Geometric Approximation Using Coresets

Pankaj K. Agarwal

Department of Computer Science Duke University

- Shape Fitting

- S: Set of n points in \mathbb{R}^3
- \star Fit a cylinder through S
 - Find a cylinder C^* $C^*(S) = \arg \min_C \max_{p \in S} d(p, C)$
 - Optimal solution: n^4 [A., Aronov, Sharir]
 - O(1)-approximation: $\approx n^2$
- ★ Can we compute an ε -approximation of $C^*(S)$ in linear time?

Is there is a small coreset $Q \subseteq S$ so that $C^*(Q)$ approximates $C^*(S)$?

Geometry in Streaming Model $\overbrace{t=1}^{\bullet}$

★ An incoming stream of points in \mathbb{R}^d

 \star Maintain certain geometric/statistical measures of the input stream

- Diameter, smallest enclosing disk, k-clustering
- ★ Use $\log^{O(1)} n$ space and processing time
- \star Much work done on maintaining a summary of 1D data
- Little work on multidimensional geometric data
 [A., Krishnan, Mustafa, Venkatasubramanian], [Hershberger, Suri],
 [Bagchi, Chaudhary, Eppstein, Goodrich]
- * How much storage and processing time (per point) needed to maintain ε -approx of smallest disk enclosing S? Maintain a core set!

ε -Approximation and Random Sampling

- ★ $X = (S, R), R \subseteq 2^S$: Set system (range space)
 - δ : VC-dimension of X
- ★ $A \subseteq S \varepsilon$ -approximation if for all $r \in R$

$$\frac{|r|}{|S|} - \frac{|r \cap A|}{|A|} \le \varepsilon$$

- ★ A random subset $A \subset S$ of size $\frac{\delta^2}{\varepsilon^2} \log \frac{\delta}{\varepsilon}$ is an ε -approximation of S with high probability [Vapnik-Chervonenkis]
- ★ Efficient deterministic algorithms for computing an *ε*-approximation
 [Matoušek, Chazelle]

ε -Approximations

An ε -approximation is a coreset of S in a *combinatorial* sense

- S: Set of points in \mathbb{R}^2
- $R = \{r \cap S \mid r \text{ is a disk}\}$
- A: an ε -approximation of (S, R)
- A approximates $|S \cap r|$
- \star A is not a coreset of S in a metric/geometric sense
 - $\operatorname{diam}(A)$ does not approximate $\operatorname{diam}(S)$
 - A best-fit circle for A does not approximate the best-fit circle for S

What about other sampling schemes?

Unified Framework for Coresets

- \star Notion of coreset is problem specicific
- ★ Is there a unified framework that constructs coresets for a wide class of problems?
 - Random subset is an ε-approximation for a large class of range spaces!
 - Easy to compute

Define the notion of ε -kernel

 \star Core set for a wide class of problems

Geometric Approximation Using Coresets

- Computing ε -Kernels

Theorem A: [AHV, YAPV, Ch] $S \subseteq \mathbb{R}^d$, $\varepsilon > 0$. We can compute an ε -kernel of S of size $1/\varepsilon^{(d-1)/2}$ in time $n + 1/\varepsilon^{d-3/2}$.

Lemma 1: \exists affine transform M s.t.

- ★ Unit hypercube $[-1, +1]^d$ is the smallest box enclosing S
- ★ M(S) is fat
- ★ Q is an ε -kernel of $S \Leftrightarrow M(Q)$ is an ε -kernel of M(S)

Computing *ε***-Kernels**

Lemma 2: S: Set of n fat points in $[-1, +1]^d$, $\varepsilon > 0$. We can compute an ε -kernel of S of size $1/\varepsilon^{(d-1)/2}$ in time $n + 1/\varepsilon^{d-3/2}$.

Sketch: Algorithm in two phases

- ★ Compute $1/\varepsilon^{d-1}$ -size approximation Q
- \star Draw a sphere *B* of radius 2 centered at origin
- ★ Draw a grid of size $1/\varepsilon^{(d-1)/2}$ on B
- ★ For each grid point q, select its nearest neighbor in Q

(Suffices to compute approximate NN.)

Kernel Computation -

★ Computing ε -kernels for $\varepsilon < 0.05$ on various synthetic inputs

Input	Input	Kernel Size					
Туре	Size	d = 2	d = 4	d = 6	d = 8		
sphere	10,000	10	994	7,773	6,983		
	100,000	10	1,824	22,392	57,276		
	1,000,000	10	1,982	38,836	139, 340		
cylinder	10,000	6	367	3,834	6,320		
	100,000	6	859	8,857	49,203		
	1,000,000	6	451	12,717	127, 385		
clustered	10,000	8	235	718	2,502		
	100,000	12	326	1,483	7,614		
	1,000,000	12	140	1,554	13,781		

<u>.BioGeometry</u>

Kernel Computation: Running Time

Input	Input	d = 2		d = 4		d = 6		
Туре	Size	Prepr	Query	Prepr	Query	Prepr	Query	
sphere	10,000	0.03	0.01	0.06	0.05	0.10	9.40	
	100,000	0.54	0.01	0.90	0.50	1.38	67.22	
	1,000,000	9.25	0.01	13.08	1.35	19.26	227.20	
cylinder	10,000	0.03	0.01	0.06	0.03	0.10	2.46	
	100,000	0.60	0.01	0.91	0.34	1.39	30.03	
	1,000,000	9.93	0.01	13.09	0.31	18.94	87.29	
clustered	10,000	0.03	0.01	0.06	0.01	0.10	0.08	
	100,000	0.31	0.01	0.63	0.02	1.07	1.34	
	1,000,000	5.41	0.01	8.76	0.02	14.75	1.08	

- ☆ Prepr: Time (in secs.) in converting input into a fat set and preprocessing for nearest-neighbor (NN) queries
- \star Query: Time (in secs.) in answering NN queries
- ★ Experiments run on Pentium IV 3.6GHz processor with 2GB RAM

BioGeomet

Kernel Computation -

★ Computing ε -kernels for $\varepsilon < 0.05$ on 3D models

Input	Input	Runnin	g Time	Kernel	Diameter	
Туре	Size	Prepr	Query	Size	Error	
bunny	$35,\!947$	0.17	0.01	67	0.010	
dragon	437,645	2.44	0.01	69	0.004	
buddha	$543,\!652$	2.87	0.01	68	0.010	

Experimental Results: Approximation Error

\star Tradeoff between kernel size and approximation error

Faithful Extent Measures

 $\mu(\cdot)$: Function defined over point sets in \mathbb{R}^d is *faithful* if

- $\bigstar \ \mu(S) \geq 0 \text{ for all } S \subseteq \mathbb{R}^d$
- $\bigstar \ \exists c > 0 \ (1 c\varepsilon)\mu(S) \leq \mu(Q) \leq \mu(S) \text{ for any } \varepsilon \text{-kernel } Q \text{ of } S$

Faithful measures: Diameter, width, radius of smallest enclosing ball, volume of the smallest enclosing box (simplex)

Nonfaithful measures: width of the thinnest spherical shell containing S

Computing Faithful Measures

- ★ S: Set of points, μ : A faithful measure, $\varepsilon > 0$
- ★ Compute an (ε/c) -kernel Q of S
- ★ Compute $\mu(Q)$ using a known algorithm
- ★ Return $\mu(Q)$ By definition, $\mu(Q) \ge (1 - \varepsilon)\mu(S)$
- $\bigstar \ S \subseteq \mathbb{R}^d, \varepsilon > 0$

Can compute a pair $p,q\in S$ s.t. $d(p,q)\geq (1-\varepsilon)\operatorname{diam}(S)$ in time $n+1/\varepsilon^{d-3/2}$

 $\bigstar \ S \subseteq \mathbb{R}^3, \varepsilon > 0$

Can compute an ε -kernel of the smallest simplex enclosing S in time $n + 1/\varepsilon^{9/2}$

How does one handle unfaithful measures?

Extents of Functions

★ $F = \{f_1, \ldots, f_n\}$: *d*-variate functions

- U_F : Upper envelope of $F U_F(x) = \max_i f_i(x)$
- L_F : Lower envelope of $F L_F(x) = \min_i f_i(x)$

.BioGeometry

Extent of F:

 $E_F(x) = U_F(x) - L_F(x)$

 ε -kernel: $G \subseteq F$ is an ε -kernel of F if

 $(1-\varepsilon)E_F(x) \le E_G(x) \qquad \forall x \in \mathbb{R}^d$

Geometric Approximation Using Coresets

ε -Kernels of Polynomials

 $F = \{f_1, \ldots, f_n\}$: *d*-variate polynomials

Linearization [Yao-Yao, A.-Matoušek]

* Map $\varphi(x) : \mathbb{R}^d \to \mathbb{R}^k, \varphi(x) = (\varphi_1(x), \dots, \varphi_k(x))$

★ Each f_i maps to a k-variate linear function h_i ; $f_i(x) > 0 \Leftrightarrow h_i(\varphi(x)) > 0$

 \star k: Dimension of linearization

Lemma: $K \subseteq H$ is an ε -kernel of $H \Leftrightarrow$ $G = \{f_i \mid h_i \in K\}$ is an ε -kernel of F.

Theorem C: *F*: a family of *n d*-variate polynomials, *k*: dimension of linearization, $\varepsilon > 0$. We can compute an ε -kernel of *F* of size $1/\varepsilon^{k/2}$ in time $n + 1/\varepsilon^{k-1/2}$.

Application I: Kinetic Geometry

S: Set of n moving points in \mathbb{R}^d • $p_i = a_i + b_i t, \qquad a_i, b_i \in \mathbb{R}^d$ • $S(t) = \{p_i(t) \mid 1 \le i \le n\}$ $\bigstar Q \subseteq S$ an ε -kernel if $\forall u \in \mathbb{S}^{d-1}, t \in \mathbb{R}$ $(1-\varepsilon)\omega(u,S(t)) \le \omega(u,Q(t))$ Ý $\bigstar \ \omega(u, S(t)) = \max_{p \in S} \langle p(t), u \rangle - \min_{p \in S} \langle p(t), u \rangle$ Define $f_i(u, t) = \langle p_i(t), u \rangle$; f_i is a deg(2) polynomial **Claim:** $F = \{f_1, ..., f_n\}, \qquad \omega(u, S(t)) = E_F(u, t)$ ε -kernel of $F \to \varepsilon$ -kernel of S. Apply Theorem C!

.BioGeometry

ω*(u,S*)

Application I: Kinetic Geometry

Corollary: S: n linearly moving points in \mathbb{R}^d , $\varepsilon > 0$. An ε -kernel of size $1/\varepsilon^{d-1/2}$ can be computed in $n + 1/\varepsilon^{2d-3/2}$ time.

Maintaining the ε -approximate bounding box of S:

- ★ Compute an ε -kernel Q of S
- * Use a kinetic data structure to maintain the extent of S in each direction
- ★ Bounding box is defined by the left-, right-, top-, and bottom-most points
- \star Events: When one of these four points change
- ★ Approach works for maintaining width, smallest enclosing ball/rectangle/simplex, ...

Bounding Box: Quality of Kernels

- ★ 100,000 moving points; their trajectories chosen to ensure large number of events
- ★ Trajectories linear or quadratic
- ★ Error < 0.04 (98% time) and 0.06 (100% time) for kernel 16.

Geometric Approximation Using Coresets

Geometric Approximation Using Coresets

ε -Kernels of Fractional Polynomials

Functions are not polynomials in many applications

- Distance between point x and circle of radius r centered at pf(x) = ||x - p|| - r
- ★ $F = \{f_1, \ldots, f_n\}$: *d*-variate functions
- ★ $f_i \equiv (h_i)^{1/r}$, h_i : *d*-variate polynomial, $r \ge 1 \in \mathbb{N}$
- $\bigstar \ H = \{h_i \mid 1 \le i \le n\}$

Theorem D: $K \subseteq H$ is an $c\varepsilon^r$ -kernel of H, c > 0 a constant, then $\{f_i \mid h_i \in K\}$ is an ε -kernel of F.

Corollary: If *H* admits a linearization of dimension *k*, then we can compute an ε -kernel of *F* of size $1/\varepsilon^{rk/2}$ in time $n + 1/\varepsilon^{rk-1/2}$.

Application II: Shape Fitting

- S: Set of n points in \mathbb{R}^2
- ★ Find the best-fit circle C through S. (minimize the max distance between C and S.)
- $\mu(x)$: Min width of annulus containing *S* centered at $x \Rightarrow d(x, p)$: Distance between *x* and *p*

 $\mu(x) = \max_{p \in S} d(x, p) - \min_{p \in S} d(x, p)$

$$f_i(x) = d(x, p_i), F = \{f_1, \dots, f_n\} \mu(x) = E_F(x)$$

Compute $w^* = \min_x E_F(x)$

★ Compute an ε -kernel G of F; $|G| = 1/\varepsilon$

★ Compute $x^* = \arg \min_x E_G(x)$

★ Return $E_F(x^*)$; $E_F(x^*) \le (1 + \varepsilon)w^*$

★ Time:
$$n + 1/\varepsilon^{O(1)}$$

Shape Fitting: Incremental Algorithm

★ S: Set of points in \mathbb{R}^2 ★ Find the best-fit circle C through S $\mu(X, C) = \max_{p \in X} d(p, C)$ A simple iterative algorithm ★ A ⊆ S: Initially, |A| = 4★ C(A): Best fit circle for A ★ while $\mu(S, C(A)) > (1 + \varepsilon)\mu(A, C(A))$ • a ∈ S: Point farthest from C(A) • A = A ∪ {a}

Claim: The algorithm terminates in $O(1/\varepsilon)$ steps.

Works for other shape-fitting problems as well.

Minimum Width Annulus

Input	Input	Running	Output	
Туре	Size	Time	Width	
	10^{4}	0.01(2)	0.0501	
w = 0.05	10^{5}	0.02(2)	0.0500	
	10^{6}	0.18(2)	0.0500	
	10^{4}	0.01(2)	0.5014	
w = 0.50	10^{5}	0.03(2)	0.5004	
	10^{6}	0.26(2)	0.5001	
	10^{4}	0.07(9)	50.051	
w = 50.0	10^{5}	0.12(9)	50.018	
	10^{6}	0.67(9)	50.001	

★ Points chosen randomly inside an annulus of width w, inner radius 1.0

★ Number of iterations is < 10

<u>.BioGeometry</u>

Minimum Enclosing Cylinder -

★ Points chosen randomly on a cylindrical surface of radius 1, height h

* Algorithms APPR: Approximation, CORE: Kernel based INCR: Incremental

Input	Input	Running Time			(Output Radius	
Туре	Size	APPR	CORE	INCR	APPR	CORE	INCR
	10,000	20.38	0.31	0.11(6)	1.024	1.012	1.009
h = 2.0	100,000	226.79	1.14	0.28(6)	1.021	1.020	1.013
	1,000,000	2640.10	12.19	1.63(5)	1.010	1.011	1.013
	10,000	16.82	0.30	0.11(7)	1.029	1.078	1.072
h = 20.0	100,000	187.21	1.06	0.29(7)	1.086	1.056	1.021
	1,000,000	2026.54	12.47	2.37(8)	1.066	1.039	1.068
h = 200.0	10,000	16.45	0.28	0.11(7)	1.052	1.094	1.050
	100,000	186.02	1.04	0.18(4)	1.030	1.092	1.018
	1,000,000	2067.19	11.98	2.88(10)	1.072	1.039	1.037
bunny	35,947	68.08	0.46	0.15 (6)	0.0671	0.0672	0.0674
dragon	$437,\!645$	809.77	2.94	0.99(7)	0.0770	0.0770	0.0770
buddha	$543,\!652$	1126.27	3.58	1.19(7)	0.0408	0.0408	0.0408

Inserting a Point

★ Create a new set $P_0 = \{p\}; Q_0 = P_0$

★ If there are two sets P_x, P_y of rank j

- Compute an $\varepsilon/(j+1)^2$ -kernel Q_z of $Q_x \cup Q_y$
- Delete Q_x, Q_y and add Q_z ;
- $P_z = P_x \cup P_y$; rank $(P_z) = j + 1$

★ Q_z is an $(\varepsilon/2)$ -kernel of P_z

.BioGeometr

Space: $\log^2(n)/\sqrt{\varepsilon}$, Processing time: $O(1/\sqrt{\varepsilon})$ (amortized)

Improvement (Chan). Space: $1/\varepsilon$, time: O(1) (amortized)

Extend to higher diemnsions.

Corollary: $(1 - \varepsilon)$ -approximation of width, smallest enclosing box, ... using $1/\varepsilon^{O(1)}$ space and time in the streaming model.

Extensions

- Computing ε-kernels in high dimensions
 [Bădoiu, Har-Peled, Indyk], [Bădoiu, Clarkson], [Har-Peled, Varadarajan],
 [Kumar, Mitchell, Yildirim], [Kumar, Yildirim]
 - Smallest enclosing ball $\lceil 1/\varepsilon \rceil$
 - Smallest enclosing ellipsoid $O(d/\varepsilon)$
 - 1-median $1/\varepsilon^{O(1)}$
- **\star** Computing ε -kernels in presence of outliers [Har-Peled, Wang]
- Computing ε-kernels for k-clusters
 [Har-Peled], [A., Procopiuc, Varadarajan]
 - k-centers
 - *k*-medians
 - *k*-line-centers

- $\star \epsilon$ -kernels in high dimensions
 - Polynomial dependence on $d, 1/\varepsilon$
- \star General technique for computing core sets for clustering
- \star Core sets for shape fitting if we want to minimize the rms distance
 - Given S, compute a cylinder C so that the rms distance between C and S is minimum
- \star Core sets and range spaces with finite VC dimensions

- References

Review article.

★ A., S. Har-Peled, K. Varadarajan, Geometric approximation via coresets, Current Trends in Combinatorial and Computational Geometry (E. Welzl, eds.), to appear.

Technical artciles.

- ★ A., S. Har-Peled, K. Varadarajan, Approximating extent measures of points, J. ACM, 51(2004), 606–635.
- ★ A., C. M. Procopiuc, and K. Varadarajan, Approximation algorithms for k-line center, 10th Annual European Sympos. Algorithms, 2002.
- ★ T. M. Chan, Faster core-set constructions and data stream algorithms in fixed dimensions, in *Proc. 20th Annu. ACM Sympos. Comput. Geom.*, 2004, 152–159.
- ★ H. Yu, A., R. Poreddy, K. Varadarajan, Practical methods for shape fitting and kinetic data structures using core sets, in *Proc. 20th Annu. Sympos. Comput. Geom.*, 2004, 263–272.

.<u>BioGeometr</u>