; see also [4]. Clarkson [9] proposed a different algorithm for computing
an ε-approximate shortest path; the running time of his algorithm is roughly O(n2 logO(1) n/ε4) (the
running time also depends on the geometry of obstacles).

The special case of computing a shortest path between two points along the surface of a single
convex polytope has been widely studied. After an initial O(n3 log n) algorithm by Sharir and Schorr
[23], the bound was improved to O(n2) by Chen and Han [7] (see also [16]). A major open problem
was whether the running time can be improved to O(n log n). Such an algorithm is recently developed
by Shreiber and Sharir [21]. Hershberger and Suri [13] proposed a simple O(n) algorithm to compute a
1-approximate shortest path. Later Agarwal et al.. [3] developed an O(n log(1/ε)+1/ε3) algorithm to
compute an ε-short path (see also [2]). Their algorithm computes a convex polytope of size O(1/ε3/2)
that approximates the original polytope and runs a quadratic shortest-path algorithm on the simplified
polytope. The aforementioned exact shortest-path algorithms [23, 7, 16] can also construct a data
structure for a given polytope, a fixed point s and a parameter 0 < ε ≤ 1 so that the shortest
distance to a query point can be answered quickly. Har-Peled [12] described a data structure of size
O((n/ε) log(1/ε)) that can compute an ε-short distance from source s to a query point in O(log(n/ε))
time. His technique applies to the more genearal case of polyhedral obstacles, albeit with much worse
preprocessing time (roughly O(n4/ε6)) and space complexity (O(n2/ε4+δ) for any δ > 0).

In this paper we study the problem of computing approximate Euclidean shortest paths amid
convex obstacles. Let P = {P1, . . . , Pk} be a set of k pairwise-disjoint convex obstacles in R

d (d = 2, 3).
Each Pi is represented as the intersection of ni halfspaces; set n =

∑k
i=1 ni, which denotes the total

complexity of P. The free space of P, denoted by F(P), is defined as the closure of R
3 \⋃

P. Given two
points s, t ∈ F(P), let πP(s, t) denote the shortest path between s and t in F(P), and let dP(s, t) denote
the length of πP(s, t). Let ε > 0 be a fixed parameter. The ε-approximate shortest-path problem is to
compute a path π ⊆ F(P) between s and t whose length is at most (1 + ε)dP(s, t). Such a path π is
called an ε-short path, and its length is called an ε-short distance. For a fixed source s ∈ F(P), the
approximate shortest-path query problem is to preprocess P into a data structure so that for any query
point t ∈ F(P), an ε-short distance (or an ε-short path) between s and t can be reported quickly.

We obtain algorithms for computing approximate shortest paths between two points whose running
time depends linearly in n, and data structures for answering approximate shortest-path queries to a
fixed source whose size is independent of n. As far as we know, our results are the first to achieve this

1

kind of performance. More specifically, we obtain the following:

• In R
2, for any two points s, t ∈ F(P) and a parameter 0 < ε ≤ 1, an ε-short path between s and

t can be computed in O(n + (k/
√

ε) log(k/ε)) time.

• In R
3, for any two points s, t ∈ F(P) and a parameter 0 < ε ≤ 1, an ε-short path between s and

t can be computed in O(n + (k4/ε7) log2(k/ε) log log k) time.

• In R
3, for a fixed source s ∈ F(P) and a parameter 0 < ε ≤ 1, a data structure of size

O(k3 poly(log k, 1/ε)) can be constructed in O(n log k + k7 poly(log k, 1/ε)) so that an ε-short
distance between s and a query point t ∈ F(P) can be reported in O(log2(k/ε) log(1/ε)) time.
An ε-short path can be reported in O(k2/ε3/2) time by increasing the size of the data structure
to O(k5 poly(log k, 1/ε)).

As can be seen, when k ≪ n, our algorithms and data structures perform much better in terms of
space and running time than previously known results.

This paper is organized as follows. In Section 2, we describe our results for approximate shortest
paths in R

2. In Section 3, we present our approximate shortest path algorithm in R
3. In Section 4,

we describe a data structure for answering approximate shortest-path queries in R
3.

2 Approximate Shortest Paths in R
2

For a parameter ε > 0, a set Q = {Q1, . . . Qk} of k pairwise-disjoint convex polygons is called an
ε-sketch of P if

(i) Pi ⊆ Qi, for i = 1, · · · , k;

(ii) for any s, t ∈ F(Q), dQ(s, t) ≤ (1 + ε)dP(s, t).

Since F(Q) ⊆ F(P), πQ(s, t) ⊆ F(P) for any s, t ∈ F(Q). Therefore (ii) implies that πQ(s, t) is an ε-short
path of s, t in F(P). Next we describe an algorithm to construct an ε-sketch Q of small complexity.

Set r = ⌈
√

2π/
√

ε⌉ and let uj = (cos j2π/r, sin j2π/r) for 0 ≤ j < r. The set N = {uj | 0 ≤ j < r}
is a uniform set of directions from S

1. For a convex polygon P and a direction uj ∈ N, let ℓj(P) denote
the line passing through the extreme point of P in direction uj , and let hj(P) denote the halfplane
bounded by ℓj(P) and containing P . Set H ′

i = {hj(Pi) | 0 ≤ j < r}. In addition, let H ′′
i be the set of

four halfplanes which define the orthogonal bounding-box of Pi. Set Hi = H ′
i ∪ H ′′

i .
We call a pair {Pi, Pj} vertically visible if there is a vertical segment e connecting ∂Pi to ∂Pj such

that the relative interior of e does not intersect any polygon of P (see Figure 1). Let ℓij be the line
that separates Pi and Pj . Let Φ be the set of vertically visible pairs. It can be shown that |Φ| ∈ O(k)
and that it can be computed in O(n + k log n) time.

For each Pi, set Pi = {Pj | {Pi, Pj} ∈ Φ}. For each Pj ∈ Pi, let gj be the halfplane that contains
Pi and that is bounded by a line parallel to ℓij that supports Pi and that separates Pj from Pi. Set
Gi = {gj | Pj ∈ Pi}. We define

Qi = (
⋂

g∈Gi

g) ∩ (
⋂

h∈Hi

h)

Set Q = {Q1, . . . , Qk}. We next prove that Q is an ε-sketch of P. We call a vertex v ∈ ∂Qi, new
if v 6∈ ∂Pi. Each edge of Qi touches a vertex of Pi. For each new vertex v of Qi, let lv (resp., rv) be
the vertex of Pi lying on the edge adjacent to v in counterclockwise (resp., clockwise) direction. We
denote by ∆(v) the triangle formed by lv, v, and rv. Using the fact that the internal angle of each new
vertex in Qi is at least π −

√
2ε, we can prove the following.

2

Lemma 1 For any pair of points p ∈ vlv and q ∈ vrv, ‖pv‖ + ‖vq‖ ≤ (1 + ε)‖pq‖ ≤ (1 + ε)dP(p, q).

Proof: ‖pv‖+ ‖qv‖ ≤ ‖pq‖/ sin(∠pvq/2) ≤ ‖pq‖/ sin(π/2−
√

ε/2) ≤ ‖pq‖/(1 − ε/2) ≤ (1 + ε)‖pq‖ ≤
(1 + ε)dP(p, q). �

P3

Q3

P1

P2

Q2

Q1

π

π′

s

t

Figure 1. A path π ⊆ F(P) can be modified into π
′ ⊆ F(Q) so that |π′| ≤ (1 + ε)|π|.

Lemma 2 Q is an ε-sketch of P.

Proof: By construction of Hi, the bounding box of Pi and Qi are identical. Using this observation, it
can be shown that any pair of polygons {Qi, Qj} intersect if and only if there exists a vertically visible
pair of polygons {Pi, Pk} ∈ Φ such that {Qi, Qk} intersect. Since Gi adds halfplanes to ensure that no
two vertically visible pairs intersect, we conclude that Q is a set of pairwise-disjoint convex polygons.
Furthermore, since each halfplane in Gi ∪ Hi contains Pi, Pi ⊆ Qi. It thus remains to prove that for
any s, t ∈ F(Q), dQ(s, t) ≤ (1 + ε)dP(s, t).

Set Σ = {∆(v) | v is a new vertex of some Qi ∈ Q}. Σ consists of a set of obtuse-angled triangles
whose interiors are pairwise-disjoint and which cover the region F(Q) \ F(P). For any pair of points
s, t ∈ F(Q), let π = πP(s, t). If π does not intersect any triangle in Σ, then π ⊆ F(Q) and dQ(s, t) =
dP(s, t). Let Σst = 〈∆(v1), . . . ,∆(vm)〉 ⊆ Σ be the sequence of triangles that π intersects and let
〈(p1, q1), . . . , (pm, qm)〉 be the sequence of pairs of intersection points of π with the boundaries of
triangles in Σst. Set s = q0 and t = pm+1. We obtain a path π′ from π by replacing each segment piqi

with pivi ◦ viqi (see Figure 1). Clearly, π′ ⊆ F(Q). In addition,

|π′| =

m∑

i=0

dQ(qi, pi+1) +

m∑

i=1

(‖pivi‖ + ‖viqi‖)

≤
m∑

i=0

dP(qi, pi+1) + (1 + ε)

m∑

i=1

dP(pi, qi)

≤ (1 + ε)|π|,

thereby implying that dQ(s, t) ≤ (1 + ε)dP(s, t). �

Theorem 1 Given a set P of k pairwise-disjoint convex polygons of total complexity n in R
2, an

ε-sketch of P with size O(k/
√

ε) can be computed in O(n + k log k) time.

3

Remark. If we assume that the vertices of the input polygons in P are given in the sorted order, we
can compute an ε-sketch Q of P in O(k log n) time.

As an immediate applications of the above theorem, we show how to compute an ε-short path
between two points s, t ∈ F(P). We treat s and t as two additional (degenerate) obstacles and
compute an ε-sketch Q of P ∪ {s, t}. This ensures that s, t ∈ F(Q). We then apply the the algorithm
of Hershberger and Suri [14] to obtain πQ(s, t); the running time is O((k/

√
ε) log(k/ε)). Since Q is an

ε-sketch, πQ(s, t) is an ε-short path of s, t in F(P). Moreover, the path consists of O(k/
√

ε) edges.

Corollary 1 Given a set P of k pairwise-disjoint convex polygons of total complexity n in R
2 and two

points s, t ∈ F(P), an ε-short path between s and t which consists of O(k/
√

ε) edges can be computed
in O(n + (k/

√
ε) log(k/ε)) time.

3 Approximate Shortest Paths in R
3

In this section we present an efficient algorithm for computing approximate shortest paths amid a set
of convex polytopes in R

3. The basic idea of our algorithm is the same as in the preceding section,
i.e., to first compute a sketch of small size for the convex obstacles and then compute a path amid the
sketch. However, a simple example shows that one cannot hope for a small-sized sketch that works for
all pairs of points s, t ∈ P simultaneously. Nonetheless, we show that a small-sized sketch can indeed
be computed for any fixed pair of points s, t ∈ P, which suffices for our purpose.

Outer approximations. For a set U ⊆ R
3 and a real number r > 0, let Ur = U ⊕Br where ⊕ refers

to the Minkowski sum and Br denote a ball of radius r centered at the origin. For a parameter r > 0
and a convex polytope P of n vertices, an outer r-approximation of P is a convex polytope P (r) such
that P ⊆ P (r) ⊆ Pr. Set δ = r/diam(P). Dudley [10] has shown that there is a polytope P (r) of size
O(1/δ), and Agarwal et al. [3] has shown that it can be computed in O(n + (1/δ) log(1/δ)) time. The
concept of outer approximation can be generalized to k pairwise-disjoint convex polytopes as follows.
Given a parameter r > 0 and a set P = {P1, . . . , Pk} of k pairwise-disjoint convex polytopes in R

3,
each of diameter at most D, we call Q = {Q1, · · · , Qk} an outer r-approximation of P if the convex
polytopes in Q are pairwise-disjoint and Pi ⊆ Qi ⊆ (Pi)r for i = 1, · · · , k.

Set δ = r/D. An r-outer approximation Q of P of total complexity O(k2 + k/δ) can be computed
as follows. For each Pi ∈ P, we first compute Dudley’s outer r-approximation Pi(r) of Pi. Next, for
j 6= i, we compute a supporting plane hi,j of Pi that separates Pi and Pj . Let h+

i,j denote the halfspace

bounded by hi,j and containing Pi. We set Qi = Pi(r)∩
⋂

j 6=i h
+
i,j. The resulting set Q = {Q1, · · · , Qk}

is a set of pairwise-disjoint convex polytopes such that Pi ⊆ Qi ⊆ Pi(r) ⊆ (Pi)r. Hence Q is an outer
approximation of P. Since the complexity of each Qi ∈ Q is O(k + 1/δ), the total complexity of Q

is O(k2 + k/δ). Each supporting hyperplane hi,j can be computed by using the Dobkin-Kirkpatrick
hierarchies of Pi and Pj in O(log |Pi| · log |Pj |) = O(log2 n) time. Hence, the time spent in computing
Q is

O(n + (k/δ) log(1/δ) + k2 log2 n + (k2 + k/δ) log(k + 1/δ)) = O(n + k2 log2 k + (k/δ) log(1/δ)).

ε-Sketches. For two points s, t ∈ F(P) and a value such that d ≥ ‖st‖, we show how to construct a
set Q of at most k pairwise-disjoint convex obstacles of total complexity O(k2/ε3/2) such that

dQ(s, t) ≤ (1 + ε/2)dP(s, t) + εd/8. (1)

4

Let C4d be a cube centered at s of side length 4d. Note that t lies within C4d because d ≥ ‖st‖. We
clip every polytope of P with C4d and obtain a set P′ of at most k pairwise-disjoint convex obstacles,
each of diameter at most 4

√
3d. We treat s, t as two additional (degenerate) obstacles and compute

an outer r-approximation Q of P′ ∪ {s, t} with r = ε3/2d/ck, where c is a sufficiently large constant.
Observe that s and t are in F(Q). The resulting set Q has total complexity O(k2/ε3/2) and can
be constructed in time O(n + k2 log2 k + (k2/ε3/2) log(k/ε)). In fact, if we precompute the Dobkin-
Kirkpatrick hierarhcy of each Pi ∈ P in a total of O(n) time, then Q can be computed in an additional
O(k2 log2 k + (k2/ε3/2) log(k/ε)) time.

Now we prove (1). We need the following lemma (whose proof is included in the appendix).

Lemma 3 Let P and Q be two convex polytopes such that P ⊆ Q ⊆ Pr. For a parameter 0 < ε ≤ 1
and any pair of points p, q ∈ ∂Q,

dP (p, q) ≤ dQ(p, q) ≤ (1 + ε/2)dP (p, q) + (2π + 6)r + 100r/
√

ε. (2)

If the path πP(s, t) does not intersect any polytope in Q, then πQ(s, t) = πP(s, t) and therefore
(1) holds. So assume that πP(s, t) intersects a polytope of Q. It is well known that or any Qi ∈ Q,
the intersection πP(s, t) ∩ Qi consists of at most one connected component [18]. For each polytope
Qi ∈ Q intersected by πP(s, t), let pi, qi ∈ ∂Qi be the corresponding entry and exit points of πP(s, t).
We obtain a new path π from πP(s, t) by replacing its subpath πP(pi, qi) with πQ(pi, qi), for each
pair (pi, qi). Clearly, π ⊆ F(Q). Furthermore, for each pair (pi, qi), applying Lemma 3 on Pi, Qi and
pi, qi ∈ ∂Qi with r = ε3/2d/ck, we obtain

dQ(pi, qi) ≤ (1 + ε/2)dP(pi, qi) + εd/8k,

provided c is a sufficiently large constant. Hence |π| ≤ (1 + ε/2)dP(pi, qi) + εd/8, implying (1) as
desired.

Lemma 4 Let s, t ∈ F(P), and let d ≥ ‖st‖ be a real value. A set Q of at most k pairwise-disjoint
convex polytopes can be computed in O(k2 log2 k+(k2/ε3/2) log(k/ε)) time using the Dobkin-Kirkpatrick
hierarchies of the polytopes in P, such that the total complexity of Q is O(k2/ε3/2) and dQ(s, t) ≤
(1 + ε/2)πP(s, t) + εd/8.

Computing ε-short paths. Let d∗ = dP(s, t). We start by computing a 2k-factor approximation
d̃ to d∗ in O(n) time using the algorithm of Hershberger and Suri [13]. We have d∗ ≤ d̃ ≤ 2kd∗. Set
m = log(4k), and let d0 = d̃/2k and di = 2i · d0, for i = 1, · · · ,m. Note that d0 ≤ d∗ and dm ≥ 2d∗.

For each i = 1, · · · ,m, we run the algorithm of Lemma 4 with d = di and error parameter ε/3
to compute a set Qi. We then apply Clarkson’s algorithm on Qi and compute an (ε/3)-short path πi

between s and t in F(Qi).
1 If |πi| ≤ di, then πi ⊆ C4di

and therefore πi ⊆ F(P) (recall that while
constructing Qi we clipped the set P with the cube C4di

). This implies di ≥ |πi| ≥ d∗, or in other
words, for all di < d∗, |πi| > di. On the other hand, for all di ≥ 2d∗, by Lemma 4, the above procedure
returns a path πi of length at most (1 + ε/3)((1 + ε/6)d∗ + εdi/24 ≤ di. It follows that there is an
index i such that, for all j ≥ i, |πi| ≤ di, and for all j < i, |πi| > di, which can be computed by
a binary search on d1, · · · , dm. For this index i, we have d∗ ≤ di < 4d∗ and therefore by Lemma 4,

1Clarkson’s algorithm is divided into two steps. The first step computes an O(1)-short path and the second step
refines this approximation to obtain an ε-short path. Since, we assume we already have a constant-factor approximation,
only the refinement step is needed.

5

|πi| ≤ (1 + ε/3)2d∗ ≤ (1 + ε)d∗. Furthermore, |πi| ≤ (1 + ε)d∗ implies that πi ⊆ C4di
and therefore

πi ⊆ F(P). Hence, πi is an ε-short path between s and t in F(P).
We spend O(n) time for precomputing the Dobkin-Kirkpatrick hierarchy of each polytope in P, and

computing the value of d̃. Then, in each iteration, computing Qi takes O(k2 log2 k+(k2/ε3/2) log(k/ε))
time (Lemma 4), and running Clarkson’s algorithm takes O((k4/ε7) log2(k/ε)) time. Since the total
number of iterations is O(log m) = O(log log k), the total running time is O(n+(k4/ε7) log2(k/ε) log log k).
The output path has O(k2/ε3/2) edges, because each Qi is of total complexity O(k2/ε3/2). Hence, we
conclude the following.

Theorem 2 Let P be a set of k pairwise-disjoint convex polytopes in R
3 of total complexity n. For

any two points s, t ∈ F(P) and a parameter 0 < ε ≤ 1, an ε-short path between s and t which consists
of O(k2/ε3/2) edges can be computed in O(n + (k4/ε7) log2(k/ε) log log k) time.

By combining the algorithms of Har-Peled [11] and Hershberger and Suri [13], it is possible to use
the Dobkin-Kirkpatrick hierarchies to compute the value of d̃ in O(k log n) time. We then obtain the
following result.

Corollary 2 Let P be a set of k pairwise-disjoint convex polytopes in R
3 of total complexity n. Suppose

the Dobkin-Kirkpatrick hierarchies of the polytopes in P are given. For any s, t ∈ F(P) and any
0 < ε ≤ 1, an ε-short path between s and t which consists of O(k2/ε3/2) edges can be computed in
O(k log n + (k4/ε7) log2(k/ε) log log k) time.

4 Approximate Shortest-Path Queries in R
3

In this section we study the approximate shortest-path query problem amid P for a fixed source in
F(P) and a fixed parameter 0 < ε ≤ 1. The main result is a data structure whose size and query time
are independent of n. In Sections 4.1 and 4.2, we prove a few key geometric lemmas that our data
structure relies on. In Section 4.3, we present the details of the data structure.

4.1 Pseudoconvex subdivisions

For a convex polytope P , an ε-pseudoface of P is a region F ⊆ ∂P such that for any s, t ∈ F , there
exist outward normals us and ut of P at s and t respectively such that ∠us, ut ≤

√
ε/2. Note that an

ε-pseudoface is not necessarily a connected region.

Lemma 5 The boundary of a convex polytope P in R
3 (resp., R

2) can be decomposed into a collection
S of O(1/ε) (resp., O(1/

√
ε)) ε-pseudofaces, each of which is the union of a subset of faces of P . The

decomposition can be computed in O(|P |) time.

Proof: We only prove the lemma for R
3; the case for R

2 is simpler. Let G be a decomposition of S
2

into cells of geodesic diameter at most
√

ε/2. It is well known that such a decomposition G of size
O(1/ε) exists, and furthermore, for any u ∈ S

2, one can locate the cell σ ∈ G that contains u in O(1)
time (using floor functions). For a cell σ ∈ G, let S(σ) be the collection of faces of P whose outward
normals fall inside σ. (To avoid ambiguity, we choose G such that the outward normal of each face
of P is contained in the interior of a unique cell of G.) Let F (σ) =

⋃
f∈S(σ) f . Clearly, F (σ) is an

ε-pseudoface of P . We conclude that S = {F (σ) | σ ∈ G} is the desired collection of ε-pseudofaces of
P , and clearly it can be computed in O(|P |) time. �

6

For a set P of convex polytopes, we define an ε-pseudoconvex region in F(P) as a region σ ⊆ F(P)
such that for any s, t ∈ σ, dP(s, t) ≤ (1 + ε)‖st‖. Again, an ε-pseudoconvex region is not necessarily
connected. We define an ε-pseudoconvex decomposition Ξ of F(P) as a decomposition of F(P) into
ε-pseudoconvex regions.

A wedge W is the intersection of two halfspaces h+
1 ∩ h+

2 , and the angle of W is ∠u1, u2, where
u1, u2 are the outward normals of h+

1 and h+
2 respectively. Let W be a wedge of angle at most

√
ε/2.

A standard calculation shows that dP (s, t) ≤ (1 + ε)‖st‖ for any s, t ∈ F(W).

Lemma 6 Let P be a convex polytope in R
3. An ε-pseudoconvex decomposition Ξ(P) of F(P) of size

O(1/ε) can be computed in O(|P |) time.

Proof: Let Q be the vertical projection of P onto the xy-plane, and let C be the (infinite) vertical
prism Q × R. We produce an ε-pseudoconvex decomposition of F(P) by first constructing an ε-
pseudoconvex decomposition Ξ′ of size O(1/ε) within F(P)∩C = C \ int P , and then constructing an
ε-pseudoconvex decomposition Ξ′′ of F(P) \ int C = F(C) of size O(1/

√
ε).

The region C \ P consists of two components: the upper component C+ extending infinitely in
(+z)-direction, and the lower component C− extending infinitely in (−z)-direction. For a face f of
P in C+, let σf be the vertical prism with base f and extending infinitly in (+z)-direction. For
an ε-pseudoface F ∈ S, where S is defined in Lemma 5, let σF =

⋃
f⊆C+∩F σf . We claim that σF

is an ε-pseudoconvex region. To see this, for any s, t ∈ σF , let s′, t′ be their projections onto P in
(−z)-direction. Since s′, t′ lie in the same ε-pseudoface F , there are supporting planes hs′ and ht′

of P at s′ and t′ with outer normals us′ and ut′ , respectively, such that ∠us′ , ut′ ≤ √
ε/2. Let W

be the wedge h+
s′ ∩ h+

t′ , where h+
s′ (resp., h+

t′) denotes the halfspaced bounded by hs′ (resp., ht′) and
containing P . Observe that P ⊆ W and s, t ∈ F(W). Since the angle of W is at most

√
ε/2, we then

have dP (s, t) ≤ dW (s, t) ≤ (1 + ε)‖st‖ as desired. It follows that {σF | F ∈ S} is an ε-pseudoconvex
decomposition of C+. Symmetrically, we can construct an ε-pseudoconvex decomposition of C−. They
together form an ε-pseudoconvex decomposition Ξ′ of C \ int P of size O(1/ε).

In the xy-plane, using a similar method, we can construct an ε-pseudoconvex decomposition Ξ(Q)
of F(Q) of size O(1/

√
ε); in particular, for any σ ∈ Ξ(Q) and any s, t ∈ σ, there exists a wedge Ws,t

of angle at most
√

ε/2 in the xy-plane such that Q ⊆ Ws,t and s, t ∈ F(Wst). For any s, t ∈ σ × R

with σ ∈ Ξ(Q), let s′, t′ be the projection of s, t onto σ. Then W = Ws′t′ × R is a wedge of angle
at most

√
ε/2 such that P ⊆ W and s, t ∈ F(W), implying dP (s, t) ≤≤ dW (s, t) ≤ (1 + ε)‖st‖. As

such, σ × R is an ε-pseudoconvex region, and the set Ξ′′ = {σ × R | σ ∈ Ξ(Q)} is an ε-pseudoconvex
decomposition of F(C). We conclude that Ξ(P) = Ξ′ ∪ Ξ′′ is an ε-pseudoconvex decomposition of
F(P) of size O(1/ε). �

Using Lemma 6, we construct an ε-pseudoconvex decomposition of F(P) as follows. For i = 1, · · · , k,
set P ′

i =
⋂

j 6=i h
+
i,j, where hi,j is a plane separating Pi and Pj and h+

i,j is the halfspace bounded by
hi,j and containing Pi. Clearly, P ′

i is a convex polytope of complexity O(k) with Pi ⊆ P ′
i , and

P′ = {P ′
1, P

′
2, . . . , P

′
k} is a set of pairwise-disjoint convex polytopes. We decompose F(P′) into a

set Ξ0 of O(k3 log k) tetrahedra as described in [1]; each tetrahedron is clearly an ε-pseudoconvex
region. Next, for each polytope Pi, we obtain an ε-pseudoconvex decomposition Ξ(Pi) of F(Pi) from
Lemma 6, and clip each region σ ∈ Ξ(Pi) with P ′

i . Let Ξi = {σ ∩ P ′
i | σ ∈ Ξ(Pi)} denote the resulting

decomposition of P ′
i \ int Pi. (We remark that, for our purpose, there is no need to represent each

cell σ ∩ P ′
i explicitly.) Each region σ ∩ P ′

i ∈ Ξi is an ε-pseudoconvex region. This is because, for any
pair of points s, t ∈ σ ∩ P ′

i , πP(s, t) ⊆ P ′
i \ int Pi, implying dP(s, t) = dP (s, t) ≤ (1 + ε)‖st‖. Setting

Ξ(P) = Ξ0 ∪ Ξ1 ∪ · · · ∪ Ξk, we obtain the following.

Lemma 7 Ξ(P) is an ε-pseudoconvex decomposition of F(P) of size O(k3 log k + k/ε).

7

4.2 Critical distance values

Let s be a fixed source in F(P). For a region U ⊆ F(P), we call a set of distance values d1 < · · · < dm

critical if for any t ∈ U , one of the following holds:

(i) dP(s, t) ≤ (1 + ε)‖st‖; or

(ii) there exists an index i such that di ≤ dP(s, t) ≤ di+1 ≤ 2di.

Intuitively, the critical distance values of U are what we need to focus on when answering approximate
shortest-path queries for points in U ; for other cases the Euclidean distances would already be a good
approximation. We next describe an algorithm to compute a set Σ(Pi) of O((1/ε) log(1/ε)) critical
distance values for the region P ′

i \ intPi, for each i = 1, · · · , k.
Let Ξi be an (ε/4)-pseudoconvex decomposition of P ′

i \ intPi of size O(1/ε). We will compute a
set Σσ of critical distance values for for each (ε/4)-pseudoconvex region σ ∈ Ξi and then set Σ(Pi) =⋃

σ∈Ξi
Σσ. The set Σσ is computed as follows. We first find the Euclidean nearest neighbor ve of s in

σ (i.e., ve = arg minp∈Ξi
‖sp‖) using a method to be explained shortly. Using Corollary 2, we compute

a value r̃ such that dP(s, ve) ≤ r̃ ≤ 2dP(s, ve). We then set

Σσ =
{
r̃/8, 2r̃/8, 22r̃/8, . . . , 2m+3r̃/8

}
,

where m = ⌈log2(4 + 4/ε)⌉.
To compute the nearest neighbor ve of s in σ, recall that σ = σ′ ∩ P ′

i for some σ′ ∈ Ξ(Pi),
where Ξ(Pi) is an (ε/4)-pseudoconvex decomposition of F(Pi) from Lemma 6. Using the Dobkin-
Kirkpatrick hierarchy of P ′

i , one can compute the Euclidean nearest neighbor of s in σ′ ∩ P ′
i (i.e., ve)

in O(|σ′| log |P ′
i |) = O(|σ′| log k) time, where |σ′| denotes the complexity of the cell σ′.

Once ve is identified, the value r̃ and thus Σσ can be computed in O(k log n + k4 log2 k log log k +
|σ′| log k) time using Corollary 2 (after linear-time preprocessing). Since

∑
σ′∈Ξi

|σ′| = O(|Pi|) and

|Ξi| = O(1/ε), Σ(Pi) can then be computed in O((k/ε) log n + (k4/ε) log2 k log log k + |Pi| log k) time.
It remains to prove that Σσ is indeed a set of critical distance values for the region σ. Let vg ∈ σ

be the geodesic nearest neighbor of s in σ (i.e., vg = arg minp∈σ dP(s, p)), and let r = dP(s, vg). Since
σ is an (ε/4)-pseudoconvex region and ve, vg ∈ σ, we have

dP(ve, vg) ≤ (1 + ε/4)‖vevg‖ ≤ (1 + ε/4)(‖sve‖ + ‖svg‖) ≤ 2(1 + ε/4)dP(s, vg).

It follow that dP(s, ve) ≤ dP(s, vg) + dP(vg, ve) ≤ 4dP(s, vg), implying r ≤ r̃ ≤ 8r.
Next, we partition the region σ into two subsets: σ1 = {t ∈ σ | ‖vgt‖ ≥ r(1 + 4/ε)} and σ2 =

{t ∈ σ | ‖vgt‖ ≤ r(1 + 4/ε)}. For any point t ∈ σ1, we have r ≤ ‖vgt‖/(1 + 1/ε). Hence,

‖st‖ ≥ ‖vgt‖ − ‖svg‖ ≥ ‖vgt‖ − r ≥ ‖vgt‖(1 − 1/(1 + 4/ε)) = ‖vgt‖/(1 + ε/4).

Furthermore,

dP(s, t) ≤ dP(s, vg) + dP(vg, t) ≤ r + (1 + ε/4)‖vgt‖ ≤ (1 + 3ε/4 + ε2/16)‖vgt‖/(1 + ε/4).

Therefore, dP(s, t) ≤ (1 + 3ε/4 + ε2/16)‖st‖ ≤ (1 + ε)‖st‖.
On the other hand, for any point t ∈ σ2,

r ≤ dP(s, t) ≤ r + (1 + ε/4)‖vgt‖ ≤ (1 + (1 + ε/4)(1 + 4/ε))r ≤ (4 + 4/ε)r.

Together with r ≤ r̃ ≤ 8r, we obtain r̃/8 ≤ dP(s, t) ≤ (4 + 4/ε)r̃. Therefore, there exists an index
0 ≤ i < m + 3 such that 2ir̃/8 ≤ dP(s, t) ≤ 2i+1r̃/8, as desired.

Lemma 8 A set Σ(Pi) of O((1/ε) log(1/ε)) critical distance values for the region P ′
i \ intPi can be

computed in O((k/ε) log n + (k4/ε) log2 k log log k + |Pi| log k) time.

8

4.3 Data structures

We are now ready to describe the data structure for approximate shortest-path queries with respect
to a fixed source s ∈ F(P). We first present a simpler one that only reports a distance value, and then
describe the necessary changes to it so that an ε-short path can also be reported.

The structure. Recall from Sections 4.1 and 4.2 that P′ is a set of k pairwise-disjoint convex
polytopes, each of complexity O(k), such that for each P ∈ P there exists P ′ ∈ P′ with P ⊆ P ′, Ξ0

is the decomposition of F(P′) into O(k3 log k) tetrahedra, and Σ(P) is a set of m = O((1/ε) log(1/ε))
critical distance values for the region P ′ \ int P .

For each tetrahedron ∆ ∈ Ξ0, we construct a data structure D(∆) of Har-Peled [12] of size O(1/ε5)
in O(1/ε5) time so that for any point t ∈ ∆, an ε-short distance between s and t amid P can be reported
in O(log(1/ε)) time. The data structure of [12] in a tetrahedron ∆ is constructed by sprinkling a set
of O((1/ε2) log(1/ε)) weighted points in ∆ and then computing a weighted Voronoi diagram of this
point set togother with a point-location structure on top of it; the weight wp of each weighted point
p is an ε-short distance between s and p amid P. To answer a query for a query point t ∈ ∆, one
computes the weighted nearest neighbor q of t among the weighted points and returns the distance
value wq + ‖qt‖.

For each P ∈ P and each d ∈ Σ(P), we construct a data structure D(P, d) as follows. Set
r = ε3/2d/c for a sufficiently large constant c > 0. We compute an inner r-approximation I of P ∩C4d

so that I ⊆ P ∩ C4d ⊆ Ir and |I| = O(1/ε3/2). We then decompose the region (P ′ ∩ C4d) \ int I into
O(|P ′ ∩ C4d| + |I|) = O(k + 1/ε3/2) tetrahedra using an algorithm in [6], and process them into a
point-location structure of size O((k + 1/ε3/2) log2(k/ε)) with query time O(log2(k/ε)) [19]. For each
tetrahedron ∆, we again construct a data structure of Har-Peled [12] so that for any point t ∈ ∆,
an ε-short distance between s and t amid (P \ {P}) ∪ {I} can be reported in O(log(1/ε)) time (in
this data structure, the weight wp of each sprinkled point p ∈ ∆ is an ε-short distance between s
and p amid (P \ {P}) ∪ {I}). In summary, the data structure D(P, d) can be used to report, for any
t ∈ (P ′ ∩C4d) \ int I, an ε-short distance between s and t amid (P \ {P}) ∪ {I} in O(log2(k/ε)) time.

Finally, we preprocess Ξ0 and P′ into a point-location data structure of size O(k3 log3 k) so that
given a point t ∈ F(P), one of ∆ ∈ Ξ0 or P ′ ∈ P′ that contains t can be located in O(log2 k) time [19].

Using Lemma 8, we can compute the critical distance values in Σ(P1)∪ · · · ∪Σ(Pk) in O(n log k +
(k5/ε) log2 k log log k) time. The weight of each sprinkled point in Har-Peled’s data structure can be
computed in O(k log n + (k4/ε7) log2(k/ε) log log k) time using Corollary 2 (after O(n)-time prepro-
cessing). Therefore, the total time for constructing the entire data structure (which is dominated by
the time for computing all the weights plus the time for computing the critical distance values) is

O
(
n log k +

(
k2m + km/ε3/2 + k3 log k

)(
(1/ε2) log(1/ε)

)(
k log n + (k4/ε7) log2(k/ε) log log k

))
.

The size of the entire data structure is

O
(
(k + 1/ε3/2)(log2 k + 1/ε5) + k3 log k/ε5 + k3 log3 k

)
.

Query algorithm. To answer an approximate shortest-path query for a query point t ∈ F(P), we
proceed as follows. If t is contained in some tetrahedron ∆ ∈ Ξ0, then we simply use D(∆) to report
an ε-short distance between s and t and are done. Otherwise, t is contained in a polytope P ′ ∈ P′

for some P ∈ P. Let d1 < · · · < dm be the set of values in Σ(P), where m = O((1/ε) log(1/ε)). For
each dj , let Ij be the aforementioned inner rj-approximation of P ∩ C4dj

with rj = ε3/2dj/c, and let

d̃j be the distance value returned by querying t against the data structure D(P, dj). We find an index

9

i in {j | dj ≥ ‖st‖} such that d̃i ≤ (1 + ε)di and d̃i−1 > (1 + ε)di−1; this index can be computed by a

binary search. We then report max
{
(1 + ε)d̃i, (1 + ε)‖st‖

}
.

Lemma 9 dP(s, t) ≤ max
{
(1 + ε)d̃i, (1 + ε)‖st‖

}
≤ (1 + 3ε)dP(s, t).

Proof: Set d∗ = dP(s, t). First note that for any j, we have

d̃j ≤ (1 + ε)d(P\{P})∪{Ij}(s, t) ≤ (1 + ε)d∗. (3)

Furthermore, for any dj such that dj ≥ ‖st‖, using the same method to prove (1) of Section 3, it can
be shown that

d∗ ≤ (1 + ε/2)d(P\{P})∪{Ij}(s, t) + εdj/8. (4)

Next we distinguish two cases (recall that Σ(P) is a set of critical distance values for the region
(P \ {P}) ∪ {I}):

Case 1. d∗ ≤ (1 + ε)‖st‖. Combined with (3), clearly max
{
(1 + ε)d̃i, (1 + ε)‖st‖

}
is a (3ε)-short

distance between s and t in F(P).

Case 2. There exists an index j such that dj ≤ d∗ ≤ dj+1 ≤ 2dj . By (3), we know that di−1 ≤ d∗.
Since di−1 ≤ d∗ and dj ≤ d∗, we have di ≤ dj+1 ≤ 2d∗. Therefore by (4),

d̃i ≥ d(P\{P})∪{Ii}(s, t) ≥ (d∗ − εdi/8)/(1 + ε/2) ≥ (1 − ε/4)d∗/(1 + ε/2).

As such, (1 + ε)d̃i ≥ d∗. Together with (3), we conclude that (1 + ε)d̃i, and subsequently

max
{
(1 + ε)d̃i, (1 + ε)‖st‖

}
, is a (3ε)-short distance between s and t in F(P).

The lemma then follows. �

After rescaling ε, we obtain the following theorem.

Theorem 3 Let P be a set of k convex polytopes of total complexity n in R
3, and let s be a fixed

source in F(P). For any fixed parameter 0 < ε ≤ 1, a data structure of size O(k3 poly(log k, 1/ε))
can be constructed in O(n log k + k7 poly(log k, 1/ε)) time such that for any query point t ∈ F(P), an
ε-short distance between s and t can be reported in O(log2(k/ε) log(1/ε)) time.

Remark. By a combined use of inner and outer approximations of polytopes, we are able to modify
the above data structure so that it also reports an ε-short path between s and t in O(k2/ε3/2) time.
The details are presented in the appendix.

Theorem 4 Let P be a set of k convex polytopes of total complexity n in R
3, and let s be a fixed source

in F(P). For any fixed parameter 0 < ε ≤ 1, a data structure of size O(k5 poly(log k, 1/ε)) can be
constructed in O(n log k + k7 poly(log k, 1/ε)) time such that for any query point t ∈ F(P), an ε-short
distance between s and t can be reported in O(log2(k/ε) log(1/ε)) time. An ε-short path of complexity
O(k2/ε3/2) between s and t can be reported in an additional O(k2/ε3/2) time.

10

References

[1] P. K. Agarwal, B. Aronov, and S. Suri. Stabbing triangulations by lines in 3d. In Proc. 11th Annu. Sympos.
Comput. Geom., pages 267–276, 1995.

[2] P. K. Agarwal, S. Har-Peled, and M. Karia. Computing approximate shortest paths on convex polytopes.
In Symposium on Computational Geometry, pages 270–279, 2000.

[3] P. K. Agarwal, S. Har-peled, M. Sharir, and K. R. Varadarajan. Approximating shortest paths on a convex
polytope in three dimensions. J. ACM, 44:567–584, 1997.

[4] T. Asano, D. G. Kirkpatrick, and C. Yap. Pseudo approximation algorithms with applications to optimal
motion planning. Discrete Comput. Geom., 31:139–171, 2004.

[5] J. Canny and J. Reif. New lower bound techniques for robot motion planning problems. In Proc. 28th
IEEE Sympos. Foundat. Comput. Sci., pages 49–60, 1987.

[6] B. Chazelle and N. Shouraboura. Bounds on the size of tetrahedralizations. Discrete Comput. Geom.,
14:429–444, 1995.

[7] J. Chen and Y. Han. Shortest paths on a polyhedron, part i: Computing shortest paths. Internat. J.
Comput. Geom. Appl., 6:127–144, 1996.

[8] J. Choi, J. Sellen, and C.-K. Yap. Approximate Euclidean shortest paths in 3-space. Internat. J. Comput.
Geom. Appl., 7:271–295, 1997.

[9] K. L. Clarkson. Approximation algorithms for shortest path motion planning. In Proc. 19th Annu. ACM
Sympos. Theory Comput., pages 56–65, 1987.

[10] K. Dudley. Metric entropy of some classes of sets with differentiable boundaries. J. Approx. Theory,
10:227–236, 1974.

[11] S. Har-Peled. Approximate shortest-path and geodesic diameter on convex polytopes in three dimensions.
Discrete Comput. Geom., 21:216–231, 1999.

[12] S. Har-Peled. Constructing approximate shortest path maps in three dimensions. SIAM J. Comput.,
28:1182–1197, 1999.

[13] J. Hershberger and S. Suri. Practical methods for approximating shortest path on a convex polytope in
R

3. Comput. Geom. Theory Appl., 10:31–46, 1998.

[14] J. Hershberger and S. Suri. An optimal algorithm for Euclidean shortest paths in the plane. SIAM J.
Comput., 28:2215–2256, 1999.

[15] J. Mitchell. Shortest paths and networks. In Jacob E. Goodman and Joseph O’Rourke, editors, Handbook
of Discrete and Computational Geometry, pages 755–778. CRC Press, Inc., Boca Raton, FL, USA, 1997.

[16] J.S.B. Mitchell, D. Mount, and C. Papadimitriou. The discrete geodesic problem. SIAM J. Comput.,
16:647–668, 1987.

[17] C. Papadimitriou. An algorithm for shortest path motion planning in three dimension. Inform. Process.
Lett., 20:259–268, 1985.

[18] A. Pogorelov. Extrinsic Geometry of Convex Surfaces, volume 35 of Transactions of Mathematical Mono-
graphs. American Mathematical Society, Providence, RI, 1973.

[19] F. Preparata and R. Tamassia. Efficient point location in a convex spatial cell-complex. SIAM J. Comput.,
21:267–280, 1992.

[20] J. Reif and J. Storer. A single-exponential upper bound for finding shortest paths in three dimensions. J.
ACM, 41:1013–1019, 1994.

[21] Y. Schreiber and M. Sharir. An optimal algorithm for shortest paths on a convex polytope in three
dimensions. Discrete Comput. Geom., 39:500–579, 2008.

[22] M. Sharir. On shortest paths amidst convex polyhedra. SIAM J. Comput., 16:561–572, 1987.

[23] M. Sharir and A. Schorr. On shortest paths in polyhedral spaces. SIAM J. Comput., 15:193–215, 1986.

11

Proof of Lemma 3. Let p′ and q′ be the closest points of p and q on ∂P respectively. Let hp′ and hq′

be the planes passing through p′ and q′ with normals in the direction p′p and q′q respectively. It is easy
to see that hp′ and hq′ are supporting planes of P . Let p′′ (resp., q′′) be the intersection of ∂Pr with
the ray emanating from p′ (resp., q′) in direction p′p (resp. q′q). Observe that ‖p′p′′‖ = ‖q′q′′‖ = r.
Furthermore, since P ⊆ P ′ ⊆ Pr, the segment p′p′′ contains p and the segment q′q′′ contains q.

It has been shown in [3] that

dP ′(p′′, q′′) ≤ (1 + ε/2)dP (p′, q′) + 2πr + 2r + 100r/
√

ε.

Furthermore, observe that dP ′(p, q) ≤ ‖pp′′‖ + dP ′(p′′, q′′) + ‖q′′q‖ and dP (p′, q′) ≤ ‖p′p‖ + dP (p, q) +
‖qq′‖. Putting these inequalities together, we obtain (2) as claimed.

Reporting an ε-short path. We now modify the data structure of Section 4.3 slightly so that it
is also able to report an ε-short path between s and the query point t. For each P ∈ P and each
d ∈ Σ(P), we redefine D(P, d) as follows. Set r = ε3/2d/c for a sufficiently large constant c > 0. We
compute an outer r-approximation O of P ∩C4d so that P ∩C4d ⊆ O ⊆ (P ∩C4d)r and |O| = O(1/ε3/2).
We then decompose the region (P ′ ∩C4d) \ int O into O(k + 1/ε3/2) tetrahedra and process them into
a point-location structure. For each tetrahedron ∆, we construct a data structure of [12]. We also
compute an inner r-approximation I of P ∩ C4d as before and precompute the Dobkin-Kirkpatrick
hierarchies of I and O.

In addition, recall that the data structure of Har-Peled [12] in each tetrahedron is a weighted
Voronoi diagram of a set of O((1/ε2) log(1/ε)) weighted points. We store an ε-short path of complexity
O(k2/ε3/2) from s to each of these points (see Corollary 2). The rest of the data structure remains
the same. The size of the data structure becomes O(k5 poly(log k, 1/ε)), while the construction time
remains the same.

To answer a query, we proceed almost the same as before. The only difference occurs when the
query point t lies inside O \ int I, where O and I is the outer and inner approximations of P ∩C4d for
some P ∈ P and d ∈ Σ(P). In this case, we first compute the Euclidean nearest neighbor t′ of t on
I using the Dobkin-Kirkpatrick hierarchy of I, and then compute the project t′′ of t onto ∂O along
direction t′t using the Dobkin-Kirkpatrick hierarchy of O. Since t′′ ∈ (P ∩ C4d) \ int O, we can then
query D(P, d) with t′′. Recall that the query process identifies the weighted nearest neighbor q of t′′

among the weighted points belonging to the tetrahedron containing t′′. Let π be the precomputed
path from s to q. We then return the concatenation of π, qt′′, and t′′t as the path from s to t, and
return |π| + ‖qt′′‖ + ‖t′′t‖ as the distance value.

The correctness of the above procedure follows from the same arguments for Theorem 3 and
the observation that tt′′ is a line segment lying completely inside F(P) and ‖tt′′‖ ≤ 2r = 2ε3/2d/c.
Theorem 4 then follows.

12

