Data Structures for Moving Objects

Pankaj K. Agarwal

Department of Computer Science
Duke University

Geometric Data Structures

S: Set of geometric objects
Points, segments, polygons

☆ Ask several queries on S
- Range searching
- Nearest-neighbor searching

Quad Tree kd-Tree BSP
Moving Objects: Applications

- Traffic management
 - Location based services
 - Emergency services
 - Air traffic control
- Digital battlefields
- Molecular biology
- Deformable objects
- Adhoc networks

Need data structures for storing, analyzing, querying moving objects.

Modeling Motion

\[p(t) = (x(t), y(t)) \]: Position of \(p \) at time \(t \).
- \(x(\cdot), y(\cdot) \): Polynomials
- Degree of motion: max degree of \(x(\cdot), y(\cdot) \).
- Linear motion: Degree of motion is 1
 \[p(t) = at + b, \quad a, b \in \mathbb{R}^2 \]
- Mostly assume motion to be linear
- Trajectory of points can change
- Trajectory can be piecewise linear

Issues:
- Sampled motion
- Hierarchical motion
- Uncertainty
Range Searching

\(S \): Set of points
Preprocess \(S \) into a data structure
Report all points of \(S \) lying inside a query rectangle

<table>
<thead>
<tr>
<th>Data Structure</th>
<th>Space</th>
<th>Query</th>
</tr>
</thead>
<tbody>
<tr>
<td>Range tree</td>
<td>(n \frac{\log n}{\log \log n})</td>
<td>(\log n + k)</td>
</tr>
<tr>
<td>kd-tree</td>
<td>(\frac{n}{\log n})</td>
<td>(\sqrt{n} + k)</td>
</tr>
</tbody>
</table>

External memory data structures also available

Example: R-tree

Kinetic Range Searching

\(S \): Set of points, each moving with fixed velocity in the plane
Preprocess \(S \) into a data structure:

- Q1 Given a rectangle \(R \) and a time value \(t \), report all points of \(S(t) \cap R \)
- Q2 Given a rectangle \(R \) and time values \(t_1, t_2 \), report all points that pass through \(R \) during the time interval \([t_1, t_2]\).
Early Approaches

- One-dimensional data structures

- Two-dimensional data structures
 - Map trajectories to higher dimensional points [Kollios et al.]
 - Build index on trajectories [Pfoser et al.]
 - Parametric R-trees [Saltenis et al.]
 Assumes frequent updates on trajectories

Kinetic Range Searching

(A., Arge, Erickson, 2001)

- Partition-tree based approach
 - $O(n)$ space, $\sim \sqrt{n} + k$ query time
 - $\log^2 n$ insertion/deletion/trajectory-change
 - Time oblivious scheme

- Kinetic range trees
 - $n \log n / \log \log n$ space, $\log n + k$ query
 - Events: x- or y-coordinates of two points become equal
 - $\Theta(n^2)$ events, each requiring $\log^2 n$ time
 - Tradeoff between # events and query time
 - Queries have to arrive in a chronological order
Partition Tree Based Approach

★ Trajectory of a point p_i is a line ℓ_i in \mathbb{R}^3
★ $p_i(t) \in R \iff \ell_i$ intersects (R, t)
★ ℓ_x, ℓ_y: Projection of ℓ onto the xt- & yt-planes
★ ℓ intersects (R, t) $\iff \ell_x$ intersects (R_x, t) & ℓ_y intersects (R_y, t)
★ Use duality and partition trees

R-Trees

★ Bounding box hierarchy, B-tree
★ Each node v is associated with a subset S_v of points and the smallest rectangle R_v containing S_v
★ Partition S_v into B clusters, each associated with a child of v
★ Several heuristics are proposed for partitioning S_v into B clusters
Kinetic R-tree

- Maintain the smallest box enclosing the set of moving points
 - Box is defined by four points
 - The combinatorial structure can change \(\Omega(n) \) times
 - Maintain an approximation of the smallest enclosing box

- Maintaining the clustering kinetically
 - Extend the known heuristics
 - No theoretical nontrivial results known on kinetic clustering

Smallest Enclosing Box

- \(R(P(t)) \): Smallest box enclosing \(P \) at time \(t \)
- \(\varepsilon \)-core-set: \(C \subseteq S \) \(\varepsilon \)-coreset if \(\forall t \ (1 - \varepsilon)R(S(t)) \subseteq R(C(t)) \)

Theorem: \(\exists \varepsilon \)-core-set of size \(1/\sqrt{\varepsilon} \); Computation time: \(n + 1/\varepsilon \)

A more general result on core sets in [A., Har-Peled, Varadarajan]
Leads to approximation algorithms for several problems
STAR-tree: Maintain a box enclosing S_v at each node v

- Compute $C_v \subset S_v$ for each node in a bottom-up manner
 - Merge the core sets computed at the children of v
 - Prune the merged set
- Maintain the smallest enclosing box $R(C_v)$
Re-Clustering

☆ Reorganize the children of a node if the rectangles of their children overlap a lot.

☆ Collect all the grandchildren of the node

☆ Reconstruct a 2-level R-tree on them

Experimental Results

Synthetic Data

☆ 100,000–500,000 points inside $1000 \times 1000 \text{ km}^2$ area with different distributions

☆ Points are inserted/deleted dynamically, at any time at least 80% points present

☆ Three range of speed: 45 km/h, 75 km/h, 180 km/h
Realistic Data

- Extracted the roads map around Durham, NC, within 120 miles centered at Durham (≈ 250,000 polygonal chains)
- Computed a planar map of the road network
- Chose source and destinations randomly with some distribution
- Computed a good path using Dijkstra’s algorithm — minimize the length + number of turns
- Used Douglas Peucker algorithm to simplify the paths
Tradeoffs in Performance

- **Accuracy vs efficiency**
 - Maintain approximate structures

- **Query vs events**
 - Combine KDS and time-oblivious approaches

- **Time Responsive Approach:**
 - Near-future queries are more critical than far-future queries
 - Fast query time for near-future queries
 - Measure *future* by the number of events occurred
 - # events: Δ, query: $\sqrt{\Delta/n} + k$

Concluding Remarks

- Incorporating more realistic motions
 - Use dynamic systems, e.g., Kalman, particle filters, to model trajectories
 - How does one perform geometric computation in this model?
 - Geometric computation under uncertainty

- Hierarchical representation of motion
- Kinetic data structure for clustering, similarity searching