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Abstract

We presenta novel, laserrange nder basedalgorithmfor simultaneoudocalizationand
mapping(SLAM) for mobilerobots.SLAM addressethe problemof constructinganac-
curatemapin realtime despiteimperfectinformationabouttherobot's trajectorythrough
theervironment.Unlike otherapproachethatassumgredeterminethndmarkgandmust
dealwith aresultingdata-associatioproblem)our algorithmusesthe sensorangedata
directly to build metricoccupang maps. Our algorithmusesa particle lter to represent
both robot posesand possiblemap con gurations. By usinga new map representation,
which we call distributedparticle (DP) mapping,we areableto maintainandupdatehun-
dredsof candidatanapsandrobotposesef ciently. Throughcarefulimplementationye
areableto achieve a time complity which is linearin both the areaobsened andthe
numberof particlesused. Our techniquecontainsessentiallyno assumptionsboutthe
ervironmentyet it is accurateenoughto closeloopsover 100min lengthwith crisp, per
pendicularedgeson corridorsandminimal or no misalignmenterrors,despitesigni cant

noiseandambiguity



Contents

Abstract

List of Tables

List of Figures

Acknowledgements

1 Intr oduction

11

Objectve . . . . . . . . e

2 Previous Work

2.1

2.2

2.3

LocalizationOvervien . . . . . . . . .
2.1.1 ParticleFilterReview . . . . . . . ... ... ... o
2.1.2 ParticleFiltersfor Localization . . ... ... ..........
LandmarkSLAM . . . . . . . . e
2.2.1 KalmanFilterOvervien . . ... ... ... ... ... .....
2.2.2 KalmanFiltersfor SLAM . . . . ... . ... .. .. . . . ...
2.2.3 \VariationsonLandmarkSLAM . . ... ... ... ...

Hybrid TopologicalSLAM . . . . . . . .. ... ... .. .. ......

3 Map Representation

3.1

3.2

3.3

3.4

3.5

Occupang Grids . . . . . . . . . . . e
DeterministicandStochasti®©ccupang Models . . . . . ... ... ..
LaserModel . . . . . . . . .. . .
Map RepresentatioandObserationModel . . . . . . . ... ... ...

Map Updatest ObserationModel . . .. ... ... ..........

\Y

11

12

15

17



4 DP-SLAM

4.1

4.2

Algorithm . . . . . . . ..
411 SingleMap . . . . .. ...
4.1.2 AncestryTrees . . . . . . . . . o i i
4.1.3 Maintainingthe ParticleAncestryTree . . . . . ... ... ...
4.1.4 DP-MapRepresentation. . . . ... ...............
415 SLAMusingaDP-Map . .. ... ... ... .. ........
Compleity . . . . . . e
4.2.1 Naivelmplementation. . . . . ... ... ... ... ......
4.2.2 Initial Analysisof DP-SLAM . . . . . ... ... ... .....

4.2.3 EmpiricalEvaluationof DP-SLAM . . . . .. ... ... ....

5 Linear Time Complexity

5.1

5.2

5.3

5.4

5.5

5.6

5.7

MapDataStructure. . . . . . . . . . . .
Ancestrytreenodedatastructure. . . . . .. ... ... L.
Map cachedatastructure . . . . . . . ... ... ... ... ...
Updates. . . . . . . . . . e
Deletions . . . . . . . . . e
Summaryof ComputationaCompleity . . . . . . ... ... ... ...

ImplementatiorandEmpiricalResults. . . . ... ... ... ... ...

6 Motion Models and ProposalDistrib utions

6.1

6.2

6.3

6.4

OtherProposaDistributionlmprovements. . . . . .. . ... ... ...
PreviousCalibrationMethods . . . . . . . . .. . . .. ... ... ...
Motion ModelDetails. . . . . . . . . . . . ... ...

ParameteEstimation. . . . . . . . . . . . ...

26

26

27



6.5 EmpiricalResults. . . . . .. ... ... ... ..

7 Coalescence

7.1 EmpiricalBehavior of Coalescence . . . . ... ... .. ... .....

7.2 Implicationsof Coalescence. . . . . . .. ... ... ... .......

8 Hierarchical SLAM

8.1 Drift . . . .

8.2 HierarchicalSLAM . . . . . . . . . .

8.2.2 HierarchicalAlgorithm . . . . .. .. ... ... .........
8.3 ImplementatiorandEmpiricalResults. . . . . .. ... ... ... ...

8.4 Extension®f HierarchalSLAM . . . . .. . . ... ... ... .....

9 Practical Impr ovements

9.1 Culling . ... . . e

9.2 ImportantParameters. . . . . .. ... .. ...
9.2.1 ObserationModel . . .. ... ... ..
9.2.2 MotionModel . ... ..........
9.2.3 MapParameters. . ... .. ... ...

9.2.4 HierarchicalParameters. . . . ... ..
10 Summary of 2-D DP-SLAM

11 3-D SLAM
11.1 Preliminary3-D SLAMWork . . ... ... ..
11.2 Technicallssues. . . . . ... .. ... .....

11.2.1 ProposabDistribution/ Motion Estimation

vii

81

81

84

86

86

87

89

89

92

97

98

98

99



11.2.2 ObserationDependence . . . . . . ... ... ... ...... 109

11.3 DataExplosion . . . . . . . . . ... .. 111
11.3.1 3-DMappingwithVoxels . . . . ... ... ... ... ..... 111

11.3.2 Localization. . . . . . ... ... ... 115

11.3.3 MapUpdates. . . . . .. ... ... .. .. .. 116

11.4 ComputationrCompleity . . . . . . . . .. ... . .. . 121
115 Initial Results. . . . . . . . . ... 123

12 Futur e Dir ections 127
12.1 AlternateSensors. . . . . . . . ..o 127
12.1.1 AdaptingBetterStereoVision . . . . .. . ... ... ... ... 128

12.2 ProposaDistributions . . . . . .. ... o oo 129
12.2.1 AdaptiveParticleNumbers. . . . . . ... ... ... ... 129

12.3 Alternatve MapRepresentations . . . . . . ... ... ... ... ... 130
1231 QuadTrees . . . . . . . o o 130

12.3.2 VariableMapResolution. . . . .. ... .. ... ... .. ... 132

12.33 SoftUpdates . . . . . . .. .. .. . .. 132

12.3.4 ImprovedPriors. . . . . . . .. 133

12.3.5 Sphere®flnuence . ... .. ... .. ... ... ... . ... 134

12.4 Active SLAM andExploration . . . . . .. ... ... .. ... 135
12.5 PrincipledLoopClosing . . . . . . . . .. ... 136
Bibliography 138
Biography 142

viii



List of Tables

5.1 Comparisorof therunningtimesfor theoriginal, quadraticversionof DP-
SLAM versughelinearimplementation. . . . . .. ... ... .....

10.1 Summaryof ComputationaCompleity . . . . . ... ... ... .. ..

60



List of Figures

2.1 A plot of the robot's actualmotion, shovn in grey, comparedwith the
trajectorydescribedy theodometryshavninblack. . . . . . ... . ..

3.1 Effectof angleon numberof grid cellspenetrated. . . . . . . ... ...
3.2 Effectof grid resolutionon scanprobabilities.If the grid squaresll have
the samedensityto the sensorthe scanon the left shouldhave the same
probabilityastheoneontheright. . . . .. ... ... ... .......
4.1 A SLAM algorithmin progressgdemonstratinghedistribution of particles.
Thisillustratesthe possibledifferencedetweerthe mostlik ely particleat
a giventime step,andthe true pose. This partial map correspondso the
upperleft cornerof the nal mapin Figure4.2. . . . .. ... ... ...
4.2 Theresultsof ignoring the joint distribution over mapsandrobot poses,
and maintainingonly a single map. The two sectionsof hallway at the
bottomaresupposedolineup.. . . . . .. ... ... ...
4.3 Anancestnftreejustbeginning . . . . ... ... L.
4.4 Thechildrenparticlesarepropagatedhroughtheparticle Iter. . . . . . .
4.5 Thechild particlesareresampledor thenext generation . . . . . . . ..
4.6 Unnecessargncestoparticlesarepruned.. . . . . ... ... ... ...
4.7 Resamplingn thenextgeneration. . . . . ... ... ..........
4.8 Irrelevantancestorarepruned,andthe columnontheleft is collapsed. .
4.9 SLAMusingasinglemap. . . . . . . ... .. ... o
4.10 A DP-SLAM mapwith 9000particles.. . . . . . ... . ... ... ...

4.11 Deterministicoccupang gridsfail to handlethedif culties of C-Wing . .

4.12 Properstochastianappingcansuccessfullyclosetheloopin C-Wing, us-
ing thesamenumberof particles.. . . . . . ... ... ... .......

21

22

28

28

33

33

34

34

35

35

45

46

a7



4.13 Robotperspectie on the catwalk andrailing, taken closeto the Railing

labelin Figure4.12. Slight changesn therobotpositionwill affectwhich
balustersarehit by thelaserrange nder, andwhicharemissed. . . . . .

4.14 A simplisticoccupang gridof C-Wing. . . . . .. ... ... ......

4.15 Stochastioccupang grid of D-Wing, createdusing3000particles. . . .

5.1

6.1

6.2

6.3

6.4

6.5

6.6

6.7

An illustration of how the mapcacheworks. (a) Therobotis only ableto
obsenre a small portion of thetotal occupang grid. (b) Eachgrid square
in the globalmapmaintainsanentiresetof obsenations,identi ed by the
ancestomparticle which addedthat update. (c) The ancestrytree de nes
the how theseobsenationsareinherited. (d) The map cachemaintainsa
completelocal occupang grid of thecurrentlyobseredareafor eachleaf
of thisancestrytree.Recallthatthesetof leavesin theancestryreede nes
thecurrentsetparticles. . . . . . . ... ... oL

A completeloop of hallway, generatedisinga nave motion model. The
robotstartsat thetop left andmovescounterclockwiseEachpixel in this
maprepresent8cmin the ervironment. The total pathlengthis approxi-
mately 60 meters.White areasareunexplored. Shadedetweengray and
blackindicateincreasingorobabilityof anobstacle.. . . . . .. ... ..

Close up of the areawherethe loop is closed, using the naive motion
model. Doublewalls re ect an accumulatecderror of approximatelyone
half meteroverthepathof therobot. . . . . . ... ... ... ......

Closeup of the sameareaasFigure6.2, usingthe learnedmotion model
learnedby EM. . . . . ...

The mapcreatedusingthe motion modellearnedfrom one sensoiog to
onadifferentsensotog generatedeveraldayslater . . . .. ... ...

Firstiterationin correctinganinaccuratemotion model: closeup of loop
closing. . . . . ..

Secondterationin correctinganinaccuratenotionmodel . . . . .. ..

Finaliterationin correctinganinaccuratanotionmodel. . . . . . . . ..

Xi

51

52

56

72

73

73

74

75



6.8 A mapof the conferenceenterin Edmonton CanadawhereAAAlI 2002
washeld. The motion modelusedwaslearnedwithout ever having seen
therobotthatcollectedthedata. . . . . . ... .. ... ... ...... 78

6.9 A mapof thelocationof IJCAI 2001,in Acapulco,Mexico.. . . . . . .. 79

7.1 A graphof thecoalescencbehaior for DP-SLAM duringthe creationof
the D-Wing mapin Figure4.10,using3000patrticles.. . . . . . ... .. 82

7.2 The coalescencéehaior of a particle Iter with 3000 particles,using
completelyuninformative data.All coalescences purelytheresultof par
ticledepletion.. . . . . ... ... 82

8.1 A mapof CMU's WeanHall, usinga non-hierarchicaimplementatiorof
DP-SLAM with 20,000particles.Thereis adistincterrorin the closingof
theloopin therighthallway. . . .. ... ... ... ........... 88

8.2 CMU'sWeanHall at4cmresolutionusinghierarchicalSLAM. . . . . . 93

8.3 A depictionof the currentuncertaintyin the map,shortly beforethe non-
hierarchicalapproachattemptsto completethe loop. Pink areasindicate
sectionsof the mapwherethe givenmaphasno obsenations,but alterna-
tivehypothesedohaveentries.. . . . . . ... ... ... ... ..... 94

8.4 Theamountof uncertaintyin the map(onceagainshownn in pink) is much
greaterfor thehierarchicabpproach. . . . . . . ... ... ... .... 95

11.1 Left: aplanargrid-basednap. Center:a 3-D voxel-basednap. The den-
sity coefcients for eachvoxel arelisted besidethem. Right: A 3-D map,
condensin@djacenemptyvoxelsin the samecolumninto a singleinternval. 112

11.2 A crosssectionof a single obsenation, illustrating how the areabeing
obsenedformsa polyhedron.The perimeterof this polyhedronis all that
is neededor updatingthemap.. . . . . ... ... ... 118

11.3 An exampleof a partialline tracefor a densesensoreading. The darker
linesindicatewhich portion of theindividual rayswould needto betraced
in orderto ensurecoverageof the perimeterof the obserationpolyhedron. 119

11.4 Initial mappingresultsfrom traversingpartof thewayaroundtheperimeter
of al5mradiuscrater Themapshownis atopographicaVview, with lighter
areagepresentingpigherelevations. . . . . . ... ... ... ...... 125

Xii



11.5 Theresultingtopographicamapaftercompletingtheloop of theperimeter
ofthecrater . . . . . . . . . . . .

Xiii



Acknowledgements

The authorgratefully acknavledgesthe supportof the National ScienceFoundation,the
SloanFoundationandSAIC for thisresearchl alsothanktheNASA AmesResearclCen-
ter for funding and otherresourcesupportingthe initial researchnto threedimensional
SLAM.

The datasetsfor Acapulcoand Edmontonconventioncentersvereobtainedfrom the
RoboticsData Set Repository(Radish)[1]. Thanksto NicholasRoy for providing this
data.

My deepappreciatioralsogoesto RonaldParr, for his adviceandguidancehroughout
muchresearctandmary deadlines.

My love and gratitudeto my wife, RachelEliazar for her patienceand tolerance
throughouthis all.

Xiv



Chapter 1

Intr oduction

Signi cant strideshave beenmadetowardscreatinga robot capableof performingcom-
pletely autonomougasks. The basictasksof pathplanning,localization,navigation and
ernvironmentalmanipulationarewell understoodandto somelimited degree,have been
solved. Thesecomponentgorm the basictoolsfor solving higherlevel tasks,andallow a

robotto operateor sometime without humanoversightor intervention.

However, onecomponentvhich hasbeenassumedh all of theseareads the existence
of agoodmapof theervironment.Thismapnotonly needgo beaccuratebutalsoneedso
beafairly completemapof everywherehattherobothasobseredsofarin its exploration.
Furthermoreit needdo beableto incorporatenew informationimmediately astherobot
exploresnew areas.This problemof trackingthe robot's poseandconstructinga mapin

real-timeis known asSimultaneous.ocalizationandMapping,or SLAM.

In recentyears,the availability of relatively inexpensve laserrange nders andthe
developmentof particle Iter basedalgorithmshave led to greatstrideson the problem
of robot localization— determininga robot's position given a knowvn map|[2]. Initially,
the mapsusedfor thesemethodswere painstakinglyconstructedoy hand. However, the

accuray of thelasersuggest#ts usefor map-makingaswell aslocalization.

SLAM haslong beena stumblingblock for autonomousobots. Whatappearon the
surfaceto be two separatechallengesjocalizationand mapping,are in fact intricately
intertwinedproblems. For the robot to updatethe map correctly it is necessaryo know
wheretherobotis whenit makesanobsenation. However, whentrackingtherobot's pose,
it is essentiato have agoodmapagainstwvhichto compareheobsenations.Solvingboth

of theseproblemsincrementallyand at the sametime meansthat a small error in one



solutioncaneasily corruptall future estimations.In fact, it is the quick accumulatiorof

mary tiny mistalkeswhichis commonlythe causeof failurefor nearlyall SLAM methods.

Externalsensorssuchasa global positioningsystem(GPS),areunsuitedfor tracking
the robot's pose. GPSrelieson receving signalsfrom satellitesin orbit, and are easily
obscuredy trees puildings,canyons,or otherobstaclesAlso, GPScoverages unreliable
in mary terrestriallocations,and would not be possiblefor extraterrestrialapplications.
Finally, the readingsprovided by GPSareonly a latitudeanda longitude;thereare other
importantelementsof the robotspose,including facing and heightdisplacementwhich

areunableto be measuredby GPS.

TheExpectation-MaximizatiofEM) algorithmprovidesavery principledapproacho
the problemof mapping,but it involvesan expensve off-line alignmentphase3]. There
exist heuristicapproacheso this problemthatfall shortof full EM, but they do not pro-
vide a completesolutionandthey requireadditionalpasse®ver the sensomdata[4]. Scan
matchingcanproducegoodmaps[5, 6] from laserrange nder data,but suchapproaches
typically mustexplicitly look for loopsandrequireadditionaleffort to closethem.In vary-
ing degrees theseapproachesanbe viewed as partially separatinghe localizationand
mappingcomponent®f SLAM.

Recentapproacheso SLAM have shovn somesigni cant progressowardssolving
thecombinedyeal-timeproblem.Oneof themorepopularof thesemethodss FastSLAM,
whichtypi es agroupof approachesalledlandmark-base@LAM. For thesealgorithms,
themapis representetdy a setof distinctive landmarksanda Kalman lter is maintained
over theselandmarkpositions. Another group of approachegoncentratesnore on the
underlyingtopologicalmap, and then builds a more comprehensie map on top of the
topology[7].

However, it is importantto keepin mindthe purposeof themap.Landmarksandtopol-

ogy are ne toolsfor localizationandevensimplenavigation,but arenot very informative



for otherapplications.To make well reasonedntelligentdecisionsaabouttheervironment,
amorecompletepictureis neededTo achieve any usefullevel of autonomyevento merely
travel unaidedrom onespeci ¢ pointto anothertherobotneedgo have afairly complete
pictureof the world. With this in mind, we concentrateon developinga SLAM method

which canproducea densemetricrepresentatioof theworld, usingoccupang grids.

1.1 Objective

The primary goal of this projectis to producehighly accurateanddetailedmapsfor both
2-D and3-D ervironmentsin realtime. Thesemapsshouldbe completeandinformative
aswell asbeingaccurateover large ervironments regardlesof the robot's paththrough
the ervironment. Ideally, SLAM shouldbe a passve algorithm, and explicit behaiors,
suchastraveling in loopsshouldnot be a requirementor accuratanapping.To presere
the robot's autonomy it shouldbe able to achieve thesegoalswith little or no human
intervention.

We have madesigni cant progresgowardsthis goal,in thetwo dimensionatase.The
developmentof a novel algorithm, Distributed Particle SLAM (DP-SLAM), allows for
the ef cient maintenancef multiple maphypothese a principledfashion.A carefully
constructeanapformulationprovidescompletemaps which areableto represenareasof
uncertaintyandsemi-transpareryc

We presenta numberof advancesin effectively managingresourcesallowing better
concentratiorin relevant areasof the statespace. The effective useof an ef cient map
representationyhencombinedwith dynamicprogrammingallowsthealgorithmto berun
in lineartime with respecto boththesizeof theobsenationsandthenumberof hypotheses
beingconsideredSurprisingly this providesanasymptotiacunningtimewhichis identical
to purelocalization,for a givennumberof particles.

To maintainanappropriatgoroposabistributionin thefaceof changingenvironmental

3



androbotparametersye have alsodevelopeda purelyautonomousnethodfor calibration
of the robot's motion model. Using the SLAM algorithm itself within an Expectation
Maximization(EM) framework, we cancreatemuchtighter proposaldistributions. This,

in turn, cangreatlyimprove thedistribution of resourcesvithin the statespace With these
methods,n conjunctionwith efcient implementatiorand a well concentrateghroposal
distribution, we areableto producevery high quality, accuratewo dimensionalmapsat

ef cient speeds.

Three dimensionalmapping, is still an openareaof research. However, we have
promisinginitial resultson how to representhe vastamountof dataneededn an ef -
cientmanney andhow to processhe wealthof input informationin reasonabl@amounts
of time. We arecontinuingwork on promisingmethodgor mary of therelatedproblems,
suchasthe developmentf effective sensor@andtheir associatedbsenationmodels.We
arealsocontinuingto pursuemoreef cient representatioandmanipulationof thedata,to

overcomethe dataexplosioninherentin moving from 2-D to 3-D.



Chapter 2

Previous Work

2.1 Localization Overview

A simpler, but similar problemto SLAM is roboticlocalization.For purelocalization,the
robotalreadyhasa mapof its ervironment. The goalis to usetherobot's sensorgo track
the robot's poseasit movesthroughthe environment. The sensorscan provide indirect
obsenationsof the environment,which the robot canthencomparewith its internalmap
of theworld. Using thesecomparisondetweerthe expectedobsenationsandthe actual
readingscombinedwith therobot's beliefof its posein the past,it is possibleto determine

therobot's currentpose.

Successfulocalizationis notatrivial problemin itself. Thesensoreadinggendto be
noisyandsparseandmary areaswvithin theervironmentappeato bevery similar. There-
fore, a probabilisticalgorithmis requiredto track the robot's position. This is achieved

eitherthrougha KalmanFilter, or amoregeneralParticle Filter.

2.1.1 Particle Filter Review

A patrticle Iter is asimulation-basedethodof trackinga systemwith a partially observ-
ablestate.We brie y review patrticle Iters here but referthereadetto excellentoverviens
of thistopic[8] andits applicationto robotics[9] for amorecompletediscussion.
A particle Iter maintainsa weighted(and normalized)set of sampledstates,
, calledparticles At eachstep,the robot executesa motion , andmakesan

obsenation (or vectorof obsenations).The particle Iter executeghefollowing steps:



1. Samples new states from with replacement.

2. Propagategachnew statethrougha Markovian transition(or simulation) model:
. This entailssamplinga new statefrom the conditionaldistribution over

next stateggiventhe sampledreviousstate.
3. Weighseachnew stateaccordingio a Markovian obsenationmodel:

4. Normalizegheweightsfor the new setof states

Particle Iters areeasyto implementhave beenusedto track multimodaldistributions

for mary practicalproblemg8].

2.1.2 Particle Filters for Localization

A patrticle Iter is a naturalapproachto the localizationproblem,wherethe robot pose
is the hiddenstateto be tracked. The statetransitionis the robot's movementand the
obsenationsaretherobot's sensoreadingsall of whicharenoisy.

Thechangeof thestateovertimeis handledoy amotionmodel. Usually, themotionin-
dicatedby therobot's odometeis takenasthebasisfor themotionmodel,asit is areliable
measuref the amountthat the wheelshave turned. However, odometryis a notoriously
inaccurataneasuref actualrobotmotion,evenin the bestof environments.Theslip and
shift of the robot's wheels,andunesennessn the terraincancombineto give signi cant
errorswhich will quickly accumulatgFigure2.1. A motion modeldiffers acrossrobots
andtypesof terrain,but generallyconsistf alinearshift, to accounfor systemati@rrors
andGaussiamoise. Thus,for odometeichange®f , and , apatrticle Iter appliesthe

noisemodelandobtainsfor particle ,
(2.1)
(2.2)

(2.3)



Figure2.1 A plotof therobot'sactualmotion,shavnin grey, comparedvith thetrajectory
describedy the odometry shavn in black.



The and termsarelinear correctionto accountfor consistenerrorsin motion. The
function returnsrandomnoisefrom a normaldistribution with mean0O andstan-
darddeviation , whichis derived experimentallyand may dependuponthe magnitudes

of , ,and .

After simulation,we needto weightthe particlesbasedn therobot's currentobsena-
tionsof theervironment.For purelocalization therobothasa mapstoredin memory The
positiondescribedoy eachparticle correspondso a distinct point and orientationwithin
that map. Therefore,it is relatively simpleto determinewhat valuesthe sensorsshould
return,giventhe posewithin the map. The standardassumptions that sensorerrorsare
normallydistributed. Thus,if the rst obstructionn themapalongaline tracedby alaser
castis atdistance andthereporteddistancas , theprobabilitydensityof observingdis-
crepang , is normallydistributedwith mean . Giventhemodelandpose.each
sensoreadingis correctlytreatedasanindependenbtbsenation [10]. Thetotal posterior

for particle isthen

where is thedifferencebetweerthe expectedandperceveddistancedor sensofr(laser

cast) andparticle .

Particle Iters have beenusedsuccessfullyn mary differentwaysto localizea robot.
One of the most notableis the pair of robotsusedas museumtour guides,Rhino and
Minerva, deployed at the DeutschesviuseumBonn andthe Smithsoniars National Mu-
seumof AmericanHistory, respectiely, for a periodof severaldaysatatime [2]. These
robotswereableto guidevisitorsto variousexhibits successfullyevenin the presencef
signi cant noise,mostnotablyfrom the peoplethemseles.

Sinceusingparticle Iters in this manneris so successfuht localization,it is natural
to considerthemfor the problemof SLAM. However, all previous attemptsare stopped

at the samepoint: how to representhe uncertaintyin the robot's posewhen updating



positionsof possibleobstructionsn the map. The conceptuallycorrectmethodis to allow
eachparticleto maintainandupdateits own map. However, implementatiorof this idea
requiresextraordinaryamountof memory andis prohibitively slow, discouragindurther
researclhnto thisapproachWe will returnto thisissuein latersectiongor amoredetailed

discussion.

2.2 Landmark SLAM

Onepopularapproachto SLAM is to selectdistinctive featuresn the environmentto use
aslandmarkdq11, 12]. Thesdandmarksanthensene asnavigationalguidesto determine
therobot's posein theworld. Theassumptions thattheselandmarkscanbe choserto be
distinctive enoughthatthe robotcaneasilycorrelatea landmarkthatis currentlyobsened
with oneof the previousobsenationsof thatsamdandmark.Thesdandmark-basetheth-
ods are algorithmically differentfrom other SLAM methods,in that insteadof usinga
particle Iter totracktherobotposethey usea KalmanFilter.

We presenta brief overview of Kalman lters here,but referthereaderto anexcellent
presentatiorof the topic [13] for greaterdetailanddepth. For a completebasictreatment
of Kalman lters asappliedto SLAM, we referthereadetto theoriginal paperin the eld

by CheesemarelfandSmith[14].

2.2.1 Kalman Filter Overview

A Kalman Iter is awell establisheanethodtrackingthe stateof a stochastidinearequa-

tion

At eachdiscretetime step,a noisymeasuremertf the stateis made,



The and termsrepresenthe noisepresentin the motion and obsenation equation,
respectrely. Thesesourceof noiseareassumedo be Gaussiarandindependentf each

other

is calledthe processcovarianceand is the measuementcovariance Both of these

covariancematricesareallowedto vary betweertime steps.
As well astrackingthe stateitself, a Kalman Iter alsomaintaingheentirecovariance

matrix of the stateestimate . At eachtime step,uponobservingthe measurement, the

KalmanFilter doesthefollowing:

1. Predictthe next stateaccordingto the transitionmodel. Sincethe noiseis assumed

to bemeanzero,it is ignoredfor this step.
2. Updatethe covarianceof the state thusincreasingheuncertainty

3. Computethe Kalmangain,to determinethe amountof strengththatthe newv obser

vationshouldhave in updatingthe state.

4. Updatethe stateby averagingit with the newv obsenation, weightedby the Kalman

gain.

5. Updatethe statecovariance to indicatetheincreasecertaintyfrom the new obser

vation.

Kalman lters arecommonlyusedasan exact solutionto trackinga wide variety of
linear systems.Unfortunately the systembeing tracked during localizationis distinctly
nonlinear asthereexists an inherenttrigonometricrelation betweenthe lateralandrota-
tional motionsof the robot. Therefore,it is necessaryo usean ExtendedkalmanFilter
(EKF) to createanapproximatesolution. In the EKF, we usethe rst Taylor seriesexpan-
sionof thenonlinearequationaroundthe currentstateto createalinearapproximateo the
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system.This meanghatwe needto incorporatethe Jacobiammatrix into the above steps,

giving usa new seriesof equations.

In the above equations, and  arethe Jacobiammatricesof partial derivativesof the
processfunction  with respectto the currentstateand the processnoise, respecitiely.
Similarly, and arethe Jacobian®f the measuremerfunction with respecto the
currentstateandthe measurememoise. Naturally and  will needto berecomputed
roundthe new stateestimateat eachtime step.

It shouldbe notedthatthe ExtendedKalmanFilter is an approximatesolutionto the
inherentlynonlinearsystem. This possiblesourceof error shouldbe keptin mind when
consideringan EKF for thethe problemof LAM. In addition,all distributionsareassumed
to be Gaussianandthusunimodal. This assumptiorshouldbe treatedskeptically in the

caseof trackingtherobot's pose.

2.2.2 Kalman Filters for SLAM

One of the major dif culties for usingKalman lters for SLAM is the problemof data
associationTheobsenationmodelassumeshatthereis a known transformatiorbetween
the measurementandthe objectsbeingmodeled.However, mostaspectof the erviron-

mentarevery similar, andit is not within the capacityof the sensotto distinguishdirectly

which speci ¢ objectis beingobsenedatary giventime.
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Thisis wherethe concepif landmarkss used.The assumptions madethattherobot
canmalke directobsenationsof a certainsubsebf the objectsin theernvironment,andrec-
ognizethesespeci ¢ objectsunambiguouslyThereforewheneeranobsenationis made,
it is possibleto know exactly which objectis generatinghatspeci ¢ measurementOnce
this problemof known dataassociatioris solved, the stateestimationproblembecomes

signi cantly moremanageable.

As we have notedbefore thestatetrackedin SLAM is boththerobotposeandthemap.
In thecaseof landmark-base8LAM algorithmsthemapthattherobotis usingto localize
is the setof landmarkpositions. The maintenanc®f this type of map ts in very nicely
with the Kalman lter framewvork. Eachlandmarkcanbe representedby a setof spatial
coordinatesn the stateestimation.This allows the landmarkgo have correlatedGaussian
distributionsover their positions,asexpressedn the covariancematrix. The robot's own
poseis alsoincludedin the state andis theonly portionof the stateestimationaffectedby
thestateupdatestepof theKalman lter; thelandmarksareall assumedo be stationaryin

theworld.

2.2.3 Variations on Landmark SLAM

Theuseof aKalman Iter providesa principled,closedform solutionto the SLAM prob-
lem. However, thereexist several problemswith this formulation. First, mary of the
assumptionsf Gaussiardistribution areinaccurateln particular the distribution of robot
posescanbe distinctly multimodal, dueto sensorambiguity This problemis especially
exacerbatedvhenlandmarksare not completelyunambiguous.Second maintainingthe
covariancematrix betweerthe entiresetof landmarksequires runningtime, where

is the total numberof landmarksin the map,in orderto updatethe map. Notice that
this compleity hastheundesirablejuality thatit is dependentn thetotal sizeof themap.

Thus, the running time can quickly becomeimpracticalasthe robotis deployed over a
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large area,even when the landmarksmaintaina constantdensity Finally, and perhaps
mostimportantly the mapwhich is maintainedis only a map of landmarks;other less
distinctive featuresin the ervironment,including walls and similar obstructionswill not
berepresentedAs aresult,the mapis only usefulfor localizationandhigh level naviga-
tion. Any interactionwith theworld, includinglocal pathplanningandobstacleavoidance,

requiresa morecompletemapof the ervironment.

Anotherlimitation of landmark-basethethodss the selectionandrecognitionof the
landmarksthemseles. The problemof allowing the robotto selectfeaturesof the ervi-
ronmentautonomouslyo useaslandmarkss still anopenquestion.Without someform
of objectrecognition,the task of picking an aspectof the world which is distinct from
several differentpointsof view, in a mannergeneralenoughto be usedin a wide variety
of ervironments,canbevery dif cult. Furthermorethe recognitionof landmarkscanbe
adif cult dataassociatiorproblem. Attemptingto identify a certainfeatureuniquelyasa
speci ¢ landmarkthat hasbeenseenbefore,particularlywhenleaving openthe possibil-
ity thatthis may be a new, previously unobsered landmark,is a very dif cult task. This

processs only hinderedby the noisy, limited sensorsvailableto therobot.

Finally, the Kalman lter representatioiis incapableof incorporatingnegative infor-
mationinto the stateestimation Whene&eranobsenationof alandmarkis made the state
canbe updated However, thereis no methodprovidedfor updatingthe statewhenaland-
markshouldbe obsened,accordingto someportion of the probablestatespacehutisn't.
This negative informationis potentiallya very importantsourceof informationwhich is
completelyignoredin landmarkbasedSLAM.

Someof theseproblemshave beenaddressebly existingwork. Oneof themorepromi-
nentmethodss theuseof thin junctiontreesto approximatehe covariancebetweeriand-
mark positionestimateg12]. This treatsthe covarianceasa sparsersetof relationships

betweemearbylandmarks.The ability of a singlelandmarkto in uence its neighbords
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restrictedto allow propagatioronly if thein uence hasreached certainthreshold.There-
fore, mostupdatedo the map affect only a local setof landmarks put moreinformative
events,suchasthe completionof a loop, arestill allowedto propagatehroughthe entire
map. Therefore the averagerunningtime of the Kalman Iter is greatlyreducedwhile

still maintaininga goodapproximatiorof thefull covariancematrix.

A similar approactusesa sparsextendedinformation Iter to approximatehe EKF
by the mostimportantpairwiseconstraintd15]. Much like the thin junction trees,this
methodgreatly reduceghe amountof informationthat needsto be updatedat eachtime

step,by passingnformationalongthe mostinformative constraints.

The other popularimprovementon landmark-base&LAM is FastSLAM [11]. This
algorithm usesa Rao-Blackwellizedparticle Iter [16] to track the robot's pose. This
allows the mapto still be representedsa setof Gaussiardistributionsof the landmark
positionslike a Kalman Iter, while samplingdistinct hypothesegor the robot's pose,in
the samemannerasa patrticle Iter. Giventhe robotpose,all of the landmarkpositions
becomédndependenfl0]. Thisimportantconsequencgreatlyimprovestherunningtime,
sinceeachlandmarkcannow betreatedasaseparat&alman lter , with trivial dimensions.
Furthermore,it no longer requiresthe distribution of robot posesto be constrainedoy
a Gaussianallowing for more e xible, multimodaldistributions. It is importantto note,
however, thatthis methodof samplingrobotposesmpliesthatthemapsarenow dependent
directly ontheindividual robotpose andthuseachparticleneedgo maintainits own map
of landmarkpositionswhich canleadto othercomplicationdor runningtime andmemory
This methodhasmetwith considerablesuccessywhenthe issuesof dataassociatiorare

solved,andcanproducehigh quality mapsin large ervironments.

Sincethedataassociatiomproblemis suchacrucialpartof aneffectivelandmark-based
SLAM methodthereareanumberof methoddor solvingthisrecognitionproblem.In one

effective method dataassociationsrealwayschosersoasto maximizethe probability of
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the currentobsenation [11]. In differentapproachthe raw sensorinformationis com-
posedinto a “template” for the landmark. Scancorrelationis thenusedto identify these

landmarkq17].

2.3 Hybrid TopologicalSLAM

The predominanilternatve to landmark-base®&LAM methodsis a loosecollection of
topologically basedmethods. This topology can be representecither explicitly, in a
graph[7, 18, 19|, or detectedndirectly, throughscanmatching[5, 6]. Regardlessof the
representatiorthereareacoupleof importantunderlyingpropertief thisvarietyof algo-
rithms. They all attempto represenamorecompletemapthanjustasetof landmarksand
moreimportantly they all attemptto exploit the topology of the ervironmentto achieve

consisteng, and,hopefully, accurag.

At the coreof thesealgorithmsis a methodby which to detectwhena loopis closed.
Thatis, they arespeci cally seekingo detectwhentherobot's trajectorydoublesbackon
itself. Theproperalignmentof thesdoop closingeventsgivesmuchthe sameinformation
thatis capturedoy theKalman Iter whenalandmarkbasednethodclosesaloop, andthe
entiretrajectorybetweerstartingatthatpointandreturningto it canbere ned by thisextra
information. Therefore,thesemethodsattemptto leveragethe topologicalinformation
explicitly, while still maintaininga morecompletemapof the ervironment,andavoiding
thedataassociatiordif culties inherentin landmarkbasedmethods.

However, loop closingis a much more dif cult problemwithout the useof explicit
landmarks.Dif cult questionsariseof how to detectsuchanevent,andhow to align the
two perspectieson the samescenegoroperly Without explicit landmarksgdataassociation
is ambiguousandbothdetectionof a closedioop andalignmentof thetwo piecescanlead
to errorsandfalsepositives. Furthermoregxactly how to propagatehis new information

is adif cult question.Correctingthe interveningtrajectoryis dif cult to accomplishin a
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principledfashion,without a setof covariancego use. Lackingany methodof enforcing
accurag, the correctionis insteadusually performedin a manneremphasizingconsis-
teng. While not widely adopteda methodhasbeenproposedor modelingthe residual
errors[20]. Theseresidualscouldthenbe usedto distributethe errordetectedy theloop

closure.

The majordravbackof thesemethodss their failureto be truly “simultaneous”.De-
tectingloop closuresandeven moreso, applyingthe additionalinformationsuppliedby
them,is a very computationallyintensive processwhich is likely to causea signi cant
discontinuityin therobot's ability to procesghe algorithmin realtime. Furthermorethe
quality of themapsarehighly variable.Eventhoughthe nal mapswhichareproducedan
look very good,they arestill notvery accurateasthe correctiongo the trajectoryarenot
necessarilappliedto the correctportions. Resultanimapsoften have bends glongations,
or otherdistortionsfrom the correctmap, asthe loop closing event attemptsto achieve
consisteng in ary way possible. Perhapsnoreimportantly eventheseconsistenimaps
canonly be producedatdistinctintervals. In thetime betweernoop closuresthemapscan

degradearbitrarily.
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Chapter 3

Map Representation

3.1 OccupancyGrids

Occupang grids, alsoknown asevidencegrids, area popularmethodfor describingthe
parametersf anervironment,asthey arevery intuitive methodfor representingheworld.
Occupang grids were originally developedat Carngjie Mellon University in 1983 for
sonamavigationin thelab[21, 22]. They quickly becamepopulardueto their easeof use
with sensoffusionandrobotnavigation[23].

Envision the entireworld divided up into a regular grid of squaresall of equalsize.
Eachof thesegrid squaresorrespondso a physicalareain the world, andassuch,each
squarecontainsa differentsetof objectsor portionsof anobject. An occupang grid is an
abstractepresentationf thesesectionsof the world, containinginformationon whether
thatsquaran therealworld is occupied.This notion of occupang canchangedepending
ontheapplication but generallyeitherindicateswvhethertheareawould block the passage
of arobot, or whetherthe areawould shav up on the robot's sensors.ldeally thesetwo
conceptshouldbe oneandthe same put dueto noisysensors;invisible” objects,‘insub-
stantial’objects,andmary areasonly beingpartially occupiedthey sometimesliverge.

Nearly all earlylocalizationmethodsweredevelopedfor occupang grids. Similarly,
mary pathplanningalgorithmsassumeeitheranoccupang grid or a similar densemetric
map. This lastingpopularityis largely dueto the simplicity of the representatiorandthe

detailwhichis easilyavailableat differentresolutions.
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3.2 Deterministic and StochasticOccupancyModels

An occupanyg grid canberepresenteth mary differentways. It isimportantto ensurdhat
therepresentatiors well tailoredto boththe sensoeingusedandthe application.Most

of thestandardapproachesanbegeneralizednto two types:deterministicandstochastic.

Deterministicoccupang gridsarethesimplestimplementationandhave adiscreteset
of valuesfor the grid squares.Thesetypically are EMPTY andOCCUPIED,andsome-
timesincludeavaluefor UNKNOWN or UNOBSER/ED. This clearandsimpleapproach
tendsto be popularfor mapsof theenvironmentcreatedoy handor for simulatederviron-
ments for usewith pathplanningalgorithms,or othermethodshaving to dowith physical
interactiorwith theworld. They giveaveryclearcutdescriptiorof thephysicaloccupang
of theworld from a spatialstandpoint However, they tendto beanover simpli cation for
sensorssincevery rarelywill the sensorever seesquarepatchof theworld whichis both
completelyoccupiedand always accuratelyobsened. For this reason,stochastiomaps
are much more popularfor localization, mapping,and other methodswhich rely on an

obsenationalinteractionwith theworld.

Stochasticmapshave a notion of OCCUPIED and EMPTY, just like deterministic
maps,but insteadof viewing thesevaluesas absolutesthey have a sliding scaleof var
ious degreesof occupang. Thesevaluesare affectedby a variety of factors,including
what percentag®f the squares believedto be occupied,andhow transparenthe object
is to the sensar Sincethesenumbersrepresenthe behaior of a speci ¢c sensowith the
givenarea,it makessensehatthe methodfor representinghis uncertaintywould change
for differentsensorsBoth thestochastiadepresentatioandthe correspondingbsenation

modelneedto betunedproperlyfor the device used.
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3.3 Laser Model

The recentdevelopmentof reasonablypricedlaserrange nders hasquickly madethem
a dominantsensoifor usein mappingaswell aslocalization. Unlike othersensorslaser
range nders cangive accuratemeasurementwithin a few centimetersandareeffective
out to rangesof 20 metersor more. Anotherimportantdifferencebetweenlaserrange
nders andsensorsuchassonaris thatthelasertracesa very thin line throughthe world,
as comparedto the wide conefrom sonar As such,the lasercan provide much more
preciseandaccurategeadingscomparedo previoussensors.

There are three main sourcesof uncertaintythat we would like to accommodatén
our model. The rst hasto do with small objects,andirregular surfaces. Regardlessof
the resolutionof our grid, therewill always be objectswhich do not t well within a
grid square.Roughsurfaces suchasrocksandplants,aswell assmallitemslik e fences
and bushesare very dif cult to represenexplicitly in a deterministicfashion. Another
issuearisesfrom the discretizationof the world. Most surfacesdo not align well with a
givengrid, sincethey do not happento be axis-parallel.Instead,they will only partially
occupy certainsquaresandthey will give differing readingsdependingon which portion
of the grid squareis scanned. This can be particularly problematicfor surfaceswhich
arenearly parallelto the currentscan. Lastly, thereare objectsin the world that behae
in mannergoo comple to easilymodel, suchas moving people,or surfaceswhich can
occasionallyre ect thesensarWe would lik e amethodwhich canrecover gracefullyfrom
theseaberranevents,insteadof placingpermanenerrorsin the map.

The idea of using probabilistic map representationss possibly as old as the topic
robotic mappingitself [21]. Many of the earliestSLAM methodsemployed probabilis-
tic occupang grids, which wereespeciallyusefulfor sonarsensorgroneto noisy and/or
spuriousmeasurementsHowever, by concentratingon a modelfor a laserrange nder,

andthe behaior of our own algorithm, we candevelop a more appropriatemethodfor
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representingincertaintyin the map,which takesinto accounthe distancethe lasertravels
througheachgrid square.

Themainchallengegor devisinga probabilisticmaprepresentatioarein developinga
representationf theenvironmentthatis consistent,e xible, andeasilyupdated Our basic
assumptions thateachgrid squarerespondgo laserlight in a mannerthatis independent
of neighboringsquaresMoreover, thebehaior is independentf theangleof incidenceor
the partof squarewhichis struck;thebehaior with respecto a particularsquaredepends

only onthedistancehelasertravelsthroughthe square.

Ourassumptionare,of coursefalsefor mostervironments However, they area plau-
siblerelaxationof theratherstrictassumptionsnadein the deterministianap. Intuitively,
ourmodelcorrespondso theassumptiorthatbetweerscansthe obstructionsn eachgrid
squareare redistrituted uniformly within the square. Obviously, more sophisticatedp-
proacheghat retainmoreinformationare possibleand someare underconsideratiorfor
future work. However, if therobotis not permittedenoughmemoryto recall the precise
locationsof objectswithin a grid square(or if thelaserdoesnot have enoughaccurag to

make suchrecordswvorthwhile),theassumptiorof uniformity is quite natural.

3.4 Map Representationand Observation Model

Sincemapsare alreadyfairly large datastructures,we would like to maintaina small
and constantamountof additionalinformationfor eachgrid squarethat summarizeghe
propertiesof the square. With this restriction,it seemsnaturalto avoid overly complex
modelsby assumingthat the probability of stoppingat arny particularpoint within the
squareis uniform over the square. From that point, the speci c methodof developing
theseprobabilitiescanbetailoredto the behaior of thesensor

Oneimportantgoal of our modelis the ideathat the probability of laserpenetration

shoulddependon the distancetraveledthrougha grid square.Earlier approacheso esti-
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Figure 3.1 Effectof angleon numberof grid cellspenetrated.

matingthethetotal probabilityof thescanwouldtracethescanthroughthemap,andweigh
the measuremergrror associatedavith eachpotentialobstacleby the probability thatthe
scanhasactuallyreachedhe obstaclg24]. In anoccupang grid with partial occupany,

eachcell is a potentialobstacle.

ConsiderFigure 3.1, wherewe canseetwo possiblescansf equallength,originating
from the sameposition, but with differentorientations. Note that the axis parallelscan
passeshroughthreegrid squareswhile the diagonalscanpasseshrough4. (In general,
thenumberof squarewisitedcandiffer by afactorof ) Withoutamethodof weighting
thevisitedgrid squaredasednthedistancdhelaserhastraveledthroughthem,two scans
of equallengthtravelingthroughsimilar grid squaresanhave vastlydifferentprobabilities
(sincethey representa differentnumberof possiblelaserobstacleshasedsolely on the
orientationof the map. Notice alsothat someof the squareghat the angledscanpasses
throughare only clipped at the corner resultingin a very shortdistancespentin those
squaresEvenif thesesquaresareknown to interruptlaserscanswith high probability, the
effectsof thesesquare®on the thetotal probability of the scanshouldbe discounted This
is largely dueto the fact that the sensoronly detectsthe boundarief objects,andthus
map squaresvhich arelikely to be occupiedare almostalwaysonly partially occupied.
Theseeffectscancausea localizationalgorithmto preferto align somescansalongaxes
for spuriousreasons. While this issuehasbeenrecognizedsomeexisting work [2], is
oftenignoredin otherstochastianodels,despitebeinga very importantconsideratiorn

minimizing the effectsof discretizatiorin themap.
Oursecondyoalin developingalaserpenetratioomodelwasthatthethe modelshould
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Figure 3.2 Effectof grid resolutionon scanprobabilities.If thegrid squaresll have the
samedensityto the sensorthe scanon theleft shouldhave the sameprobabilityastheone
ontheright.

be consistentWe derive our notionof consisteng from thefollowing thoughtexperiment.
Consideralasercastthatpasseshroughtwo adjacensquare®f identicalcompositionrand
travelsthe samedistancethrougheachsquare(Figure 3.2). The probability thatthe laser
beamwill beinterruptedshouldbethe sameasif thelaserhadtraveledtwice the distance
througha single, larger squareof identical compositionto the two smallerones. More
generally consisteng suggestghat our level of discretizationshouldnot directly affect
the probabilitythatalasercastof givenalengthwill beinterrupted.

If we de ne, to be the cumulative probability that the laserwill have been
interruptedaftertravelingdistance throughamediumoftype , ourconsisteng condition

canbe statedmoregenerallyin termsof  divisionsas,

Thissummatiorrepresentthatthelasercouldbeinterruptedduringary segmentof length
-. We accumulatehe probability of stoppingin eachone. Insidethe summationthe rst

termis the probabilitythatthe scanwould be obstructedn the givensegment.Thesecond
term representshe probability of the scanmakingit thatfar; thatis, the probability that
eachprevious sggmentdid not obstructthe laser As canbe seenby simple substitution,
the exponentialdistribution, —, for a positive scalar , is a compact
representatiomhich satis esthis consisteng condition. We will referto astheopacity

of grid square.
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For ary lasercast, we can expressthe interactionbetweenthe model and the trace

of the cast,up to somepoint , asa vector of distancedraveledthroughgrid squares
and the correspondingpacities of thosesquares.As

notedearliet the distanceswill not be uniform. Dependinguponthe angleof a cast,the
beamcould cut acrossa grid squarein anaxis parallelmanneygo acrosst diagonally or
possiblyjust clip a cornerof the square.The probability thata lasercastwill be stopped
at somepoint alongits trajectoryis thereforeequalto the cumulatve probability thatthe

lasercastis interruptedoy squaresip to andincluding

We expresgheprobabilitythatthelasercastwill beinterruptedatgridsquare as stop

, Which is computedasthe probability that the laserhasreachedsquare andthen
stoppedat
stop
where and havethenaturalinterpretatiorasfragment®fthe and vectors.
Supposehevector is avectorof differencesuchthat isthedistance

betweernthelaserdistancaneasuremerdandgrid square alongthetraceof thelasercast.
We expressthe conditionalprobability of the measuremengiventhatthe laserbeamthat
wasinterruptedn square, as stop , for which we malke thetypical assumption
of normally distributedmeasurementoise[25]. Notethethe termsareonly de ned if
thelasermeasuremenibseresaspeci ¢ stoppingpoint.

Theevents for all form apartitionof all possiblelaserstoppingevents.
Thereforetheprobabilityof thelasermeasurement,, with anobsenedstoppingpoint, is
thenthesum,overall grid squaresn therangeof thelaser of theproductof theconditional
probability of the measuremengiven that the beamhas stoppedat that point, and the
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probabilitythatthe beamstoppedn eachsquare,

stopped true stop stop stop

3.5 Map Updates& Observation Model

Themeanof theexponentialdistributionwith opacity issimply , whichmakesupdating
our map particularly simple. For eachsquare,we maintainwhat is essentiallya laser
odometerthat sumsthe total distance traveledby laserscansthroughthe square.We
alsokeeptrack of the numberof timesthat the laseris presumedo have stoppedn the
square, . Our estimateof is therefore —. In ourinitial implementationof the
occupanyg grid we treatthelaserasareliablemeasuremenwhenupdatingthe map. Thus,
stop countsandgrid odometersare updatedunderthe assumptiorthat the reportediaser
depthis correct. We realizethat this remainssomeavhat contradictoryto our obsenation
modelandwe planto implementsoft updateswhich will bring our approactctloserto an

incrementalersionof EM, in futurework.

Grid squareswhich have not beenobsered beforeare treatedin a specialmanner
Thedif culty with suchsquaress thatit is dif cult to estimatehe probability of thelaser
stoppingn agivensquarewithout previousexperiencewith thatsquare Theusualsolution
to sucha problemis the useof a prior. For our purposesye usea gammadistribution as
a conjugateprior, with a shapeparametenf 1, anda scaleparametethat hasa natural
interpretatiorasa previously obsenedratio of distanceso stops.We would lik e to setthis
ratio to onestopevery 8m (the maximumrangeof our laserrange nder. The strengthof
this prior is alsokeptlow, equivalentto observingthis probability for a few centimeters
worth of distance This givesusa prior of mand

Sinceall grid squaresareat leastsemi-transparenthe line tracewill never terminate
onits own; thereis alwaysa somechancethatthe lasershouldnot have beenstoppedyet.
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However, we know thatwhenthe laserreportsan obstruction theremustbe an objectat
somepoint within its range. Therefore whena line tracereacheshe maximumrangeof
thesensorwe normalizethe probability of theobsenationby thetotal probabilitythatthe
laserhasbeenstoppedsofar. This hasthe effect of enforcingthe assumptiorthata nite

laserreadingmusthave originatedfrom a physicalobjectsomevherealongits trajectory:

stopped true stopped true

stopped true

Corversely whenthelaseris not obseredto be stoppedthe probability of the laserscan

is equalto the probabilitythatno objectalongits trajectoryobstructedhelaser:

false

This proposedbsenationmodelassumeshatall of the errorsin the obserationsare
normally distributed. Sinceeachobsenation is independenta single poor obsenation
can have a drasticimpacton the total probability of a given pose. However, in reality,
thereexist mary othercausedor disagreementbetweenthe obsenationsandthe map.
Re ectionsfrom specularsurfaces,non-staticobjects,and discretizationerrorsare but a
few sourcesvhich cangive riseto highly erraticreadings.Fortunately theseareall fairly
low probabilityevents,anddonotneedo behandledspeci cally by theobserationmodel.
However, their impact on the total probability should be limited. Therefore,a certain
amountof “backgroundnoise”, , is allowedin the obsenations. Any singleobsenation
hasa lower limit imposedon its probability, which canbe interpretedasthe probability
of anunmodeledeventcausinganerraticreading.In practice this backgrounchoiselevel

wassetto berelatively low comparedo thenormalobsenationmodel,lessthan0.5%:
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Chapter 4

DP-SLAM

4.1 Algorithm

DP-SLAM implementsaparticle Iter overmapsandrobotposesusinganoccupang grid
to representhe map,to trackthe placemenbf objectsin the environment.In this sensat
is a directextensionof mary successfulocalizationalgorithms[9, 2, 25, 18]. However,
it is importantto notethat for purelocalization,eachparticleis trackingjust the robot's
pose.Eachparticleexistsin the samemap,andthereforewherea particlewasresampled
from in the lasttime stepis irrelevant. How a particlearrivesat its currentlocationin the

mapis unimportantall thatmatterss thatthe currentposeis accurate.

Whenusingaparticle Iter for SLAM, eachparticlecorrespondgo aspeci c trajectory
throughthe environmentand hasa speci ¢ map associatedvith it. Whena particleis
resampledthe entiremapitself is treatedaspartof the hiddenstatethatis beingtracked.
Sincethe ancestryof eachparticle matters,differentparticlesare not interchangeablé
thesamesenseasin purelocalization,andapatrticle Iter for SLAM is lessableto recover
from mistakes. Small errorsin the robot posecan be reinforcedin later iterations,and
canquickly accumulateo form a poor map. Therefore signi cantly greatemumbersof
particlesare necessaryn orderto cover the statespacesufciently, not only in orderto
covertheextradimensiorbeingtrackedacrosghespaceof maps but alsoto ensurehatat
eachiterationwe aresufciently closeto therobot's “true” poseat thattime, soasto not
introduceatendenyg towardserrorinto themap.

For a particle Iter to trackthis joint distribution properly over both robot posesand
maps,it is necessaryor eachparticleto maintaina separatecompletemap. During the
resamplingphaseof the particle Iter, eachparticle could be resamplednultiple times.
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Therefore,it is necessaryo copy over the entiremapto eachnew particle,to allow each
hypothesigo maintainits own setof updatedo the map. This joint distribution, andthe
correspondingieedfor multiple map hypotheseshasbeenrecognizedor sometime as
beingcrucialto the SLAM procesg$26]. However, adirectapproacho this methodwhere
a completemapis assignedo eachparticle,is impractical. If the mapis an occupang
grid of size and particlesaremaintainedoy the particle lter, thenignoringthe cost
of localization, operationgnustbe performedduringthe resamplingstepmerely
copying maps. For a numberof particlessufcient to achieve preciselocalizationin a
reasonablysizedernvironment,this naive approachwould requiregigabytesvorth of data
movementperupdate.

The major contribution of DP-SLAM over previous attemptsis an ef cient represen-
tation of the mapto make map copying moreef cient, while at the sametime reducing
the overall memoryrequiredto representheselarge numbersof occupang grids. This
is achieved througha methodcalled distributed particle mapping(DP-Mapping),which

exploitsthe signi cant redundanciebetweerthe differentmaps.

4.1.1 SingleMap

To appreciatdully the needfor multiple maps,we rst considerthe behaior of usinga
singlemapto trackthe obsenred ernvironment. This is a commontrick usedby earlierre-
searchers anattemptto avoid the complexities of mapcopying. In this method,asingle
mapis maintainedandusedfor localizationfor all of the particles. At eachiteration,the
singlemostlikely particleis chosenandthe mapis updatedonly once,baseduponthis
greedychoiceof robot pose. All of the other particlesareignoredduring the mapping
stage.This simple methodis nice becauseét looks almostexactly like a problemof pure
localization,andcanbe expectedto take equivalentresourcesThe problemwith it is that

althoughthe mapmay seemconsistentor shortlengthsof motion, smallerrorscanvery
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Figure 4.1 A SLAM algorithmin progressdemonstratinghe distribution of particles.
This illustratesthe possibledifferencesbetweenthe mostlikely particle at a giventime
step,andthe true pose. This partial map correspondso the upperleft cornerof the nal

mapin Figure4.2.

ey

Figure 4.2 Theresultsof ignoring the joint distribution over mapsandrobot posesand
maintainingonly a singlemap. Thetwo sectionf hallway at the bottomaresupposedo

line up.
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quickly accumulateto give poormaps.Thesinglemaphasno ability to revise the place-
mentof earlierhypotheseasfutureinformationis acquired.Ilt mustmake the assumption
that that the mostlikely poseat eachtime stepis the correctone, an assumptiorwhich

is usuallyfalse. Any future obsenationsare unableto in uence this choiceof the map
update.Thusthis methodof mappingis very brittle andunableto recover from ambiguous

situations.

Let ustake a closerlook athow this methodperformsin anactualSLAM situation.In
Figure4.1we canseetheresultsof asingle-mapSLAM algorithmin themidstof mapping
asectionof hallway. Herewe seeanoverheadriew of theworld, with theedgesf objects
(occupiedyrid squaresilepictedn black. In the centerof thehall is aspreadf redpoints,
representinghe currentsetof particleswithin the map. Sincethe hallway at this pointis
relatively featurelessit is dif cult for the algorithmto differentiateits positionalongthe
lengthof the hall, andthusthe particlesaremostly distributedin a line alongthelengthof
thehallway. Themostlikely particleat this step,accordingto the sensomodel,is a point
nearthetop of the distribution. However, the robot's true positionalongthe hallway was
actuallymeasuredo be muchcloserto the bottomof the distribution. Therefore updating
the map basedupon our single mostlikely particle hasthe effect of foreshorteninghe
hallway slightly, and moving all future obsenationsthat much closerto the top of this
hallway whenthey are enteredinto the map. Lacking ary ability to keepmultiple map
hypothesedutureobsenationswhich couldotherwisehelpresole thisambiguityarestill

unableto correctthemap.

In Figure4.2, we canseethe endresultof this error, combinedwith mary otherslike
it. Here,therobothascompleteda loop of the hallway, andhasphysicallyreturnedto its
startingpositionin theworld. However, becaus¢he SLAM algorithmwasinaccuratethe
robot's mapdoesnotre ect this. Thetwo displacedsectionsof hallway at the bottomof

thismaparein factdifferentviews of the samehallway, andshouldbe alignedin anaccu-
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ratemap. Unfortunately sincethe singlemap SLAM methoddoesnot properlymaintain

thejoint distribution over bothrobotposesandmaps,it is unableto completethis task.

4.1.2 Ancestry Trees

It shouldbeclearto thereadetby now thatcorrectlymaintainingthis joint distributionover
mapsand posesandthus maintainingmultiple map hypothesesis crucialto solvingthe
SLAM problemaccuratelyandproducinghigh quality maps.However, aswe have already
noted,if implementedn a naive fashion,this canbe a very expensve task,bothin terms
of processotime and memoryrequirements.The bottleneckof theseapproachess of
coursethe sheersizeof themaps,andthe costof copying over eachmapwhenresampling

particles.

An astutereaderhasmostlikely obsened thatthe naive approachs doing too much
work. Eachmapcarriesmuchin commonwith mostof theothermaps,andreproducingall
of thisinformationmultiple timesis aninef cient useof resourcesTo make this concept
clearey we will introducethe notion of a particle ancestry Whena particleis sampled
from thedistribution atiteration to produceanew successoparticleatiteration ,we
call thegeneration particlea parentandthegeneration particleachild. Two children
with the sameparentare siblings From here,the conceptof a particle ancestryextends
naturally To seehow this canbe useful,supposeahatthe lasersweepsut anareaof size

andconsidertwo siblings, and . Eachsiblingwill correspondo a different
robotposeandwill make at most updatedo the mapit inheritsfrom its parent. Thus,
themapsfor and candifferin atmost mappositions.The entireremaindernof the

mapis identical.

Whenthe problemis presentedh this mannerthenaturalreactionfrom mostcomputer
scientistgs to proposerecordingthe “diff” betweenmaps,i.e, recordinga list of changes

thateachparticlemakesto its parents map. While this would solve the problemof mak-
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ing ef cient mapupdatesjt would createa bad computationaproblemfor localization:
Tracingaline thoughthe mapto look for an obstaclewvould requireworking throughthe
currentparticle's entireancestryandconsultingthe storedlist of differencedor eachpar
ticle in the ancestry The compleity of this operationwould be linear in the numberof
iterationsof the particle Iter. The challengeis, therefore to provide datastructureghat
permitef cient updatedo themapandef cient localizationquerieswith time compleity
thatis independenof the numberof iterationsof the particle Iter . We call our solutionto
this problemDistributedParticle Mappingor DP-Mapping andwe explainit in termsof

thetwo datastructureghataremaintainedthe ancestrjtreeandthe mapitself.

4.1.3 Maintaining the Particle Ancestry Tree

The basicideaof the particle ancestrytreeis fairly straightforvard. Every nodein this
treerepresents distinct hypothesispossiblyoriginatingfrom a previous iterationof the
particle Iter . Thetreeitselfis rootedwith aninitial particle,of whichall otherparticlesare
progely. Eachparticlemaintainsa pointerto its parentandis assignea uniquenumerical

ID. Finally, eachparticlemaintainsalist of grid squareshatit hasupdated.

Thedetailsof how we will usetheancestrytreefor localizationaredescribedn thesub-
sequensection.In this sectionwe focuson the maintenancef the ancestrytree,speci -
cally onmakingcertainthatthetreehasboundedsizeregardlesof thenumberof iterations
of thepatrticle lter.

We maintaina boundedsizetree by pruningaway unnecessargodes.First, notethat
certainparticlesmay not have children, dueto resampling,and cansimply be removed
from the tree. Of course,the removal of sucha particle may leave its parentwithout
childrenas well, and we canrecursvely pruneaway deadbranchesof the tree. After
pruning,it is obviousthattheonly particleswhicharestoredn ourancestntreeareexactly

thoseparticleswhich areancestor®f the currentgeneratiorof particles.
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This s still somevhatmoreinformationthanwe needto rememberWhatwe truly are
interestedn is whereandhow the particlesdiffer from eachotherin termsof the robot's
trajectory andthusthemap. Thereforejf aparticlehasonly onechild in ourancestrytree,
we canessentiallyremove it, by collapsingthat branchof thetree. This hasthe effect of
meiging the parents andchild’'s updatego themap,a processlescribedn the subsequent
section. By applyingthis procesdo the entire tree after pruning, we obtaina minimal
ancestrytree,which hasseveraldesirableandeasilyprovableproperties:

Independendf thenumberof iterationsof the particle Iter , aminimal ancestrytreeof

particles
hasexactly leaves,whicharethesetof particlesfor the currentiteration;
hasbranchingfactorof atleast , asadirectconsequencef our treemaintenance;
consequentlyit hasdepthno morethan

Theproces®f maintaininganancestrytreeis perhapsestillustratedthroughasimple
example. Figure 4.3 depictsthe startof this process.Here, the robotis traveling down
a featurelesdallway, andwe will obsere how the ancestrytreeis updatedasthe robot
moves.At thetop of the gure is asingleparticle,wheretherobot's poseis representetly
areddot, andthe currentmapadditionsareshavn in black. This onepatrticleis resampled
from severaltimes,to give a numberof identicalchildren. Sincethe mapfor eachparticle
is inheritedfrom their parent,it is shavn in grey, insteadof black. Thesenew particles
aretheneachpropagatedorward by meansof the probabilisticmotion model. Thusin
Figure4.4 eachparticlerepresents differentpose,andconsequentlyeachhasa different
setof mapupdates.Theseparticlesarethenscored,basedon how well the new updates
agreewith the existing map, and randomlyresampledoroportionatelybaseduponthese

weights(Figure4.5).
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Figure 4.3 An ancestrytreejust beginning

Figure 4.4 Thechildrenparticlesarepropagatedhroughthe particle Iter .
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Figure 4.5 Thechild particlesareresampledor the next generation

Figure 4.6. Unnecessargncestoparticlesarepruned.
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Figure 4.7. Resamplingn the next generation

Figure 4.8 Irrelevantancestorgarepruned,andthecolumnontheleft is collapsed.
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Notice that at this point someparticleshave scoredhigherthanothers,andtherefore
wereresamplednorethanonce. Sincethe total numberof particlesat eachiterationis
keptconstantthis impliesthatthereareotherparticleswhich werenot resampledrom at
all. Thesechildlessparticlescanbe removedfrom the ancestrytree,asthey will have no
in uence on ary future particles(Figure4.6). In Figure4.7, the new setof particleshas
againbeenpropagatedorward,andthenscoredandresampledto give thenext generation
of particles.However, at this step,therearetwo importantupdatedo be madeto the an-
cestrytree.Ontheright, therearea pair of childlessparticlesfrom the previousgeneration
which canbe removedfrom the ancestrytree. However, whenthis is done,their common
parentwill nolongerhave ary childrenof its own. This olderancestoparticlecanalsobe
removedfrom thetree,asit alsonow hasno descendant® the currentgeneration.

Theotherinterestingupdates ontheleft sideof Figure4.7. Here,we seethatoncethe
childlessancestoparticlesareremoved,therewill beachainof ancestoparticles,eachof
whichwill have only onechild. Sincewe areinterestednly in how the currentgeneration
of particlesdiverge from eachother this chaingivesus no pertinentinformation. There-
fore, thesenodescanall be meigedinto a singleancestoparticle, effectively collapsing
thechain.This singleancestoparticlewill containall of therelevantmapupdategrom all
threeancestoparticlesaswell asrepresentinghepointatwhichits descendantdiverged
from the otherparticles. Figure 4.8 shavs the prunedancestrytree,with all unnecessary

nodesemoved,andthe non-branchinghainscollapsed.

4.1.4 DP-Map Representation

Thechallengdor our maprepresentatiors to devise a datastructurethatpermitsef cient
localization, updatesand resampling. The nave approachof a completemap for each
particleis inef cient dueto the high costof resamplingwhile the someavhatlessnaive

approaclhof simply maintaininghistoryof eachparticle’supdatess alsoinef cient because
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it introducesa dependeng on the numberof iterationsof the particle Iter during the

localizationstage.

Our solutionto the map representatiomproblemis to associatgarticleswith maps,
insteadof associatingnapswith particles.DP-mappingnaintaingustasingleoccupang
grid, wherethe particlesare distributed over the map. Unlike a traditional occupang
grid, which storesa singlevalue at eachgrid square we proposestoringthe entire setof
obsenationsfor all of the particles. This setcaninitially be thoughtof being storedas
atree, keyed onthe IDs of the particlesthat have madechangedo the occupang of the
square For ef cient implementationthistreecanbekeptbalancedusingared-blackiree,
or asimilar method.In the next chapterwe will shav amoreef cient way of storingthis
informationat eachgrid square.

Thegrid is initialized asa matrix of emptytrees.Whenaparticlemakesanobsenation
abouta grid squareit insertsits ID andthe obsenationinto the associatedree. Notice
thatthis methodof recordingmapsactuallyallows eachparticleto behae asif it hasits
own map. The only complicationis that eachlookup and updateis now performedon a
balancedree,ratherthana singleentry. To checkthe valueof a grid squarethe particle
checkseachof its ancestorso nd the mostrecentonethatmadean obsenrationfor that
square.lf no ancestohasmadean entry, thenthe particle cantreatthis positionasbeing
unknown.

We cannow describehe effectsof collapsinganancestomwith asinglechild in thean-
cestrytreemoreprecisely Thegoalof this stepis to meigeall of the pertinentinformation
from thesetwo ancestrynodes the parentandthe child, into a single node. This allows
for theremoval of oneof the nodesfrom the ancestrnytree,preventingbranche®f thetree
from growing arbitrarily, andtherebyensuringour minimal boundonthesizeof the

tree.We accomplisithis throughthefollowing steps:

Eachancestryparticlecurrentlymaintainsa list of the grid squarest hasobsenred,
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andthusupdated For eachitemin thechild's list:

— ChangehelD of theobsenationto matchthatof the parent.

— If theparentalsohasanobsenationatthis grid squareremove theobsenation

associatedvith the parent.

— Add this obsenationto the parentslist of obseredsquares.

Redirectall childrenof thechild node(i.e. grandchildrerof the parent)to recognize

the parentnodeastheir new parent.

Remae thechild nodefrom theancestryree.

4.1.5 SLAM usinga DP-Map

Accessinga givengrid squareon a DP-mapis slightly morecomplicatedhanwith a stan-
dardoccupang grid. Sinceeachgrid squarecontainsanentiresetof obsenations, nding
out whethera speci ¢ particlehasmadean obsenation at this locationrequiresa search
acrossthis setof obsenations. However, eachpatrticle inheritsthe mapupdatesnserted
by its ancestors.Therefore,we needto stepbackwardsthroughthe particle's ancestry
comparingeachancestoto the setof obsenationsatthis grid square Thiswill giveusthe
mostrecentmapupdatefor this locationthatthis particleshouldhave its own map.

Making an updateto the mapis a simpler processthan accessingt. Whena new
obsenation is made,the updatedvalue is addedto the set of obsenationsat that grid
square.At the sametime, the ancestoiparticlewhich madethe updatekeepsa pointerto
thespeci c obsenationin themap.

Deletionsof entriesto themapareonly performedvhenanancestoparticleis removed
from the ancestrytree. Usingthelist of mapupdatedor this ancestoparticle,which was
createdvhenthe mapupdatesvereoriginally addedo the map,we caneasilyremove all
of the pertinentobsenations.
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4.2 Complexity

The onenicething aboutthe naive approactof keepinga completemapfor eachparticle
is the simplicity: If we ignorethe costof copying maps,thenlookupsandchangego the
map canall be donein constanttime. In theseareas distributed particle mappingmay
initially seemlessef cient, dueto the searchover obsenations. However, we canshov
thatDP-mapsarein factasymptoticallysuperiorto the naive approachWe rst presenan
analysisof the directimplementatiorof DP-SLAM, resultingin worst-case
runningtime. With somecarefulchangesit is possibleto improve this runningtime to
[27]. However, that resultis completelysupersedetby our resultsin the next
chapter wherewe shonv how the algorithm canbe implementedmuch more ef ciently .
Thosemethodseducethe runningtime for DP-SLAM to , arguablythe mostef -

cientboundthatwe couldhopefor.

4.2.1 Naive Implementation

As we have alreadynoted, maintainingthe joint distribution over mapsand poseshas
beenattemptedeforein SLAM. The naive approacho maintainingthesemultiple maps
involvedkeepingasinglefull mapfor eachparticle. This hasthenicefeatureof fastlookup

time; accessingury givengrid squareor aparticularparticlecanbedonein constantime.

If theareaobsenedateachtime stepis boundedy ,and particlesareusedthismeans
thatthelocalizationstepof SLAM canbe performedn time. Similarly, updating
a grid squaretakesonly constantime, andso the mappingstepshouldonly take

time.

However, the mainbulk of computationlies in theresamplingstep. Keepingmultiple
completemapsmeansthat the robot will needto copy over an entire mapfor eachpar
ticle, which will require time, where is the size of the map. Sincetypically

, this obviously is the dominanttermin the computation.Lik ewise,the memory
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requirementgor this methodwill be space.lt is the enormoussize of that
quickly hampergherobotin implementation.Vastmemoryrequirementg&ndprocessing
time neededor implementatiorhave madethis methodinfeasiblefor usein any reasonably

sizedernvironment.

4.2.2 Initial Analysisof DP-SLAM

Themaingoalsfor usingdistributedparticlemapsareto remove the costly stepof copying
mapsat every iteration, and simultaneouslyreducethe spacerequirementso a more

reasonabldound. To achieve thesegoals,we are willing to acceptan increasein the

complity of theothersteps.As we will seelater, this sacri ce is notin factnecessary

LookuponaDP-maprequiresacomparisorbetweertheancestryof a particlewith the
obsenationtreeatthatgrid square.Let bethe depthof the ancestrtree,andthusthe
maximumlengthof a particle'sancestry Thereforewe cancompleteour lookup afterjust

accesset theobsenationtree. Strictly speakingastheancestrytreeis notguaranteed
to be balanced, canbeasmuchas . However, in practice,this is almostnever
the case,andwe have found , asthe natureof particleresamplingendsto
very balancedancestrytrees. Sincethe obsenationtreeitself canhold at most  entries,
andasinglesearchtakes time. Accessinga speci ¢ grid squarein themapcan
thereforebedonein time.

For localization,eachparticlewill needto make accesseto themap. As each
particle needsto accesghe entire obsened spacefor its own map, we need ac-
cessesgiving localizationwith DP-mapsa compleity of

To completethe analysiswe musthandletwo remainingdetails: The costof inserting
new informationinto the map, andthe costof maintainingthe ancestrytree. Sincethe
obsenationtreefor eachgrid squares balancedinsertionsanddeletionson our mapboth

take perentry Eachparticlecanmalke at most new entries,whichin turn
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will only needto be removedonce. Eachnev mapupdaterequiresaccessinghe map,in

orderto nd thepreviousentryfor this particle. Thusthe procedureof addingnew entries
canbeaccomplishedh perparticle,or total,andthe costof

deletingchildlessparticleswill beamortizedas

It remainsto be shown that the houseleepingrequiredto maintainthe ancestrytree
hasreasonableost. Speci cally, we needto shav that the costof collapsingchildless
ancestrytree nodesdoesnot exceed . This may not be obvious at rst,
sincesuccessie collapsingoperationscan make the setof updatedsquaredor a nodein
the ancestrytree as large as the entire map. We now argue that the amortizedcost of
thesechangewill be . First, considerthe costof memging the child's list
of modi ed squarednto the parents list. If the child hasmodied squareswe must
perform operationgn obsenation tree querieson the parents key) to check
thechild's entriesagainsthe parents for duplicates.

The nal stepthatis requiredconsistsof updatingthe ID for all of the child's map
entries. This is accomplishedy deletingthe obsenationwith the old ID, andinsertinga
new copy of it with the parents ID. The costof this is again . Considerthat
eachmapentry storedin the particleancestrtree hasa total potentialof  timesthatit
canbeinvolvedin a collapseover the courseof thealgorithm,since is thetotal number
of nodesbetweenits initial positionandtheroot,andno new nodeswill ever beaddedin
between.At eachiteration, particleseachcreate new mapentrieswith potential
Thusthetotal potentialat eachiterationis

The computationalcompleity of DP-SLAM can be summarizedas follows: For a
particle Iter thatmaintains particles,with alaserthatsweepsout grid squaresand

anancestrytreeof depth , DP-SLAM requires:
operationdor localizationarisingfrom:

—  particleschecking grid squares
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— A lookupcostof pergrid square

operationgo insertnew datainto thetree,arisingfrom:

—  particlesinsertinginformationat  grid squares

— Eachinsertrequiresa lookupto retrieve the previousinformation,at a costof

— Insertioncostof pernew pieceof information
Ancestrytreemaintenanceavith amortizedcost arisingfrom

— A costof to remove an obsenation or move it up onelevel in the

ancestrytree

— A maximumpotentialof introducedat eachiteration.

The spacecomplity of DP-SLAM is allittle harderto put a tight boundon. At rst
glance|it appearghatthe mapcouldhave aworstcasescenarian which eachgrid square
hasa completesetof differentobsenations. Therefore the spacecompleity of DP-
SLAM couldapproach , andbeasymptoticallyno betterthanthe naive implemen-
tation. However, the robot's uncertaintyvery rarely stretchedar enoughbackin time to
allow for sucha case. Much moreoften, thereis onerecentiterationin the past,before
which all of the currentparticlesagreeon the trajectory This pointis referredto asthe
pointof coalescenceandwill bedescribedn moredetailin Chapter7. If we establistthis
point of commonancestryasexisting iterationsin the past,thenwe canimposea very
weak memoryboundon DP-SLAM, where . Theimportantpoint
to bemadeby this obsenationis thatfor largermapsthe memoryrequirementsrecloser

to thatof maintainingonly asinglemap,insteadof = separat®nes.
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4.2.3 Empirical Evaluation of DP-SLAM

To evaluatethe resultsof DP-SLAM, we ran several experimentsusing three different
methods.The rst experimentsveredesignedo compareheresultsfrom usinga single-
map SLAM algorithm, suchasthe onedescribedn section4.1.1, againstthe resultsof

DP-SLAM, usingasimpledeterministicoccupang grid for bothmethods.Thesecondset
of experimentsdemonstrate¢he bene ts of usingthe stochastioccupanyg grid described

earlier overthedeterministicoccupang grids.

Thesetestwere performedon datafrom sensorogs, in orderto ensureconsisteng
betweerexperiments.The sensologswerecollectedby ouriRobotATRV Jr. in acyclic
hallway ervironment,with obsenationsmadeapproximatelyevery 15cm. The robotis
equippedwith a SICK laserrange nder, which scansat a heightof 7cm from the oor.
Readingsaaremadeacross , spacednedegreeapart,with an effective distanceof up
to m. Theerrorin distancereadingss typically lessthan mm. Thelogswerethenrun
of ine onafastPC (2.4 GHz Pentium4), in a mannersimulatingthe actualrun, in order

to allow for bettercontrolin our experiments.

We examinedresultsfrom two differentenvironments. The rst is a smallerloop of
a carpetedof ce ervironment,from the D-Wing of Duke University's LSRC building,
approximately\380mx 25m,with therobottraversingapath16mx 14m. Thesecond|arger
loop is alsofrom the LSRC building, including C-Wing and a catwalk above the foyer.
This secondervironmentis muchmore complicated,andincludesboth carpetandtiled
oor, aswell astransparentwvindows and mary small, clutteredobjects. The size of this
ervironmentis roughly 25mx 60m, with the robotcompletinga loop approximatelyl4m
x 40m.

The sensorogs for theseexperiments,aswell as additionalexperiments,annotated

maps.andpicturesareavailableat http://www.cs.duke.edu/ par r/dps lam/ .

For theresultswe presentijt is importantto emphasizeéhatour algorithmknows abso-
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lutely nothingaboutthe ervironmentor the existenceof loops. No assumptiongboutthe
ernvironmentaremade andno attemptis madeto smoothovererrorsin themapwhenloops
areclosed. The precisionin our mapsresultsdirectly from the robustnessf maintaining

multiple maps.

Deterministic Maps

In our initial implementationour map representatiors a deterministicoccupang grid.
At rst, we areignoring the stochastianap representatiomlescribedat length earlierin
this documentandinsteadareallowing only two differentoccupang valuesfor the grid
squareseitheroccupied indicatedin black, or empty/unknown, in white. In the next
sectionwe will seethe effectsof a stochastianaprepresentation.

This rst sensotog thatwe useasa testof DP-SLAM is thesmaller lesscomplicated
ernvironment. This is the samesensorog that we have usedbefore,in orderto demon-
stratethe failings of usingonly a singlemapfor all particles(Figure4.2 andrepeatedn
Figure4.9). In thistest,therobotbeganin the middle of the bottomhallway andcontinued
counterclockwisehroughthe restof the map, returningto the startingpoint. The result
showvn in Figure4.10shaws the highestprobability mapgeneratedy DP-SLAM afterthe
completionof the D-Wing loop using9000particles.

This exampledemonstratethe accurag of DP-SLAM whencompletinga loop, one
of the moredif cult tasksfor SLAM algorithms. After traveling 60m, the robotis once
againableto obsere the samesectionof hallway in which it started. At that point, any
accumulateckrrorwill readilybecomeapparentasit will leadto obvious misalignments
in the corridor. As the gure shaws, the loop was closedperfectly with no discernible
seamor misalignment.

To underscor¢headvantage®f maintainingmultiple mapswe referthereadebackto

theresultsobtainedwhenusinga singlemapandthe samenumberof particles.Figure4.9
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Figure 4.9 SLAM usingasinglemap.

shows the result of processinghe samesensoriog le by generating particlesat
eachtime step keepingthe singleparticlewith the highestposteriorandupdatingthemap
baseduponthe robot's posein this particle. Thereis a considerablenisalignmenterror

wheretheloopis closedat the bottomof the map.

StochasticMaps

Figure 4.10 demonstrateshe successfuperformanceof DP-SLAM using deterministic
occupang grids. However, ascan be expected,deterministicmapshave dif culties in
larger, morecomple situations.The previous D-Wing ervironmentwasfairly regularand
well behaed— clearwalls arealwaysapparentandmostobjectsinteractpredictablywith
thelaserrange nder. In the C-Wing ervironment,walls areoften clutteredandirregular,
attimesdisappearin@ltogethersuchasalongthecatwalk (seeFigure4.13).In addition,a
numberof windows areapparentwhichareonly semi-opaquéo thelaser andthethin rails
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Figure4.10 A DP-SLAM mapwith 9000patrticles.

alongthe catwalk aresmallerthanthe grid resolutionfor the map. This morecomplicated
ervironmentexposesthe shortcomingsof deterministicoccupang. Figure 4.11 shovs
what happenswvhenthis type of a map representatioencountershe more challenging
C-Wing section. The robot begins the run at the very top left cornerof the map, and
travelsdown the long hallway on the left, beforeturning up at the bottomof the mapand
returningalongtheright hallway. Theloopis nally closednearthetop right of the map.
Predictablythealgorithmrunsinto seriougroubleearlyinto therun,which hascontinuing
effectsthroughoutherestof the map.

Whenstochastioccupanyg grids areused,a dramaticimprovementis apparent.Fig-
ure4.12shovsamapproduceddy stochastioccupang gridswith aresolutionof 3cmper
grid squarepsing10,000particles.We againemphasize¢hatour algorithmknows nothing
aboutloopsandmakesno explicit effort to correctmaperrors.Theextraordinaryprecision
andseamlessatureof our mapsarisessolely from the robustnessof maintaininga joint
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Figure4.11 Deterministicoccupang gridsfail to handlethedif culties of C-Wing
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Figure 4.12 Properstochastianappingcansuccessfullyclosetheloop in C-Wing, using

the samenumberof particles.
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Figure 4.13 Robotperspectie onthe catwalk andrailing, takencloseto the Railing label
in Figure4.12. Slight changesn therobotpositionwill affect which balustersarehit by
thelaserrange nder, andwhich aremissed.

distribution over robotpositionsandmaps.

Details aboutthe map, the environment, and the robot's trajectorygive insight into
the robustnessand accurag of the algorithm. The areain which the robot startsis on a
raisedcatwalk, with a railing supportedoy mary thin balustergFigure 4.13), which at
our scanningheightappearasa seriesof small, evenly spacedbstacles(The individual
balustersare visible whenthe mapis enlaged.) Thesesmall balustersprovide a very
dif cult challengefor both localizationand mapping,dueto both their size andlack of
distinction. Anotherchallengeis a large setof windows alongthe left handside of the
map,nearthetop edge.The glassis a semi-opaquasurfaceto thelaser only occasionally
stoppingthe laser dueto dirt andangleof incidence. On closeinspection,this areaof
themapmay appeaiblurry, with somepossibldine doubling. Thisis actuallybecausehe
window is doublepanedandthelaserhasa chanceof beingstoppedoy eitherpane.

Otherfeaturef notearetheinterveningopeningswhich occurbetweerthetwo long
stretchesof hall. Whenthe robot moves from top to bottom along the left hallway, it
seenly the lower walls of thesepassagesandit seeshe upperwalls on the returntrip.
Therefore thesepassageprovide no cluesthatwould malke it ary easierfor therobotto
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closethelargeloopin themap.

Theloop is closedon the top right of the mapon a catwalk parallelto the rst. The
accuray in this mapis high enoughto maintainthe correctnumberof balusterdor the
handrail betweenthe two catwalks. Thereis onesectionof mapthat may appeatrto be
inaccurate at the bottomright handcornerof the map. Here,therearetwo intersecting
hallways,which meetat a slightly acuteangle. This is enoughof a disparityto make one
endof thetwo “parallel” hallwaysin our mapapproximately20cmclosertogetheron the
top endwhencomparedo the bottom. We were (pleasantly)surprisedo discover, upon
measuringhe correspondin@greasn thereal world, thattherewasin facta disparity of
approximately20cmin the real building. Our algorithmhaddetectedan anomalyin the

construction.

We performedseveral otherexperimentson the samedatalog. Our rst testinvolved
thesamealgorithmwith a grid resolutionof 5cm. With the sameparametersandanequal
numberof particlestheloop still successfullylosed.Ourlastexperimentinvolvedamore
simplisticapproacho representingpccupang probabilities,which merelyuseda ratio of
thenumberntimesthelaserhadstoppedn the squarecomparedo the numberof timesthat
it wasobsered. This method,while still ableto handlesomeof the uncertaintyin the
ervironment,hadsigni cant skew andmisalignmenterrorsuponclosingtheloop, asseen
in Figure4.14.

Figure4.15demonstratethe resultsof runningthe stochastianappingmethodon the
sensollog from D-Wing. Sincethe deterministicnapwasableto correctlymapthe envi-
ronmentjt is notsurprisingto seethatthestochastienethodwasalsoableto closetheloop
correctly Theimportantresultis thattheseresultswereobtainedwith signi cantly fewer
particles,only 3000,whencomparedo the deterministianethod which required9000for
thesameaccurayg. Sonotonly dowe nd thatstochastienapshelpushandlelarger, more

dif cult ervironmentshput they arealsocapableof handlingthe simplerernvironmentswith
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Figure4.14 A simplisticoccupang grid of C-Wing.
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Figure 4.15 Stochastioccupanyg grid of D-Wing, createdusing3000patrticles.

fewer particles. This demonstratethatit is not only thoseareaswith semi-transpareryc
andsigni cant amountsof partialoccupancieshatbene t from the stochastioccupanyg,

but alsoobjectswith muchbetterbehaed surfacesaswell.
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Chapter 5

Linear Time Complexity

A straightforvard implementationof the DP-SLAM algorithm can provide us with an
asymptotidime compleity of . As we have shavn, thisis good,but canwe
do better?To performSLAM in larger, morecomple ervironmentsjt becomesecessary
to usemoreparticles,andthefeasibility for real-timeimplementations threatenedA sim-
ple analysissuggestshat is alowerboundfor any methodthatconsidersachgrid
squarecoveredby . How closecanwe getto this optimal bound,usingthe distributed
particlemapstructure?

What we detail in this chapteris a clever mannerof usingdynamicprogrammingn
orderto speedup computation,andin fact achieve this optimal , undermild as-
sumptions.In orderto developthis ef cient implementationwe rst needto restructure
how we storeobsenationswithin themap.We canthenconstructanadditionaldatastruc-
ture, the observationcade to allow for constanttime referencego the mapfor every

particle.

5.1 Map Data Structure

Recallthatthe DP-SLAM mapis aglobaloccupanyg grid-like array Eachgrid cell holdsa
setof obsenations,with oneentryfor eachancestoparticlethathasmadeanobsenation
of thisgrid square Previously, this setof obsenationswasstoredasabalancedree.How-
ever, this addssigni cant overhead poth conceptuabnd computationalto the algorithm
andis not requiredin the linear time implementatiorof DP-SLAM. Instead,we simply
storethisinformationasavectorof obsenations,whichwe will referto astheobservation

list. Eachentryin thislist is anobservatiomodecontainingthefollowing elds:
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opacity A datastructurestoringsufcient statisticsor the currentestimateof the opacity
of the grid cell to the laserrange nder. For the purposeof the stochasticoccu-
pang grids describecdearlier this consistsof the total obsered laserdistancetrav-
eledthroughthis squarealongwith with thetotal numberof timesthatthelaserhas

beenobsenedto stopin thesquare.

parent A pointerto anotherobsenationnodein the samelist, for which this nodeis an
update If thisgrid squarenadpreviously beenunobseredby this particle’sancestry
this pointeris null. Notethatif anancestoof a currentparticlehasseenthis square
alreadythentheopacityvaluefor this squards considere@nupdateto theprevious
valuestoredby the ancestarHowever, boththe updateandthe original obsenation
canbe stored,sinceit may not be the casethatall successorsf the ancestohave

madeupdatedo this square.
anodeA pointerto thenodein theancestryireewhichis associateavith this obsenation.
In additionto this observationlist, eachgrid also containsan ocachepointer anda

generationcounter, bothusedfor the dynamicprogrammingandexplainedfurtherlater.

5.2 Ancestry treenodedata structur e

For referencepurposesyve list the elementsof the ancestrytree datastructure. This is
no differentfrom the implementationdescribedearlier but is enumerated little more

speci cally here.Eachnodein theancestntreeconsistf thefollowing elds:
parent A pointerto this nodes parent.
ID Theuniqueidenti cation numberassignedo this ancestoparticle.

children Thenumberof nodesin theancestrtreewhich arechildrenof thisnode.When

this numberis reducedo zero,this nodecanberemovedfrom thetree.
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onodesA list of pointersto all of theobsenationnodesn the mapwhich wereaddedoy

this speci c node.

5.3 Map cachedata structure

The main sacri ce that was madewhen originally designingan occupang grid for DP-
SLAM wasthatmapaccessesould no longerbe performedin constantime, dueto the
needto searchacrossthe setof obsenationsat eachgiven grid square. The map cache
providesaway of returningto this constantime accessby reconstructingr separatéocal
mapfor eachparticle. Thislocal mapis consistentvith the history of mapupdatedor that

particle.

As Figure5.lindicatesthe size of eachof theselocal mapsdoesnot needto be very
large. We only needto maintainin the cachethosegrid squaresvhich areobsenable by
thecurrentsensoreading.Usingatypicallaserrange nder thatsweepsutasemicircular
areawith amaximumlaserrange , usingagrid resolutionof ,andassumingreasonably
concentrategbosterior the numberof grid squaresneededor ary onelocal mapin the
cachewould beapproximatelyequalto —.

For alocalizationprocedurausing particlesandobservinganareaof grid squares,
thereareatotal of mapaccesseskor the constantime accesseprovided by the
map cacheto be useful,the time compleity to build the mapcacheneedsto be
Thisresultcanbe achiavedby constructinghe cachein two passes.

The rst passteratesoverall grid squaresn the globalmapwhich couldbewithin the
sensotrangeof therobot. For eachoneof thesegrid squaresthe obsenationvectorstores
all of the obsenationsmadeat that grid squareby ary particle. We traversethis vector
andfor eachobsenation visited, we updatethe correspondindocal mapwith a pointer
backto the correspondingbsenation node. This createsa setof partiallocal mapsthat

have beenseededvith their directmapupdateshbut no inheritedmapinformation. Since
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Figure 5.1 An illustration of how the map cacheworks. (a) The robotis only ableto
obsene asmallportionof thetotal occupang grid. (b) Eachgrid squaren theglobalmap
maintainsanentiresetof obsenations,identi ed by theancestoparticlewhichaddedhat
update.(c) Theancestritreede nesthehow theseobsenationsareinherited.(d) Themap
cachemaintainsa completelocal occupang grid of the currentlyobsered areafor each
leaf of thisancestrtree.Recallthatthesetof leavesin theancestritreede nesthecurrent

setparticles.
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thesizeof the obsenationvectoris no largerthanthe sizeof the ancestrtree,which has
nodesthe rst passtakes time pergrid square.

In thesecondpasswe |l theholesin thelocal mapsby propagatingheinheritedmap
information. The entireancestrytreeis traced,depth rst, andthe local mapis checled
for eachancestomodeencountered.If the local mapfor the currentancestomodewas
not lled in duringthe rst passthenthe holeis patchedby the ancestomodes parent.
Sincewe aretracingthe ancestrytreefrom top to bottom,this will [l in ary gapsin the
local mapsfor grid squareshathave beenseerby ary currentparticle.If agrid squarehas
notbeen lled in by this processthenno ancestof the given particlehasobsenedthis
squareandit canbetreatedasunknown. As this passis directly basedon the sizeof the
ancestnytree, it is also pergrid square.Therefore the total complexity of building
themapcaches

For eachpatrticle, this algorithmconstructsa local map of pointersto the appropriate
obsenation nodes. This provides constanttime accesdo the opacity valuesconsistent
with eachparticle's map.Localizationnow becomedrivial with thisrepresentatiornLaser
scansaretracedthroughthecorrespondindpcal map,andthenecessargpacityvaluesare
extractedvia the pointers.With the constantime accesseaffordedby thelocal mapsthe

total localizationcostin DP-SLAM is now

5.4 Updates

Whenthe obsenationsassociatedvith a new particle's sensorsweepareintegratedinto

themap,thefollowing stepsareperformedfor eachgrid squareobsened:

1. Retrieve theappropriatgreviousobsenrationinformationfor this grid square.

2. Inserta new obsenationnodeinto the obsenationlist for this grid squarewhichis

anupdateof theinformationretrieved.
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3. Inserta pointerto this new obsenationnodeinto the particle’s onodeslist.

The costof this operationis obviously no morethanthe costof localization. In fact,
thesamemapcachecanbe usedto speedip theaccessekr eachgrid squarethussaving

asigni cant portionof thework.

5.5 Deletions

We will rst considerthe mechanismand costof individual deletionsfrom the ancestry
tree,andthenconsiderthe computationalmpactof performingmultiple deletionswithin
a singleiteration. Therearetwo situationsthat requiredeletingnodesfrom the ancestry
tree. The rst is the simplecaseof remaoving a nodefrom which the particle Iter hasnot
resampledThis involvesthe constantime operationof removing the ancestrynodefrom
the ancestrytree,andthe procesf removing the obsenationsassociatedvith this node
from theobsenationlistsin theglobalgrid. Sincepointersto thesearestoredat the node,
this simply involves constantime deletionsfrom the obsenationlist.
Thesecondasefor deletinganodeoccursvhenanonly child is melgedwith its parent

in theancestrytree. Thisinvolvesthe following steps:

1. Remwethechild nodefrom theancestryree.
2. For eachobsenationnodein the child's onodeslist.

(a) Replacethe opacityvalueof the obsenation nodes parentwith opacityof the

currentchild's obsenationnode.

(b) Remaorethechild'sobserationnodefrom its grid cell obsenationlist.

Note that meging hasthe effect of replacingthe parents mapwith the child's map.

This is the desiredbehaior, sincethe child's mapis more currentthanthe parents map
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andthereareno siblingsleft to inherentanything from the parentmap. As in the caseof a
simpledeletion,this involves constantime deletions.

So far, we have discussednly the costof individual deletions,but determiningthe
overalltime compleity of deletionds somevhatcomplicatedbecaus¢éhenumberof dele-
tions performedat ary mappingiterationcanvary quite signi cantly. Whenanambiguity
is resohed, entirebranche®f theancestrntreecouldrequiredeletionand/ormerging. For
thisreasonwe analyzethe compleity of deletionsn anamortizedsense.

In the caseof simpledeletionswe establisha potentialnumberof deletionsbasedon

the total informationinsertedper iteration. Notice that eachiterationcreategrecisely

new ancestrynodes Eachaddedhodehas new obsenationsassociatedvith it. Since
eachnew obsenationcanonly beremovedonce thisintroduces potentialdeletions
ateachiteration.

For the caseof meilges,remembethata melge only occurswhena parenthasexactly
onechild. Therefore pnly a singlesetof obsenationsfrom a giveniterationcanbe
inheritedup an edgein the ancestrytree. This meansthat the total potentialfor meiges

introducedby ary iterationof the particle Iter is boundedy thenumberof interior nodes

in thetree,whichis . Sincethe contribution to eachmeige from a giveniterationis
, thetotal potentialmeging work introducedat eachiterationis just , andthe
amortizedcostof all deletion-relatedvork is just periteration.

5.6 Summary of Computational Complexity

We have shown thatlocalizing, addingnewv obsenations,and maintaininga minimal an-
cestrytreeeachrequire time. Ironically, the only part of the our algorithmwith
superlinearrompleity is the simplestpart of the resamplingphaseof the particle Iter.
For resamplingwe mustcorvert sampledrom the uniform distribution generatedby our

pseudo-randomumbergeneratoto samplesrom our weightedsetof particles. This is
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| log | particles| quadratiomethod| linearmethod]|

D-Wing | 1500 55 14
D-Wing | 3000 124 28
C-Wing | 11000 1345 690
C-Wing | 20000 3609 826

Table 5.1 Comparisonof the running times for the original, quadraticversion of
DP-SLAM versughelinearimplementation.

typically doneby imposingatotal orderingon the particles computingthe cumulative dis-

tribution,andthenperformingbinarysearchio nd theeventcorrespondingo thesampled

probability For particles,this would take time, sothe overall compleity
of our algorithmshouldbe statedas . However, the areasweptout by
the laserwill be muchlarger than for ary typical laserand reasonablenumberof
particlesso is accurate.

5.7 Implementation and Empirical Results

In the precedingsection,we presentedhe algorithmin a mannerintendedto maximize
clarity andeaseof analysis.Theonly negative aspecbf theobsenationcaches thatit can
be fairly memoryintensive. Our actualimplementatiorhasthe samecomputationatom-
plexity, but usesfewer pointersand elds to reducememoryconsumptiorandconstructs
the obsenationcachefor eachgrid cell in alazy mannerto improve speed.

For a comple algorithmlike DP-SLAM, asymptoticanalysismay not alwaysgive a
completepictureof realworld performanceThereforewe provide acomparisorof actual
runtimeson our two differentdatalogs, with severaldifferentparticlecounts.

The linear implementations merelya more ef cient methodof arriving at the same
numbersproducedoy a moresstraightforward implementation.Therefore the mapspro-

ducedby thesetwo methodsareidentical,anddisplayingthesemapswould not be infor-
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mative.
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Chapter 6

Motion Modelsand ProposalDistrib utions

Robot motion modelsplay an importantrole in modernrobotic algorithms. The main
goal of a motion modelis to capturethe relationshipbetweena controlinput to the robot
anda changein therobot's con guration. Goodmodelswill capturenot only systematic
errors,suchasarepeatedendenyg of therobotto drift left or right whendirectedto move
forward,but will alsocapturethe stochastimatureof the motion. Thesamecontrolinputs
will almostnever producehesameresultsandtheeffectsof arobot'sactionsare therefore,
bestdescribedsdistributions[9]. Theseadistributionsplay animportantrolein algorithms
thatuseparticle Iters for localizationandmapping. Speci cally, they form the proposal
distribution for the particle Iter .

In general,it is well known that a poor proposaldistribution in a particle Iter may
requirea prohibitively large numberof particlesto trackthe stateof a systemsuccessfully
If thetrue behaior is not well within the samplingregion of the particle Iter , the proba-
bility of generatinga particle consistentvith the stateof the systemwill be verylow. In
applicationa SLAM procedurewith apoorproposalistributionwill requireanexcessve
numberof particlesandyet maystill losetrackof therobotstate.Thus,the motivationfor

acquiringa goodmaotionmodelis quite strong.

6.1 Other ProposalDistrib ution Impr ovements

Poorproposabistributionsareacommonproblem,andresearchersave developedanum-
ber of methodsfor dealingwith the issue. Onecommonmethodusedfor particle Iters
in generalis a techniquecalled adaptve importancesampling[28]. This methodtakes

a proposaldistribution and evaluatesa small numberof sampleswithin that distribution.
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Thosesamplesarethenusedto successiely re ne the proposaldistribution, basedupon
their positionandweight. This methodhasbeeneffective in a numberof other particle
Iter applicationsput its usefulnesgor DP-SLAM is minimal. Theimprovementin the
proposadistribution at eachstages notlarge enoughto offsetthe costof evaluation.This
is exacerbatedy the immensesize of the joint distribution over mapsandrobot poses;
eachhypotheticamapshouldhave a slightly differentproposaldistribution afteronestep
of re nement. In practice,t hasbeenfoundthatmerelyincreasinghe numberof particles
usedis moreef cient thanattemptingto re ne the distribution usingadaptve importance

sampling.

Anothermethodfor improving the proposaldistribution in SLAM relieson matching
the obsenationsfrom onetime stepto the next. Using scanmatchingto align the laser
endpointof oneobsenationto thelaserendpointof thenext, it is possibleo nd abetter
estimationof the motionthanodometryalonewill allow [29, 30]. Similarin conceptto
adaptveimportancesampling thismethodreliesontherangesensoobsenationsto re ne
the proposalistribution. Thereforejt hassimilarissuesof a continuedrelianceon anini-
tial distribution, andcanrequireadditionalcomputationapower. The majorimprovement
for scanmatchinglies in the factthatit dependssolely on the two mostrecentobsena-
tions, andnot on the mapor the trajectoryof therobot. Therefore scanmatchingcanbe
performedust onceeachiteration,andit will provide are ned distribution over possible
posedor all particles.Adaptive importancesampling,on the otherhand,is dependenon
themapto givethere ned distribution. Consequentlyadaptve importancesamplingmust
beperformedor eachparticleseparatelyor elseit will give abiasedestimatewith greater

variance.
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6.2 Previous Calibration Methods

Previouswork in automaticacquisitionof motionmodelsfor mobilerobotshasbeenfairly
sparseMost of the efforts have dealtwith the problemof systematie@rrors,ratherthanthe
levels of noisethatcanbe present.Borensteirand Feng[31] describea methodfor cali-
bratingodometryto accountfor systematicerrors. This methodassumes fairly smooth
surfacefor calibration,with low non-systematierrors,andattemptgo modeleachwheel
independently This methodwould becomesigni cantly moredif cult for a robotwith
morethantwo drive wheels. Voyles andKhosla[32] useshapefrom motionto learnthe
motionmodelparameterdyut insteadof usingthe shaftencodersattemptto modeltheob-
senation of appliedforce vectorsdirectly. This would requirean additionalsensomwhich
is not typically availableon mary robots,andhaslimited accurag. Roy andThrun[33]
proposea methodwhich is more amenabléeo the problemsof localizationand SLAM.
They treatthe systematicerrorsin turning and movementas independentand compute
theseerrorsfor eachtime stepby comparinghe odometricreadingswith the positionesti-
mategivenby alocalizationmethod.They canthenusean exponentialestimatorto learn
thesetwo parametersnline,assuminghatshorttermlocalizationresultswill beaccurate
enoughto re ne themotionmodel.

The goalsof our approachare mostsimilar to thoseof Roy and Thrun. We aim to
have amethodthatcanstartwith acrudemodelandbootstraptself towardsamorere ned
motion model, giving the robot the ability to adaptto changingmotion parameters.In-
steadof merelylearningtwo simpleparameter$or the motion model,aswith the method
proposeddy Roy andThrun, we seekto usea moregeneralmodelwhich incorporatesll
of the interdependencketweenmotionterms,including the in uence of turnson lateral
movementandvice-versa.Furthermoretheproposednethodextendsthescopeof thecal-
ibrationbeyondthesystematierrorsdealtwith in previousmethodsWe believe thatgreat

gainsin performanceanbe achiezedby estimatingthe non-systematierrors,to quantify
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thevariancein the differentmovementterms. This canbe crucialto the motion modelof
SLAM methodsasdifferentamountsof noisein the movementtermscanproducevastly
differentproposaldistributions[34]. A properlycalibratedsetof varianceparametersvill

provide thelocalizationalgorithmwith a moreappropriatgoroposalistribution, allowing

it to betterfocusits resource®n the mostlik ely posedor therobot.

The algorithmfor learningthe motion modelis integratedwith a SLAM algorithm,
giving increasedautonomyto the system. The robot now hasthe potentialto learnthe
mostappropriatenodelbaseduponrecentexperiencesandin directconjunctionwith its
currenttask. This is especiallyusefulasthe robot's motion modelwill changeovertime,
bothfrom changesn theterrainandfrom generalwearon therobot. It is alsoimportant
that this calibrationmethodcanbe performedin a remotelocation, without the needof
externalsensordo measurehe robot's true motion. (A rover landingon anotherplanet

with unknown surfaceconditionswould be anobviousapplicationof this approach.)

With this view in mind, we canidentify two cateyoriesof hiddenvariablesn our prob-
lem formulation.We areattemptingo learnboththemapof theervironmentandthe setof
motion model parametershat describestochastiaelationshipbetweerthe odometryand
the actualmovementof the robot. To estimatethe parametersf this model,we propose
usingan EM algorithm: The expectationstepis provided by a SLAM algorithm,imple-
mentedwith someinitial motion model parameters.The possibletrajectoriespostulated
arethenusedn themaximizationstepto createa setof parametersvhich bestdescribehe

motionsrepresentedly thesetrajectories.

6.3 Motion Model Details

Let therobot's poseat ary giventime stepberepresenteds , Where isthe
facingangleof therobot. The motionmodelthenseekdo determine , Where
is therobot's poseonetime stepin the future,and is theamountof lateraland
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rotationalmovement(respectrely) thatodometryhasreportedoverthattime interval.

Roy andThrun[33] proposehefollowing motionmodel:

Here, istheactualdistancdraveledbytherobot,and istheactualturnperformed.This
is correctonly if theturn anddrive commandsreperformedndependentlya simplifying
assumptiorwhich eventheir own experimentsviolate. A simpleimprovementto account

for simultaneousurningandlateralmovementwould be:

This modelassumeshatthe turning velocity of the robotis constanthroughoutthetime
step,andthatthe robotcanonly move in thedirectionit is facing. Theseimprovedequa-
tionsdo nottake into accounthat,evenin this casethe distancetraveledwill actuallybe
anarc,andnot a straightline. However, whenT is reasonablysmall, this erroris minor
andcanbeabsorbedspartof the noise.

A bettermodelwould take into accountthe ability of therobotto move in adirection
thatis not solely determinedy the beginning andendfacingangleof the robot. Sucha
modelwould beableto accounfor variablespeedurnsandsidevaysshifts,bothof which

have beenapparentvith our robots,evenon the bestof surfaces.

66



Here is the true movementangleof therobot. In this method,the directionof move-
menthasbeenexpressedeparatelyrom and , which permitsmovementin adirection
distinctfrom thefacingangleof therobot. In practiceit is oftendif cult to determinehis
independenthfrom and , but with somerobots,the shaftencoderon eachwheelcan
bereadindependentlyandcangive a moredirectobsenationof this parameter
Evenin therarecasesvhereit mightbepossibleoobsene it wouldbeverydif cult

to developa goodnoisemodel. Representinghe noisein  asa Gaussiarwould require
somechoicefor amean.For arobotwhich canperformholonomicturns,the lateralshift
of the robot could very easily be in ary direction, while the lateral movementreported
by the odometrywould be negligible. In this case, would moreaccuratelybe modeled
as a uniform distribution. For thesereasonswe prefer a slightly different model that

decomposethe movementinto two principlecomponents:

We approximate with — andreferto thisdirectionasthemajor axisof movement.
is an extra lateral translationterm, which is presentto model shift in the orthogonal
directionto the majoraxis,which we call the minor axis This axisis atangle —

andis de ned soasto have a consistenfleft-hand)orientation.

This motionmodellendsitself to a fairly naturalnoisemodel. We expectthatthe true
valuesof and will bedistributednormallywith respecto thereportedvalues, and
, but thatthe meanof eachwill scalelinearly with both and while the variancewill
scalewith and . Thisis plausibleif thetotal noiseis the sumof two independentoise
sourceswith magnitudethat scaleslinearly with and . We expectthat will have a
similar dependencen and . Inthisview, , and areall conditionally Gaussian
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given and :

where is the coefcient for the contribution of odometryterm to the meanof the

distributionover . It is thesesetsof meanandvariancetermsthatwe proposeo learn.

6.4 Parameter Estimation

Thelearningproblemfor ourrobotis thatof discoveringthe parametersf thedistribution
, Where is the reportedodometry is the setof obsenationsof the
ervironment,and is the mapof the environment. With this in mind, considera SLAM
algorithm,whichusesaparticle Iter to produceadistributionovermapsandposesateach
time step. For a givensetof motionmodelparameterspur particle Iter providesa setof
possibletrajectorieswith forward probabilities(normalizedparticleweights)at eachtime
step. To completethe  step,we mustperformbackward smoothingover our particles.
Thereare mary waysto do this with a particle Iter, but we usethe simplest,which is
to computethe probability of eachtrajectoryandaverageacrosssuccessotrajectoriedor

particlesthatareresamplednultiple times.

Thecompleterun of the particle Iter with smoothingcannow beviewedasproducing
asetof weightedestimate®f thetrue motionof therobot,wheresample with weight

can be expressedas , , . From algebraicmanipulationof the previous
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equationsyve obtain

(6.1)

(6.2)
(6.3)

To completethe M stepof our EM procedurewe mustcomputethe maximumlik eli-
hoodvaluesof the parameterén our model. The meansin our modelhave linear contri-
butionsfrom the reportedodometryvalues.We thereforedeterminethein uence of each
term on the motion parametersising a weightedleastsquaresnethod. For example,let

bethe columnvector , bean matrix, whereeachrow is thereported
odometricmovement ,and bethe matrix of the estimated terms. We

obtaintheleastsquaresolutionof  from theoverdeterminedystem:

where isan diagonalweightmatrixwith diagonaklement as . Theprocess

canberepeatedor the othertwo motionterms.

The variancein our model hasa quadraticdependencén the odometryterms. To

computethevarianceparameterfor the termin ourmodel, , wede ne
asan matrix whoserows arethe squaredbdometryreadings, . We
de ne asthe matrix suchthat . As before we areinterested

in theleastsquaresolutionto anoverdeterminedystemof linearequations:

The calculationis similar for the varianceparametersf the othermotion modelterms.

The leastsquaressolutionfor all  parameter®f the motion model constituteshe

stepof our EM procedure.The new modelparametersannow be usedfor a new run
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of the SLAM algorithmon the samesetof sensordata,andthe processcanbe repeated
until (near)corvergence.This methodcanbeappliedto varyingguantitiesof motiondata.
Run over the entire setof data,it canbe appliedoff-line asa meansof determiningthe
bestmotionmodelfor arobotin future deploymentsin the same or similar, environment.
This is useful,asit allows the algorithmto learn,with high con dence,the propersetof
motion parametersjueto the large amountof training data. It alsoprovidesthe operator
theability to checkthe performancef nal motionparameterdy)y observingheaccurag
of the nal trajectory

An alternatve, quasirealtime applicationof this methodwould run EM on a smaller
setof data,allowing the robotto learnthe motion modelasit explores. In this case the
robotwould usea x edsizechunkof recentobsenationsto ne tunethe motionmodelto
changesn its behaior. For example,therobotmight applythis techniquef it encounters
atypeof terrainthatit hasnever seenbefore.This canslow ary mappingactvities under
takenby therobot. If therobotis usinga SLAM algorithmfor mappingthe EM natureof
the modellearningalgorithmwill requirethatthe localizationbe run multiple timesover
eachsectionandthemappingwill nolongerberealtime. In practice we expectthatmodel
tuning proceduresvould not be usedcontinuously but would be usedprimarily at sparse
intervals or whenthereis somereasonto believe that an inaccuratemodelis degrading

mappingaccuray.

6.5 Empirical Results

We testedthe learning algorithm on the D-Wing sensorlog usedin previous sections.
During this setof experimentswe noticeda small anomalywherelaserreadingssome-
timeschangedn amannerimplying motion,whenno changesverereportedn odometry
This could possiblybe causedyy readingsdrom the laserrange nder not beingperfectly

synchronizedvith thereadingsgrom the from the odometersSincethe motion modelde-
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scribedis directly dependenbn the magnitudeof reportedmotion, the variancein these
situationswould be zero,andthe SLAM algorithmwould have no ability to recover the
correctmotion for thattime step. To handlethis problem,we foundit necessaryo seta
minimumamountof noisethatmustbe presentt eachtime step.Theselevelsweresmall
(variancedessthan2cmalongthe major axisandlessthan in facing),andthe model

exceededhesevariancdevelsin all but afew time steps.

The rst experimentfor this algorithmdemonstratetheability of theproposednethod
to calibratethe motion modelparameters$or arobotwith little or no previous knowledge
of the erwvironment. The learningprocesss performedover the entire loop of hallway
from the D-Wing dataset. Notethatthe completionof aloopis notnecessaryor eitherthe
SLAM algorithmor the learningmethod,but merely senesto help illustrate the quality
of the map at eachEM iteration. The motion modelis setinitially with no systematic
biasegmeanzeronoise),but highvariancesFigure6.1shawvs the highestprobabilitymap
producedat the endof the rst run of EM. Theresultingmaphastheright generalshape,
but in the top left areawherethe robotreturnsto its startingpositionthereis a signi cant
errorin themap,resultingin doublewalls. A closeupof thisregionis shovnin Figure6.2.
After threeEM iterationsthe modelparameterarere ned to the pointwherethe SLAM
algorithmsuccessfullyclosestheloop withoutarny blemishesn themap.A closeupof the
sameareais shavn in Figure6.3.

Oneconcernthat we hadwhenlearninga motion modelwasthe possibility of over-

tting the speci c trajectorythat was suppliedto the SLAM algorithm. We would like
thelearnedparameterso be tunedto the propertiesof the robotandenvironment,but not
the quirks of individual datacollectionruns,sinceit would be it would beinef cient and
contraryto the spirit of SLAM to learna new motion modelwith EM every time thatthe
robotis redeplyed. To verify this generalityof the motionmodel,we usedonerun of the

robotto learnthe parameter#n the sameindoor ervironmentasbefore. Then,usingthis
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Figure 6.1 A completdoop of hallway, generatedisinga naive motionmodel. Therobot
startsat the top left andmovescounterclockwise Eachpixel in this maprepresent8cm
in the ervironment. The total pathlengthis approximately60 meters. White areasare
unexplored.Shadedetweergrayandblackindicateincreasingorobability of anobstacle.
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Figure 6.2 Closeup of theareawheretheloop is closed,usingthe naive motion model.
Doublewalls re ect anaccumulatecerror of approximatelyone half meterover the path

of therobot.
...—--j 1—" i I W BT

Figure 6.3 Closeup of the sameareaas Figure 6.2, using the learnedmotion model
learnedoy EM.

setof learnedmotionparametersye hadtherobotremapthe sameervironmentusingdata
collectedfrom severaldayslater. Theresultingmapshavn in Figure6.4is the samehigh
quality asif we hadlearnedthe motionmodeldirectly from the secondrajectoryitself.

A strongtest of the robustnessof our methodis its ability to recover from a poor
motionmodel. Thisis alsoimportantto theapplicabilityof themethodsincechangesn the
ervironmentor in therobotitself cancauseheappropriatanotionmodelto changeln this
experimentwe useda setof datacollectedin anof ce environmentto learnagoodmotion

model.We thentestedthe modelusinga secondsetof datacollectedin the samearea but
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Figure 6.4 The mapcreatedusingthe motion modellearnedfrom onesensolog to ona
differentsensollog generatedeveraldayslater.
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Figure 6.5 First iterationin correctingan inaccuratemotion model: close up of loop
closing.

with approximatelyayearof time separatinghetwo datasets.Whenattemptingo usethe
samemodelonthe secondlataset,we quickly noticethatthemapproducediy the SLAM

algorithmis obviously awed whereit attemptsto completethe loop (Figure 6.5). A
yearof useandsomeroughhandlingduring shippingcausedsigni cant wearin therobot
and changesn its behaior, resultingin an alteredmotion model. In the next iteration
(Figure 6.6), the learnedmotion model can be seento be improving the quality of the
mapasa resultof increasediccurayg. Figure6.7 depictsthe mapfrom the next and nal

iteration,wherethetwo endsof theloop areseamlesslyligned.

Figure 6.6: Secondterationin correctinganinaccuratemotionmodel

Most of ourresultsarevisual or anecdotalsincethe actualparametersvould befairly
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Figure 6.7: Finaliterationin correctinganinaccuratanotionmodel

meaninglesso all but thosevery familiar with this modelof robot. However, in this ex-
perimentthe differencein variancegds particularlytelling. Predictablythe variancehave
all increasedsigni cantly over the courseof the year aswearon the robot hascaused
movementgo becomemoreerratic. The mostsigni cant of theseis the term, which
changefrom — to —, indicatingsigni cantly moreerraticlateralshifts during

turns,aresultconsistentvith our obsenationsof therobotin action.

We also performedan experimenton a smallersggmentof sensordata. We wanted
to usea sectionwith a signi cant amountof both lateral motion and turning within its
trajectory sowe chosean areaconsistingof two cornersconnectedy onelateralstretch
of hallway, for atotal of approximatelyonequarterof afull sensoiog. Theinitial model
provided wasthe samenaive modelpresentedn the rst experiment.We performedthis
experimentto verify the ability to learnamodelwith lessinformationandto illustratethat
traversinga loop is not necessaryor accurateperformanceof the learningmethod. This
experimentookteniterationsto corvergewhile thosebasediponfull sensotogstypically
tooklessthan ve. However, the nal motionmodelparametersiponcornvergenceof EM
were accurateenoughto resultin seamlessnappingwhen the algorithmwas presented
with afull sensolog. Theresultingmapsareindistinguishabldrom thoseproducedwith

modelslearnedrom full sensotogs,andassuch,arenotshownn here.
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Finally, we consideredhe possibility of usingvery large variancesanda large number
of particlesasanalternatve to learninga goodmodel. The problemwith this approachs
thatadequatelycoveringthe con guration spaceof the robotwhenthe modelparameters
have high varianceis quite dif cult. Evenwith four timesasmary samplesasour re ned

models,our nave modelwasunableto produceseamlessnaps.

Perhapghe most signi cant testof this methods ability to learnthe motion model
parameter$or a givenrobotis to applyit to otherrobots,without any knowledgeof that
robotor its construction. Several sensorogs were obtainedfrom otherresearchgroups,
eachrecordedusing their own robot. Using a meanzero, high variancenoisemodelas
ourinitial model,this EM algorithmwasrun on a shortsection(200iterations,or approx-
imately 5m of motionwith turns)of the sensolog. Usingno otheralterationsthe entire

datalog wassuccessfullymapped We presentwo of the largerdatasetshere.

Figure 6.8 shavs a map of the corventioncenterin Edmonton,Albertawhere AAAI
2002washeld [1]. This sensolog, providedby Nick Roy, coversanareaapproximately
75mx 95m. Themapshavn wasgeneratedising2000particles anduseda motionmodel

learnedaftersix iterationsof our EM algorithm.

Figure6.9is amapof anotherconferencesite, thisonein Acapulco,Mexico, atthesite
of IJCAI 2001 [1]. Therobotbeginsin the lower right handcorner andobsenesa total
areaapproximately6Omx 110m. The strangezig-zagpatternat the top arethe posterson
display andthe setof threesmall“rooms” on theright sideof theimageis the coursefor
the robotic searchandrescuecompetition. This mapwas madewith 1500 particles,and
spenteightiterationslearningthe motionmodel.

Theseresultsshawv thatthe methodis capableof learningaccuratenotionmodelswith
very little userinput. Beginningwith a general nave setof motion parametersit is pos-
sibleto re ne the modelto be signi cantly moreaccurate.In addition,this modelcanbe

generallyappliedto similar environments.Furthermorewhenpresenteavith anincorrect
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Figure 6.8 A mapof theconferenceenterin EdmontonCanadawhereAAAl 2002was
held. Themotionmodelusedwaslearnedwithoutever having seentherobotthatcollected
thedata.
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Figure 6.9 A mapof thelocationof IJCAI 2001,in Acapulco,Mexico.
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model,the proposedmethodquickly adaptedandwasableto learnmoreappropriatga-
rametersuccessfully Finally, we demonstratethe power of this methodto learna good
modelthatis applicableto alarge areawhenpresentedvith datafrom only a small piece

of thisarea.
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Chapter 7

Coalescence

Ourresearchnto particle lters is unusual,n thatit speci cally obseresthe ancestryof
eachparticle,and keepstrack of the relationsand similarities betweeneachpatrticle. In
doingso,we have obsenedaninterestingphenomenorgalledcoalescenceAs onetraces
theancestryof thecurrentparticlesbackin time, theparticlediversitydecreasesndicating
a generalagreemenamongthe currenthypothesesiboutsomeearlierstate. The point at
which all currentparticlessharea singleancestois calledthe point of coalescence

As canbe expectedthe numberof iterationsbetweerthe currentgeneratiorandthis
point of coalescences a functionof the uncertaintypresenin the system.During periods
of increaseduncertaintythis differencewill grow, asthe available particlesspreadout
to cover alargerareaof the statespace.As moreinformationis gatheredit is possibleto
resole uncertaintiesn thepast.Oncethis uncertaintyis resolhed,thepointof coalescence
will jump backtowardsthe presentteration,indicatingthatall alternatve hypothesesip

until thatpoint have a nggligible probability.

7.1 Empirical Behavior of Coalescence

Let us examinethe behaior of coalescencén a speci ¢ run of DP-SLAM. Figure 7.1
showvs how the distribution of ancestomparticleschangesduring the D-Wing experiment
showvn in Figure 4.10. The highet red line indicatesthe numberof ancestorparticles
maintainedn the ancestrytreewhich wereinsertedat least ve iterationsearlierthanthe
currentiteration. Thelower, greenline plotsthe numberof ancestoparticleswhich were
createdat leastteniterationsago. As canbe seenthesenumbersvary signi cantly over

the courseof theexperiment.
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Figure 7.1 A graphof thecoalescencbehaior for DP-SLAM duringthe creationof the
D-Wing mapin Figure4.10,using3000patrticles.

Figure 7.2 The coalescenceehaior of a particle Iter with 3000particles,usingcom-
pletelyuninformative data.All coalescences purelytheresultof particledepletion.
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Thereare a few sectionsof the graphwhich are particularly interesting. The initial
uncertaintyof therobot,asthe rst obsenationsarebeingenterednto themap,is apparent
at the very startof the graph. Iterations100 and 180 both mark the startof risesin the
graph,andcorrespondo startof two new hallways: theright sidehall, andthe hall at the
top of the map. As the robot rst entersthesehallways, thereis very little information
to disambiguateherobot's position,asthereexist few featuresalongthe walls which the
robot is ableto obsere very well. Similarly, the spike in the graphbeginning around
iteration 350 correlateswith the robot enteringthe long sectionin the left hallway. The
lack of doorways,or ary otherdistinguishingfeature leavesthe algorithmwith very little

informationwith whichto con dently localize.

The nal risein uncertaintyfrom iterations420to 530, arisesfrom a differentsource.
In this area therobothasclosedthe loop, andthereforehaspreviously mappedhis area.
Therobotis not lacking accuratemapinformationto localizewith. Instead,asthe robot
hasnot visited this sectionof the maprecently someof the datawhich wasenteredear
lier is no longervalid, dueto traf c in the halls. Most obviously, thereis a door which
previously wasobsenredto be empty andnow the obsenationsindicatethatit is closed.
Theseinconsistencie®etweenthe old map andthe nev obsenationshave the effect of
decreasinghe algorithm's certaintyof any particle,asno combinationof mapandposet
theobsenationsverywell. Thislack of con dencetranslatesnto amarkedincreasen the
diversity of particles,which slowly returnsto previous levels,asthe mapis updatedwith
thenew stateof theworld.

It is importantto realizethat this point of coalescencé not merely a side effect of
randomparticledepletion. The point of coalescences actuallydrivenby theinformation
presentn theobsenations.To compareheresultsabove to thebehaior of anuninformed
particle Iter, adummyparticle lter wasconstructedThis dummyparticle Iter ignores

theobsenationscompletely;eachparticleis automaticallygiventhe sameweightasall of
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the others. The numberof particlesandthe resamplingmethodstayedthe sameasthose
usedin DP-SLAM for Figure7.1. This dummy particle lter wasrun severaltimes,to
comparethe coalescencéehaior in DP-SLAM againstthe particle depletionwhich is
obseredin anuninformedpatrticle Iter . Figure7.2 plotsthe resultsof oneof theseruns,
showvn by the pointsin thegraph,aswell asthe averageresultsover twentydifferentruns,
indicatedby the solid line. The higher setof tracesrepresentshe numberof ancestor
particlescurrentlykeptin the ancestrytree which were createdmorethan ve iterations
ago. The lower traceindicatesthe numberof ancestomparticlesolder thanteniterations.
As the gure shaws, an uninformedparticle lter quickly reachessigni cantly greater
amountsf diversityin thepopulationof ancestoparticlesandmaintainghosehighlevels
throughoutthe experiment. The amountof uncertaintyin the systemneedsto be much

higherbeforeparticledepletionbeginsto seriouslyaffect thebehaior of DP-SLAM.

7.2 Implications of Coalescence

This examinationof coalescencen DP-SLAM providesimportantinsightinto the prop-
ertiesof DP-SLAM. Primarily, it establisheshatthe particle Iter is maintainingthe un-
certaintyin the properareaof the statespace. This uncertaintyis reducedas a natural
consequencef the particle lter when future obsenationsresohe the ambiguity The
reductionin the diversity of particlesfrom earlieriterationsis the resultof informationef-
fectively propagatingackin time, affectingthe distributionsat previousiterations rather
thanresultof randomparticledepletion.

A niceconsequencef maintaininga relatively recentpoint of coalescences areduc-
tion in spacecompleity. All mapupdatesmadeprior to the point of coalescencaec-
essarilyagreeacrossall particles,allowing usto representhosesectionscompactly As
mentionedn previously in section4.2.2,if the point of coalescences de ned asexisting

iterationsin the past thenthespacecompleity of maintainingdistributedparticlemaps

84



is . Thissuggestshatasthe mapincreasesn size,the memoryrequiredto
representhe mapapproachethe sizeof maintainingonly a singlemap.

Sofar, examinationof coalescenchasonly beenpreliminary DP-SLAM reliesonthe
behaior of coalescencéo be ableto maintainmultiple map hypothesegpractically yet
it hasnot beenthoroughlyexaminedfor otherbene ts. Thereremainsa numberof other
potentialapplicationsfor exploiting coalescencén particle Iters. Thesepossibleuses
couldincludevariableparticlenumbersadaptve resamplingof pastiterations,andmore

ef cient datacompression.
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Chapter 8

Hierar chical SLAM

8.1 Drift

The DP-SLAM algorithmpresentedhereprovidesa highly accurateandef cient method
for building maps.However, for certaintrajectoriesvhich coverasufcient amountof dis-
tancebeforecompletingacycle,theaccurayg of themapcandegrade.This problemof drift
over large distancess a signi cant problemthatis facedby essentiallyall currentSLAM
algorithms. Small errorscanaccumulateover several iterations,and while the resulting
mapmayseemnlocally consistenttherecouldbelargetotal errors,whichbecomeapparent
aftertherobotclosesa large loop. Dueto aninability to representhefull joint probabil-
ity distributionin sufcient detail,it becomesmpossibleto recover from theseerrors. In
theory drift canbe avoidedby somealgorithmsin situationswherestronglinear Gaussian
assumption$old[11]. In practice,it is hardto avoid drift, eitherasa consequencef vi-
olatedassumptionsr asa consequencef particle Itering. The bestalgorithmscanonly
extendthe distancethatthe robot travels beforeexperiencingdrift. Errorscomefrom (at
least)threesourcesinsufcient particlecoverage coarseprecision,andresamplingtself
(particledepletion).

The rst problemis awell known issuewith particle lters. Givena nite numberof
particles,therewill alwaysbe unsampledjapsin the particle coverageof the statespace
andthe proximity to the true statecanbe ascoarseasthe size of thesegaps. This is ex-
acerbatedby thefactthatparticle Iters areoftenappliedto high dimensionaktatespaces
with Gaussiamoise,makingit impossibleto cover unlikely (but still possible)eventsin
the tails of distribution with high particle density The secondissueis coarseprecision.

This canoccurasa resultof explicit discretizatiorthroughanoccupang grid, or implicit
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discretizatiorthroughthe useof asensomwith nite precision.Coarseprecisioncanmake
minor perturbationgn the stateappeardenticalfrom the perspectie of thesensorandthe
particleweights. Finally, resamplingtself canleadto drift by shiftinga nite population
of particlesaway from low probability regionsof the statespace While this behaior of a
particle Iter is typically viewedasa desirablereallocationof computationalesourcesit

canshift particlesaway from thetrue statein somecases.

Theneteffect of theseerrorsis the gradualbut inevitable accumulatiorof smallerrors
resultingfrom failureto sampledifferentiate or rememberstatevectorthatis suf ciently
closeto the true state. In practice,we have found that thereexist large domainswhere
high precisionmappingis essentiallyimpossiblewith arny reasonabl@umberof particles.
Figure8.1demonstratetheresultof DP-SLAM attemptingto mapCarngjie Mellon Uni-
versity's WeanHall with 20,000particles,requiringmorethansix hoursof computation.
As canbeenseenby themisalignmentn theright hallway, theloop in this domainis large
enoughthat existing particlediversityis insufcient to correctthe inevitable small errors

thatoccur

8.2 Hierarchical SLAM

The DP-SLAM algorithmthatwe have constructedo far presentsan approacho SLAM
that reducesthe asymptoticcompleity per particleto that of purelocalization. This is
likely aslow ascanreasonablypeexpectedandshouldallow for theuseof largenumbersof
particlesfor mapping.However, thediscussiorof drift in the previoussectionunderscores
thatthe ability to uselarge numbersof particlesmay not be sufcient. If we acceptthat
drift is aninevitable resultof a samplingbasedSLAM algorithm,thenwe would like to
have techniqueghat delaythe onsetof drift aslong aspossible.We thereforeproposea
hierarchicabpproacho SLAM thatis capableof recognizingrepresentingandrecovering

from drift.
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Figure 8.1 A map of CMU's WeanHall, using a non-hierarchicaimplementationof
DP-SLAM with 20,000particles.Thereis a distincterrorin the closingof theloopin the
right hallway.



8.2.1 RelatedWork

Other methodshave also attemptedto presere uncertaintyfor longer numbersof time
steps. One approachseeksto delay the resamplingstepfor several iterations,so asto
addresghetotal noisein a certainnumberof stepsasoneGaussiarwith alargervariance
[29, 30]. Theinformationbetweenesamplingstepds notneglected however. Theweights
usedfor resamplingaretheaccumulatiorof the scoresattheinterveningsteps.In general,
there exist other look-aheadmethodsthat can “peek” at future obsenationsto usethe
informationfrom later time stepsto in uence samplesat a previous time step[35]. The
HYMM approach[17freatesa numberof smalllocal maps,andseeksto combinethem
by overlayingthemon atopologicalmap.

A differentway to interprethierarchicalSLAM is in termsof a hierarchicalhidden
Markov modelframework [36]. In a hierarchicaHMM, eachnodein the HMM hasthe
potentialto invoke sub-HMMsto producea seriesof obsenations.The maindifferences
thatin hierarchicaHMMSs, thereis assumedo be a singleprocesghatcanberepresented
in differentways. In our hierarchicalSLAM approachonly the lowestlevel modelsa

physicalprocesswhile higherlevelsmodeltheerrorsin lower levels.

8.2.2 Hierarchical Algorithm

The basicideais that the main sourcesof drift canbe modeledasthe cumulatve effect
of a sequenc®f randomevents. Throughexperimentationye canquantify the expected
amountof drift overacertaindistancdor agivenalgorithm,in muchthesameway thatwe
createa probabilisticmotion modelfor the noisein the robot's odometry Sincethe total
drift over a trajectoryis assumedo be a summationof mary small, largely independent
source®f error, it canbewell approximatedy a Gaussiardistribution.

If we view theactof completinga smallmapsementasarandomprocesswith noise,

we canthenapply a higherlevel lter to the outputof the map segmentprocessin an
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attemptto track the underlyingstatemore accurately Therearetwo bene ts to this ap-
proach.First, it explicitly modelsandpermitsthe correctionof drift. Secondthe coarser
time granularityof thehigh level processmpliesfewer resamplingstepsandfewer oppor
tunitiesfor particledepletion.Thus,if we canmodelhow muchdrift is expectedto occur
overasmallsectionof therobot's trajectory we canmaintainthis extra uncertaintylonger
andresol\e inaccuracie®r ambiguitiesn the mapin a naturalfashion.

Therearesomespecialpropertieof the SLAM problemthatmale it particularlywell
suitedto this approachln thefull generalityof anarbitrarytrackingproblem,oneshould
view drift asa problemthataffectsentiretrajectoriegshroughstatespaceandthecomplete
belief stateat any time. Samplingthe spaceof drifts would thenrequiresamplingpertur
bationsto the entirestatevector In this fully generalcase the bene t of the hierarchical
view would be unclear asthe endresultwould be quite similar to addingadditionalnoise
to thelow level process.

In SLAM, we canmake two assumptionghatsimplify things. The rst is thattherobot
statevectoris highly correlatedwith the remainingstatevariables,andthe seconds that
we have accesdo alow level mappingprocedurewnith moderateaccurag andlocal con-
sisteng. Undertheseassumptionghe effectsof drift onlow level mapscanbeaccurately
approximatedy perturbationgo the endpointsof therobottrajectoryusedto constructa
low level map. By samplingdrift only at endpointswe will fail to samplesomeof the
internalstructurethatis possiblein drifts, e.g.,we will fail to distinguishbetweera linear
drift anda spiral patternwith the sameendpoints.However, the existenceof signi cant,
complicatedrift patternsvithin amapsegmentwouldviolateourassumptiorof moderate
accurayg andlocal consisteng within our low level mapper

To achieve a hierarchicalapproacho SLAM, we usea standardSLAM algorithmfor
the low level mappingprocess.Theinputto thelow level algorithmis a shortportion of

the robot's trajectory alongwith the associatedbsenations. This SLAM processuns
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normally, with no alterations.The only differencels thatthe outputthatwe usefrom this

algorithmis notonly adistribution overmaps put alsoadistributionoverrobottrajectories.

We cantreatthesedistributionsover trajectoriesasa distribution over motionsin the
higherlevel SLAM processto which additionalnoisefrom drift is added. This allows
usto usethe outputfrom eachof our smallmappingefforts asthe input for anewv SLAM
processworkingatamuchhigherlevel of time granularity Sincethesampledrajectoryis
treatedasasingle,atomicmotion,thisde nestheplacemenbf theassociatedbsenations.
Theobsenationmodelatthehighlevelis thenjustthecollectionof obserationsthatwere
madeateachstepalongthistrajectory Thehighlevel algorithmotherwisebehaesin much
thesameway asary otherSLAM methodandwill combinealargeseriesof iterationsinto
alargermap.

For thehigh level SLAM processye needto be carefulto avoid doublecountingevi-
dence.Eachlow level mappingprocessunsasanindependenprocessnitialized with an
emptymap. Thedistribution over trajectoriesreturnedby the low level mappingprocess
incorporateshe effectsof the obserationsusedby thelow level mapper To avoid double
counting,thehigh level SLAM processanonly weighthe matchbetweerthe newv obser
vationsandtheexisting high level maps.In otherwords,all of theobsenationsfor asingle
highlevel motionstep(singlelow level trajectory)mustbe evaluatedagainsthe highlevel
map,beforeary of thoseobsenationsareusedto updatethe map.We summarizehehigh

level SLAM loop for eachhigh level particleasfollows:
1. Sampleahighlevel SLAM state(high level mapandrobotstate).

2. Perturbthe sampledobotstateby addingrandomdrift.

3. Samplealow level trajectoryfrom thedistribution overtrajectoriegeturnedoy thelow level

SLAM process.

4. Computea highlevel weightby evaluatingthe trajectoryandrobotobserationsagainsthe

samplechigh level map,startingfrom the perturbedobotstate.
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5. Updatethehighlevel mapbasediponthenew obserations.

In practicethis cangive amuchgreateimprovementn accurag oversimply doubling
theresourcesllocatedto a singlelevel SLAM algorithmbecauséhe high level is ableto
modelandrecover from errorsmuchlongerthanwould be otherwisepossiblewith only a
singlepatrticle Iter . In ourimplementationsve have usedDP-SLAM at bothlevelsof the
hierarchy However, thereis reasorto believe thatthis approachcould be appliedto any
othersampling-base&LAM methodjust as effectively. We alsoimplementedhis idea
with only onelevel of hierarchy but multiple levels could provide additionalrobustness.
We felt thatthe sizeof thedomainson which we testeddid not warrantary furtherlevels.

The computationatompleity of hierarchicalSLAM requiresaslightly differentanal-
ysis thanthe oneswe have performedalready Sincewe usea linearimplementatiorof
DP-SLAM at both levels, eachlevel itself canrun in time. However, the and

termsare differentfor the two levels, sothe compl«ity is really
We canassume . Unfortunately it appearghat . If we assume
thelow level of the hierarchyrunsat afrequengy timesgreaterthanthe high level, then
. Therefore the high level is only run - asoften,implying thatthe total run
time for the high level, comparedo the run time of the low level, is -

Thusthetotal compleity for bothlevelsis still

8.3 Implementation and Empirical Results

To demonstrat¢he bene ts of hierarchicalSLAM, we choseto usea datalog of Carnegjie
Mellon University's WeanHall, shovn in Figure 8.2. In this domain,the robot travels
approximately220mbeforereturningto an earlierposition. This datasethaspreviously
beenfoundto bevery dif cult for non-hierarchicaBLAM algorithms.Linear DP-SLAM

wassuccessfullyableto mapthe ervironment,but requiredat least120,000particlesand
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Figure 8.2 CMU's WeanHall at4cmresolutionusinghierarchicalSLAM.
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Figure 8.3 A depiction of the current uncertaintyin the map, shortly before the
non-hierarchicabpproachattemptsto completethe loop. Pink areasndicatesectionsof
the mapwherethe givenmaphasno obsenations,but alternatve hypotheseslo have en-

tries. 94



Figure 8.4 The amountof uncertaintyin the map (onceagainshown in pink) is much
greaterfor the hierarchicalapproach.
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took morethan42 hourson a 3.2 GHz processorThis s signi cantly moreparticlesthan
thefew thousandypically acceptegsareasonabl@umber

Whenwe ran a hierarchicalversionof DP-SLAM on the data,eachlow level SLAM
processvasrunfor 75iterationswith anaveragemotionof 12cmfor eachtime step.This
processvasableto mapthe building successfullywith signi cantly fewer particles,2000
for the low level and 3000for the high level, andit took only 4 hoursand 53 minutes.
This extremedifferencein particle countsand computationtime demonstratethe great
improvementthatcanbe realizedwith the hierarchicalapproach(The WeanHall dataset
hasbeenmappedsuccessfullypeforeat low resolutionusinga non-hierarchicabpproach
with runtime periterationthatgrows with the numberof iterations [29].)

The reasonthata non-hierarchicamethodhassuchadif cult time mappingthis data
is the extremelongevity of the uncertainty Giventhe large size of the loop, smallambi-
guitiesin the beginning of the maparenot resohedfor severalthousandterations.Non-
hierarchicalDP-SLAM requiresa tremendousiumberof particle to maintainthis early
particle diversity long enough. As Figure 8.3 indicates,thereis little uncertaintyin the
mapastheloop nearscompletion.

Comparethis to the amountof uncertaintymaintainedoy hierarchicalDP-SLAM, as
showvn in Figure8.4. Shortly beforecompletingthe loop, the high level particle Iter can
be seerto maintainmultiple hypotheseall theway backto thebeginningof thetrajectory
In fact,at this point, the point of coalescencéor thehighlevel is atthevery rst iteration.
For the non-hierarchicabpproachto maintainthis sameamountof uncertainty it would
needto have a point of coalescencaearly2000iterationsago. In fact,its point of coales-
cenceat this stageis closeto twenty iterationsago. As the robotcompleteghe loop, the
uncertaintyin the hierarchicalmethodis nearlyeliminated,asthe additionalinformation
from revisiting the startingareais sufcient to resole theremainingambiguities.

HierarchicalDP-SLAM is alsousefulfor simplerdomains,suchasthe C-Wing data
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setusedearlier The non-hierarchical’ersionof DP-SLAM required11,000particlesto
reliably mapthis domain,and even with the linear time implementationjt required690
minutes. The usingthe hierarchicalversionrequired2000particlesfor boththe high and
low levels,andwasableto completethe mapin 123 minutes. Thusthe signi cant reduc-
tionin particlecountsfor thehierarchicaimplementatiorprovidesdramatiadmprovements
in runningtime, evenin situationsthatwould otherwisebe possiblemapwithout the hier-

archy

8.4 Extensionsof Hierar chal SLAM

So far, we have only extendedthe hierarchicalframewnork for SLAM to two levels, as
this hasbeensufcient for our datasets.For the pathstraveledduringtheseexperiments,
thedistances smallenoughbetweerioop closingeventsthatthereis notyet a signi cant
amountof drift atthehighlevel. However, for sufciently largedomainsijt is reasonabléo
expectthatsuchdrift couldoccur In thatcasepnecouldextendthehierarchicaframework
further, andaddan additionallayerto the hierarchy Naturally, it hasbeendif cult for us
to empirically testthe feasibility of this ideawithout arti cially alteringthe datasetor
signi cantly hamperinghe underlyingSLAM method.

This ideaof hierarchicalSLAM doesnot needto be restrictedto being usedsolely
with DP-SLAM. The sourcesof drift outlinedabove areinherentin any samplingbased
SLAM method.Lik ewise,noneof the elementof the hierarchicalktructurewe createare
speci c to DP-SLAM,; sincethehierarchicaktructuresolelyfocusenengineeringnputs
andoutputs,this methodshouldbe equally effective whenusedin conjunctionwith any

otherSLAM method.
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Chapter 9

Practical Impr ovements

9.1 Culling

At eachiterationof DP-SLAM, we generatanary more particlesthanwe keep. Evalu-
ating a particlerequiresline tracing 181 lasercasts. However, most particleswill have
signi cantly lower probabilitythanothersandthis canbe discoveredbeforethey arefully

evaluated.Usingatechniquewe call particle culling we divide the laserscansnto  par

titions, and evaluateour setof particlesin  passes.At eachpass,the particle's poseis

evaluatedagainstthe mapfor those— lasercastsandthattotal probability is multiplied
by the previousprobabilityfor thatparticle. The highestprobability particlecanbeidenti-
ed, andasinglescanthroughthe setof particlescanremove thoseparticleswhichhave a
signi cantly lower probabilitythanthe currentbestparticle. In this manneyparticleswith

very low probability of gettingresampledarenever fully evaluated.In practice this leads
to large reductionin the numberof lasercastshataretracedthroughthegrid.

Thetrick to our culling methodis to remove asmary particlesaspossiblewhile keep-
ing all of the particleswhich would normally have a high probability of beingresampled.
Let us examinethe probability of arny given particle being resampled. For the sale of
simplicity, we canassumehat their weightsare normalized. Given a weightedset of
particles,the probability of choosinga speci c particle , is equalto thatparticle's nor-
malizedweight . Forresamplingwemake independenselectionswith replacement,
sothechanceof choosingagivenpatrticleis now . For purpose®f culling, we
would like to remove thoseparticleswhich areleastlik ely to be resampledsowe canset
somesortof thresholdandarny particlewhosenormalizedwveightis lessthanthatthreshold
canbe eliminated. If we wereto ignorethe particleweights,the probability of choosing
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ary speci c particlewould be —. Requiringthateachmaintainedparticlebe morelikely
thanthis uninformedchoicegivesusathresholdvalueof —. In practice this hasprovided
uswith goodresults.This numbercanof coursebe altered,dependingon how aggressie

theuseris aboutculling.

Expandingon this ideaof early heuristicevaluation,we canalsopreprocesshe entire
setof particlesfor obvious poorposes.To scanthroughthedifferentparticlesquickly, we
initially evaluatethemsolelyontheevidenceof a partialline trace.Thisis amuchshorter
line trace,centeredaroundthe laserendpointsandis only afew grid squaresongin either
directionfrom the endpoint. Sincethis heuristicdoesnot includeall of the information
presentin a full line trace,it is unableto detectobjectswhich shouldobstructthe laser
earlyonin the scan,andthereforeit is a somavhatcoarseevaluation. However, it is able
to quickly determinewhich particlesdo not have a signi cant portion of their endpoints
line upwith well establisheadbstacleswhichis sufcient to identify alargenumberof the
poor particlesin avery fastmanner

Whencombinedogetheythesetwo heuristicssigni cantly reducethe total numberof
particleshatneedo becompletelyevaluatedandgive anaveragepracticalspeediponthe
orderof . Extensve comparatre empiricalanalysisof thesemethodshascorvinced
usthatno particleswhich areeliminatedearly would have otherwiselastedfor morethan

oneiteration. Thusthe approximatiordoesnot degradethe accurag of our algorithm.

9.2 Important Parameters

Perhapsone of the most obfuscatedand annging aspectf implementinganotherre-
searches algorithm is attemptingto infer the valuesof importantparameters. These
“magic knobs”represenimportantvaluesin the algorithmwhich werearrivedat through
experimentationor intuition, and are often dif cult for otherresearcherso understand,

muchlessduplicate. Hopefully to make this somevhat clearerfor DP-SLAM, we will
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briey review the mostimportantof theseparametersand discusstheir role aswell as

reasonablealuesfor them.

9.2.1 Observation Model

Within the robot's obsenation modelaretwo importantparametersThe rst of theseis

the laservariance. This numberexpresseghe expectedamountof error that shouldbe
presentin arny oneof the laserscanswhencomparedo the robot's map,assuminghat
boththe mapandthe currentrobotpositionareboth correct.Notice thatthis is not purely
the amountof noisepresenin the sensor Althoughthis is a major contrilbuting factor it

is alsoaffectedby noiseandclutterin the ervironment(which canleadto 'blurry’ object
boundariesaswell asthethescaleof the mapitself, sincethe precisionof the obsenration

modelis in uenced by theresolutionof the map. The main effect thatthis parametehas
on the algorithmis to affect the resamplingstage. A smallervariancecreatesstronger
distinctionsbetweenparticles' weights,and thus makesit lesslikely for mary particles
to be resampleceachiteration. A goodvaluethat we tendto usefor mostdomainsat a

resolutionof 3cmtendsbe a standardieviation of 4cm.

Theotherimportantparametein theobsenrationmodelis themaximumallowederror.
Thisis atermwhichlimits thetotalamountf errorthatasingleobsenationcanhave. Seen
alittle differently, this term represents certainamountof backgroundchoise,pastwhich
pointary readingis equallylikely. This helpsto modelseveralseeminglyaberranevents
thatcanoccurin the ernvironment,suchassemi-transparerdr semi-re ective surfacesor
objectswith smallholesor sharpboundaries Sincethe probability of a singlerobotpose
is the productof the probability of eachlasercast,this term is importantto ensurethat
a single poor obsenation (with probability nearzero) doesnot completelyeliminatean
otherwisegoodpose.In practicewe useavalueof ~— , where isthestandardieviation

of thelasers noisediscussedbove, asthe lower boundfor the probabilitythatany single
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lasercastcanbeassigned.

9.2.2 Motion Model

Themostobviousparameterselatingto themotionmodelof arobotarethe motionparam-
etersthemseles. Thisincludesameanmotion,usuallyderivedfrom therobot's odometry
anda setof variancesyhich describethe sizeandshapeof a multidimensionalGaussian
distribution aboutthat mean. A full discussionof the motion modelthatis usedin our
implementationsand how the valuescan be obtained,is describedn greatdetail in the

earlierchapteron proposaldistributions.

Oneof theimportantissuesn implementinga SLAM algorithmthatis rarelydiscussed
is the speedof therobot, or moreprecisely the speedof sensoryinput into the the algo-
rithm. Dueto thecrucialissueof particledepletionjt shouldbeobviousthattheseparation
betweernterationsshouldbebasedndistancdraveled,ratherthantime elapsedIn partic-
ular, if therobotis notmoving atall, continuingto model“motion” in therobotis pointless.
We have foundthatthe appropriatedistancebetweerobtainingobsenationsaboutthe en-
vironmentshouldbe closeenoughtogetherasto allow for signi cant overlapbetweerone
obsenationandthenext, yetfar enoughapartsothatthereareminimal resamplingerrors.
While previous work hascomeup with methodsfor resamplingoccasionallywhile still
usingall of theincomingdata[29], we have foundthatthe simplerapproactof merely |-
teringouttheintermediaténformationis sufcient for our purposesTheintervalsthatwe

generallyusearea minimumof 10cmof lateralmotion,or 0.04radiansof angulamotion.

9.2.3 Map Parameters

Thereexist severalmapparameterghatcanbecontrolledby theuser The rst of thesas a
practicallimitation onthesizeof themapallowed. Themapwidth andmapheightdescribe

thesizeof ervironment,and,assuch,de ne thesizeof mary internaldatastructuresand
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by extensionhave a profoundimpacton the amountof memoryused. This parameter
naturally canvary greatly dependingon the domainthat the robot will be expectedto

cover.

Another map parametethat should be acknavledgedis the map prior. This is the
probabilityof occupang whichis assignedo ary previously unobseredgrid square This
valuecanof coursebe changedccordingo theclutterin theervironment.Recallthatthe

probabilityof laserbeingobstructedy agivengrid squaras determinedy anexponential

distribution — ,where isthedistancahatthelasertraveledthroughthat
square As describedkarlier we useagammadistributionasa conjugateprior, with ashape
parameteiof 1. This conjugateprior hasthe samepracticaleffect on eachunobsered

grid squareasif therehadbeena previous obseration with parameters m and

The last map parameteis the scaleof the map. This dictateshow muchareain the
realworld is representedly a singlegrid squardan the maprepresentationThe mapreso-
lution canaffect the speedaccurag andmemoryrequirement®f the algorithm. Coarser
resolutionswill of coursetendto befasterandrequirelessmemory but canfail to repre-
sentimportantfeaturesn theervironmentaccuratelyandcanincreaseheamountof drift.
However, if theresolutionis too ne, this canleadto problemswith accurag aswell; due
to the spreadof the differentrayscastout from the laserrange nder, a ne enoughgrid
canfail to have signi cant overlapfrom onetime stepto the next, evenwhenthe robot's
relative motionis small. In our experiencewe have found thatresolutionsof 3-5cmto a
sidefor eachgrid squareto be best,thoughin certaindomains,10cmcanbe suf ciently

precise.
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9.2.4 Hierarchical Parameters

ThehierarchicaSLAM structurecreatesnultiple SLAM processerunningalongsidesach
other Thelowestlevel is the basicSLAM algorithm,working unperturbedHowever, the
higherlevelsareworking with slightly differentdata,andassuch,requirea differentlaser
noisemodel.While theactualnoisein thelaserhasnot changedalarge numberof factors
aboutthe maphave. With arigid trajectorypassedip from the lower level, thereis less
roomfor minorperturbationsandcertainamountof assumedlrift. In addition,thenumber
of obsenationshasscaled,andassuch,the differencebetweenvery similar posesscales.
All of thisis includedin the high level laservariance which needgo be correspondingly
larger. Empirical resultsfor our domainsshav thatusinga standarddeviation of 7cm at

thehigherlevel workswell.

As the obsenation modelchangesn hierarchicalSLAM, so doesthe motion model.
No longerarewe modelingthe noisein the odometryreadings but insteadthe noisein
thelower level's mappingaccurag. This“motion” modelis assumedo be Gaussianand
evenly distributedaboutthe lateralaxes. The speci c valuesfor thesevariancesarehighly
mutable,affectedby the speci ¢ SLAM algorithmusedat the low level, andamountof
resourcesised,aswell aselementdrom the robotor the environment. This valuescould
eitherbealteredby hand,or learnedn a similar mannerasthe odometricmotionmodelat

thelowerlevel.

Beyond modelingparameterdhierarchicalSLAM alsoneeddo decidethe durationof
thelowerlevel mappingprocessTypically expressedn numbersof iterations thisnumber
shouldre ect how long the low level mappercanreliably be trustedto createmapswith
no seriousmisalignment®r errors.Thisis anothemumberthatvariesconsiderablybut in

our experimentsye tendto keepit between75-150iterations
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Chapter 10

Summary of 2-D DP-SLAM

Throughthe developmentof DP-SLAM, we have madesigni cant progresgowardscre-
atinganaccurateprincipledSLAM algorithm,capableof ef ciently maintainingmultiple
maphypothesesAt thecoreof this solutionis the concepbf maintaininganancestrytree
in orderto betterrepresenthe differencedetweerthe separatdnypothesesTheinforma-
tion containedn this ancestntreeis sufcient to allow usrepresenthe mapdatain avery
compacimanneywithout having to maintainary informationmultiple times,andwithout
aneedfor mapcopying. This coreideaof distributedparticle mappingis the key concept
thatallows practicaluseof multiple maphypotheseswhereearlierattemptsverebogged

down.

This distributed particlerepresentatiomasa very nice implementationwhich allows
for a linear time asymptoticcompleity, in both the numberof particlesandthe size of
the obsenations. By expandingthosegrid squaresvhich areto be obseredin a given
iterationinto easilyaccessibl@bsenation cacheswe canreducethe accesgime of each
grid squareto constanttime, andachieve a time compleity which is identicalto that of
purelocalizationwith a singlemap. The co-developmentof methodssuchasculling, to
remove poor particlesbeforethey arefully evaluated,allow us to run DP-SLAM with
sufciently largenumbersof particlesin realtime to mapmary interestingervironments.

The stochastianap formulation describechere provides a rigorousand e xible rep-
resentatiorof the ervironment,and effectively modelsthe behaior of the laserthrough
variousmediaand surfaces. By properly modelinginconsistentoehaior within certain
areaswe arenot constrainedo treatingasmary differenteventsas“backgroundnoise”,

andarebetterableto distinguishthe sub-gridsquareresolutionin therobot's pose.

104



| Process | Naive | DP-SLAM | LinearDP-SLAM | Hierarchicall

Localize

Insert

Delete N/A
Merge N/A
Resample

Table 10.1: Summaryof ComputationaCompleity

Thelastmajorcontritution to two dimensionaSLAM wasthe developmentf hierar
chical SLAM. Eventhe mostprecisemappingmethodscanaccumulatedrift asthe robot
travelsincreasinglylong distances HierarchicalSLAM is a principled methodof recog-
nizing this drift, andrepresentinghedrift in away thatmakesit possibleto easilyrecover
from the tiny, inescapablerrorsthat build up. Using hierarchicalSLAM on the largest
of our ervironments,we ableto map signi cantly larger loopsthanwould otherwisebe
possible Eventhosedomainghatweremappedoreviously canbedonesoin lesstime and

with fewer particlesthroughthe useof hierarchicalSLAM.

All of thistogethelputsuscloseto achiezing ourgoalsin two dimensionsA principled
approactio maintainingmultiple mapsis possible producingvery detailed accuratenaps
which are producedregardlessof the path of the robot's trajectory;loop closingis used
asa measuref accurag, andnot asatool to provide accurag. All of thisis possiblein
realtime, usingreasonableomputingresources.To this effect, researcthasmadegreat
progresstowards consideringtwo dimensionalSLAM solved. However, thereare still
improvementdeft to achieve for the two dimensionatase andmuchwork to be donefor

effective threedimensionamapping the ultimategoal of SLAM.
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Chapter 11

3-D SLAM

11.1 Preliminary 3-D SLAM Work

ExistingSLAM methodgendto berestrictedo planarcaseswherethe mapproduceds a
two dimensionatrosssectionof theworld, androbotmotionis restrictedo motionwithin
this plane. Not only doesthis constraintprohibit usein mary interestingervironments,
effectively exiling therobotto the oor of abuilding, it is alsoinsufcient to represenob-

jectsandobstaclesvhich maybedisplacedrom the plane,suchastabletopsor stairwells.

While somemethodsexist for three dimensionalmotion, they tendto representhe
world in termsof a few sparsepoint-sizedlandmarks.Thesemaps,while usefulfor lo-
calization,andpossiblyfor navigation, give very little informationaboutthe presencef
objectsin the world. Carngyie Mellon University's Mine Mapping projectis a notable
exception, which built volumetric three dimensionalmapsusing a seriesof laserrange
nders setatdifferentangleq37]. Usingacombinedmethodof bothlocalandglobalscan
matchingtechniquesatwo dimensionabccupang grid is created Usingthe correspond-
ing trajectoryfor therobot,the remainingthreedimensionaldatais lled in to createthe
volumetricmaps. Thusa threedimensionamapis constructedyhile motionin thethird
dimensionis ignored.

The DP-SLAM architectureasit existsnow, hasonly beenappliedto two dimensional
mapping. However, the restrictionto planarmotion is unrealisticin most applications
of mobile robots. Wheeledrobotstraveling acrossuneven terrain, and undervater au-
tonomousvehicles(UAVs) canmove with six degreesof freedom,threelateralandthree
angular For the robot to operatein this ervironment,we not only needto track these

threenew degreesof motion(roll, pitch andheight),but alsomaintaina threedimensional
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representationf theenvironment.

This expansionof the problempresentswo typesof challengestechnicalanddimen-
sional. Thetechnicalproblemsaremainly issuesof sensing.Previous sensorsisedwere
well suitedfor a two dimensionalworld, but areunableto make obsenationsoutsideof
theplane.In particular odometryis unableto detectany motionin thethreenew degrees
of freedom. Also, laserrange nders, which are so popularfor two dimensionalmap-
ping, aretypically a planarsensor While threedimensionalaserrange nders exist, they
areprohibitively slow, anddo not allow the robotto move while makingan obsenation.
Therefore3-D SLAM notonly needsa nev measuref estimatednotionfor the proposal
distribution of the particle Iter, but alsoa new sensorfor the primary obsenationsof the

ervironment.

Dimensionalchallengesare problemsof scale. As newv dimensionsare addedto the
problem,theresourcesieededo dealwith SLAM grow exponentially sothatmerelyex-
tendingprevious methodsis infeasibleon any computerarchitecturenve might expectto
seein thenearfuture. Oneof thesechallengeslealswith spaceequirementsTwo dimen-
sionalmapsarelarge datastructuresandpropermaintenancef multiple maphypotheses
canalreadytake on the orderor gigabytesof memoryfor reasonablysizedernvironments.
Adding a third dimensionto thesemapsin a straightforward mannerwould, of course,
increasehe memoryrequirementgrom to ,where isthelinearsizeof theen-
vironment,quickly placingthe memoryrequirementsutsidethe realmof feasibility. The
otherchallengethatneedsto be addressethereis oneof time compleity. Robotmotion
in threedimensionsallows for six degreesof freedom whichis twice asmary parameters
to track asin the planarcase. This meansnot only that more particlesare likely to be
neededy theparticle Iter , but thatthesensomlsoneedgo gathemmoreinformation,e.g.,
by makingmoreindependenbbsenationsof the ervironmentto disambiguatehe robot's

pose.Maintainingtheseextra particles,comparingtheseextra obsenationswith the map,
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andaddingeachof thenew obsenationsto themapall take signi cantly moretime. In our
preliminarywork, we attemptto addressll of thesechallengesbut focusparticularlyon

decreasinghe complity of mapupdates.

11.2 Technicallssues

As canbe expected,extendingSLAM to handle3-D mapsdoesnot merelyincreasethe
dimensionalityof the problem. The samesetof sensorghat were effective for motion
within a planeare no longersufcient to give usefulinformationin a threedimensional
ernvironment.Odometryis no longersufcient to capturethe motionof the robot,asshaft
encodergannotmeasureoll, tilt, or changesn elevation. Likewise,aplanarrangesensoy
suchasthelaserrange nders which arepopularin 2-D SLAM, is of limited usein three
dimensions Evenslight motionout of the planewill causea new obsenationto misalign
with previousscans.

Fortunately bothof thesessuescanbe addressedsingexisting methodsn computer
vision. Motion estimatescan be obtainedthroughmaintaininga “visual odometer”. In
addition,the eld of stereovision hasprovidedawealthof methoddor gettinguseful3-D
sensodata,if oneis willing to acceptthe associatedunningtime for thetime being. We

take a closerlook now attheimplicationsof usingthesemethodgor SLAM.

11.2.1 ProposalDistrib ution / Motion Estimation

Oneof the mostbasicstepsin almostall existing SLAM methodsis the generatiorof a
proposalistribution. Basedupontherobot's lastposition,aninitial estimateof therobot's
currentpositionis generatedbaseduponeithercontrolinputsor a secondarysensoryin-
put. The useof odometryfor this stepis almostuniversal,but ashasbeenalreadynoted,
odometryis insufcient for capturingthreedimensionamotion.

Oneoptionis to augmenthestandardghaftencodersvith asetof inclinometers.These
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sensorareableto directly measurgherobot's pitch androll. However, they areatleastas
noisy asshaftencodersandcanbe expensve. Also, the changen elevationcanonly be
indirectly obsered.

Anotheroptionis the useof accelerometersn orderto measurealisplacemenby ob-
servingchangesn velocity overtime. This hasthenice propertythattherobotis nolonger
requiredto have wheelsor eventravel overland. However, the problemof excessve noise
is evengreaterfor thesesensorsandgoodaccelerometenemaincostly.

VisualodometrymethodssuchasLowe's ScalelnvariantFeatureTracker (SIFT), pro-
vide a very nice, low costalternatve approachto trackingincrementalmotion[3§. By
identifying anumberof pointsof interestin a seriesof stereamagepairs,SIFT solvesthe
dataassociatiorproblemin orderto tracktherelative motionof the camerawith respecto
theworld.

SIFT keypointshave mary nicepropertiesywhichhave generatedomeinterestin using
themasfeaturedor alandmark-base®@LAM method.However, thesefeaturesof interest
are not alwaysfound at the exact sameworld coordinatepositionin eachframe, dueto
uncertaintyin the SIFT algorithm. In addition, SIFT keypoints are usually shortlived,
and usually are not obsenable from substantiallydifferent perspecties. However, they
still performvery nicely asa dead-reckning system,and are perfectfor usea proposal

distributionin otherSLAM methods.

11.2.2 Observation Dependence

As statedbefore,sensorsvhich make rangemeasurementdirectly, suchaslaserrange
nders, aredif cult to usewith threedimensionaimotion. Instead,we usestereocorre-
spondencenethodsto createa threedimensionaldepthobsenation. This workswell in
conjunctionwith SIFT, sincethemethodfor extractingkeypointsin SIFT automaticallyre-

jectsary potentialkeypointswhich arenot sufciently distinctive for a givenimage. This
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virtually eliminatesthe potentialfor falsematcheswhichis the primary sourceof errorin
stereoalgorithms. Therefore whenthe camerasare properly calibrated the noisein one

methodcanbe assumedo beindependentrom noisein the other

Unfortunatelythe independenc@assumptions not true for differentdepthmeasure-
mentswithin a singlesteregpair matching.Stereoalgorithmswork by taking a sectionof
the left cameramage,andcomparingit with differentsectionsof the right image. How-
ever, a single pixel is not enoughto createreliable matchesbetweenthe images,so an
entirewindow aroundeachpixel is usedto computethe correspondence3hesewindows
overlapacrosseighboringpixels,sothattheerrorin onedepthestimatds nolongerinde-
pendenbf the depthestimatesearby However, thesedependenciebecomewealer the
furtherthe pixelsarefrom eachotherin theimageplane.In fact,for somestereamethods,
if apixelis notwithin thestereowindow of anotherpixel, thosetwo pixelsarenotdirectly
dependentandassumingheirindependencetroducesgyligible bias. Thereforejn us-
ing stereodepthestimatedor localization,we useonly every th row andcolumn,where

is the size of the stereowindow. We thentreatthis subsetof readingsasindependent,
andcomputethe probability of eachmeasuremergeparatelygiventhe mapandtherobot

pose andtake their productasthetotal (unnormalizedweightfor a particle.

It is importantto notethatmapis merelya recordof the obsenations,which is used
anassumptiorof the future behaior of the sensorin thatarea. For this purposewe can
make a goodapproximatiorof the empiricalopacitiesby treatingthe noisefor eachpixel
matchingas independentvhen building the map. Therefore,we expectthatit is more

informative to useevery pixel matchingto updatethe map.

Independencealongthe verticalaxisis commonin stereovision algorithms.However, horizontaldepen-
dencemayexist for somealgorithms suchasdynamicprogrammingnethods.
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11.3 Data Explosion

Oneof the mostdif cult problemsof expandingSLAM into threedimensionalerviron-
mentsis the simpleproblemof dimensionality By allowing movementoutsideof a plane,
the scopeof the problemincreasesiramatically Not only doesthe map representation
move from two dimensionato three,but trackingnow expandsrom threedegreesof free-
domto six. This impliesthata naive extensionof two dimensionawork in SLAM wiill
notsufce. Thevastamountof resourcesieededpothin termsof time andspacewould
make implementatiorinfeasible.More clever algorithmsareneededo managdhesenen
dimensiondeforethemoresubtledif culties of threedimensionaBELAM canbeidenti ed

andaddressed.

11.3.1 3-D Mapping with Voxels

Themostnaturalextensionto thegrid-basednaprepresentationf DP-SLAM is theuseof
voxels. Thesemetriccubesantake onthesamepropertieof stochastigrid squaresywhile
representingzolumetricspace.Lik e the previous implementation®f grid squaresthese
voxelsaresmallin scale,on the orderof a few centimeters.The problemis thata three
dimensionamapis equivalentin sizeto alarge numberof two dimensionamapsstacled
on top of eachother onefor eachheightincrement.For a mapresolutionof centimeters,
this caneasilymeanthe voxel mapis severalhundredor eventhousandimesthe size of
agrid-basednap. Giventhelarge amountsof memoryneededo maintaina singleplanar
mapfor DP-SLAM, the memoryrequirementgor a completevoxel representationf the
world would beinfeasible.

What| proposeinsteadis to maintaina datastructurewhich behaesvery muchlike
afull voxel representationyhile on averagerequiringonly the equivalentspaceof a map
whichis justa few voxelshigh. Thisis achiezed by condensing seriesof emptyvoxels,

which all sharethe same(x, y) coordinatesn theworld, into a singleinterval.
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Figure 11.1 Left: aplanargrid-basednap. Center:a 3-D voxel-basednap. The density
coefcients for eachvoxel arelisted besidethem. Right: A 3-D map,condensingdjacent
emptyvoxelsin the samecolumninto a singleinterval.
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Considera single, planargrid for the maprepresentationLet eachentryin this grid
corresponahotto a singlegrid squareput insteadcontainthe entirecolumnof voxelsthat
exist at this location. If the entriesof this columnareindexed with an array the
map representationlegeneratedvackinto a full voxel representationHowever, we can
do betterthanthat. In nearlyall ervironments the total obsenable spaceof the world is
overwhelminglydominatedy emptyspace Mostapplicationdor themapdata,including
localization,treatthis emptyspaceasall equialent;thereis very little to distinguishone
partof emptyspacerom another Furthermorepbsenableemptyspaceendsto comein
long stretches.Therefore,it is reasonabléo considercondensindarge intervals of these
emptyvoxelsinto a single entry, describingthe scopeof the entireinterval. Sincethese
intenvals are dynamicwhile the mapis still being built, the setof all voxelsin a given
column are storedin a balancedree, keyed on position, with empty spaceusing the
lowerendof theinterval asthe value.

Theresultingmaprepresentationequiressigni cantly lessspaceo storethana com-
pletevoxel representatiorgueto thecompactepresentationf emptyspace For acolumn
of spacehundredsof voxelshigh which crossedut afew objectboundariesthe spacee-
quiredto representhe obsened voxelsin this columncould easilyto lessthana dozen
entries.Furthermorearny unobseredvoxelsarenotevenincludedin the set.

Thesebene tsof coursecomeat a price. First, thereis a slightincreasen therunning
time neededo accessa voxel. The searchthroughthe setof obsenationsrequires
time,where is thenumberof entriesfor the column.Luckily, the sameargumentwhich
impliesagoodspaceeductionalsoensureshatthistime increasewill besmall,sinceboth
aredependentnthe numberof columnentries.

The otherdravback of this methodis that it becomesecessaryo introducean ap-
proximationto the SLAM process.Sinceeachemptyintenal is storedasa singleentry;

the entireinterval necessariljhasto be homogeneousThis meansthat unlike the previ-
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ously describedapproacho stochastimccupang in DP-SLAM, we areunableto keepa
meaningfulobsenation odometerfor arny portion of the interval over empty space.That
is to say we arenot storinghow muchthatareahasbeenobsered,andcorrespondingly
we do not have a measuremeraf how con dent we arein the designatiorof thatareaas
unoccupied. Therefore,if an objectis ever detectedn ary one of the voxels alongthe
interval, thenew occupiedvaluefor thatvoxel will only beanapproximatiorof theactual
obseredoccupany.

Thisall describeiow to build asinglethreedimensionamapef ciently . We still need
to addresghe core propertyof DP-SLAM, describinghow this canbe usedto maintain
multiple mapsfor eachof the distinct particlesef ciently . Recallthatin two dimensions,
we representhe distinctionsbetweenthe differentmap hypothesest eachgrid square,
by storingup to  differentopacity valuesin the obsenation vector Given the use of
intenals to represenempty spacei|t is dif cult to extendthis conceptef ciently to the
threedimensionatase py maintainingthe distinctionsbetweemrmapsat eachvoxel. Each
particlecanhave a differentstartandendpoint for a givenemptyinterval. Thusit either
becomesiecessario maintaintheseemptyinternvalsonly atareasvhereall particlesagree,
or elsea morecomplicatednethodwould be neededo describethe combinedntenals.

Our approachtakes a stepbackfrom the entireissue,and insteadmaintainsthe dis-
tinctionsbetweerparticlesat a slightly coarsetevel. For each location,we let each
particlemaintainits own column. As eachparticleaddsa new obsenationto the map, it
can createits own setof columnentries. Justlike two dimensionalversionsof the dis-
tributedparticlemap,arny sectionwhichis not obsenedby the currentobsenationcanbe
seamlesslynheritedfrom the parents hypothesissimply by not creatinga new entryfor
thatparticle.Whenlocalizationrealizeshatthe particlehasno entryfor thedesiredvoxel,

it will continuebackup theancestryto the parentof the particle.

This mechanisntanbeexploitedfor emptyspaceaswell. We arenow representingll
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emptyspacedentically, sincewe do not keepa recordof how muchwe have obsenedan

emptyvoxel. Thereforejf avoxel hasalreadybeendesignate@sempty ary furtherobser

vationsthatcontinueto indicatethatthe voxel is emptydo notrequireupdatingthatvoxel.

Thisdrasticallyreduceshenumberof ancestoparticleswhich createnew, updatecentries
for thatemptyvoxel, further reducingthe spacenecessaryo storethe threedimensional
maps.

This threedimensionalapproachcan be viewed as a direct extensionof two dimen-
sionalDP-SLAM. Lookingatit thisway, themapis still atwo dimensionagrid, maintain-
ing multiple obsenationsat eachgrid square.The maindifferencein the maprepresenta-
tion is thatthenotionof anobsenationis changingthe datastoredby eachparticleis now
representingn entire columnof space.Consequentlyeachaccesdo the mapreturnsa
comple setof datafor the givenparticle,ratherthana singleopacity For a givenparticle
to retrieve theinformationfor a speci ¢ voxel atlocation , We rst needto access
the obsenation for this particle at grid square . Thenwe needto searchover the

columnof datain thatobsenationto returnthe speci c voxel (or emptyinterval) at height

11.3.2 Localization

Localizationusingoneof thesethreedimensionamapsis very similar to localizationfor
DP-SLAM with atwo dimensionaimap. Thetwo maindifferences- the subsamplingf
the obsenation andthe useof a columnof dataat eachgrid square- have alreadybeen
described.

The stereovision depthmapis rst subsampledo createa setof individual range
measurementsyhich aretreatedaspossessingndependenhoise. For eachparticle,this
setof obsenationsis treatedin muchthe sameway asary otherrangesensor:aray is

tracedthroughthemapfrom theorigin of thesensoto theendpointof theobsenation. For
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each positioncrossedy this threedimensionakay trace,DP-SLAM retrievesthe
correspondinglatafor the givenparticleatthatgrid square As describeckarlief this data
consistf a setof individual voxelsandintervals of emptyspace;nding theappropriate
valuewithin the columnrequiresa searchover the setof data. Otherwise the tracefor
eachobsenationis performedin a manneridenticalto two dimensionaDP-SLAM. The
probability of eachmeasuremengiventhe mapandthe robot's pose,is computedusing
anappropriateobsenationmodel. As before the probability of eachparticleis simply the

productof the probabilitiesof eachindividual obsenation.

11.3.3 Map Updates

Anotherissueof dimensionalityconcernghe sensordirectly. Using a stereomethodfor
the rangeobsenationsintroducests own jump in compleity. PlanarSLAM algorithms
primarily uselaserrange nders, or similar sensorswhich have ontheorderof sensor
readingscomprisinga singleobsenation. Stereo,on the otherhand,canhave millions of
depthestimatesor asingleobsenation. Thisis signi cantly morethanthe thatwould
producedy athreedimensionatange nder of thesameobsenationdensityasthecurrent
planarLRFs. Stereoproducegnuchdenserinformation,andit would be unfortunatenot
to useasmuchof thatdataaswe canto reducethe uncertaintywithin the map. However,
performingmillions of line tracesthroughthe mapis a dauntingtask. A more ef cient

methodis neededf usingall of thedatais to befeasible.

As describecearlier the problemis alreadyreducedfor the caseof localization. Ap-
proximatinganindependencassumptiorhasforcedusinto usinga subsamplef the ob-
senation. This is not necessarilya seriousloss of data;useof the subsamplediatawill
likely give a very closeapproximationto the particle weightsobtainedby usingthe en-
tire obsenation. However, for updatingthe map, it is importantto have denseupdatesso

thata future obsenrationcanline up with the map,without falling alonggaps. Therefore,
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subsamplings notthe preferredoptionfor mapping.

The solutionfor ef cient mapupdatescomesfrom the very densityof the obsenation
data.For atypical cameraandlens,the numberof pixelsacrossasinglerow is suf ciently
large, so thatevenout to a distanceof 8m, adjacentpixels correspondo pointsno more
than1cm apart. Therefore for a reasonablenapresolutionof 3cmto a voxel side, ary
voxel within the eld of view of the camerawill be obsenedby multiple pixels,unlessit

is occludedby anobjectcloserto thecamera.

This densityof obsenationsmeanghatthe obsenationsdo not needto be considered
a setof raysto be tracedanymore, but insteadcan be viewed as a single polyhedronof
empty space resemblinga pyramid originating from the camerawith anirregular base,
correspondingo the obsened objectsin theframe. If we candescribethe exterior of this
polyhedronin termsof voxels, the actualmap updatescan be madequickly, similar to
drawing a polyhedronusingrasterlinesin graphics. Even better the boundariesof the
polyhedronrepresenthe upperandlower boundariesof an emptyinterval, which is the

naturalform for our maprepresentation.

Figure1l.2illustratesan exampleof oneof thesepolyhedronof obsenations.In the
top imagewe seea simplecrosssectionof the cameraviewing the ervironment. Thearea
obsenredis denotedby thegrey area.The rst two boundarieslescribethe two sidesof a
triangle,andarethe perimeterof the cameras eld of view. The obsenationsarelimited
to acertaindistancecreatingthecurvedboundaryontheleft. Theblacksectionrepresents
theobseredterrain,andsenesasanotheyirregularsectionof the polyhedrons perimeter
The nal sectionof the perimeteris the occlusionboundarycreatedby the obstruction
jutting up out of the ground. Taken together we canseethe enclosingperimeterof the
obsenationin the middle gure. This completelydescribeghe areaof the ervironment
which is currentlyobsened asempty As describedaborve, we caneasily nd the height

atwhich eachcolumnin themapwill intersectwith the perimeterof theobsenation. This
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Figure 11.2 A crosssectionof a singleobsenation, illustrating how the areabeing ob-
sened forms a polyhedron. The perimeterof this polyhedronis all thatis neededfor
updatingthe map.

allows usto describethe new intervals of emptyspaceaccordingto a givenobsenation,

in anef cient manner

To describethis polyhedronin termsof voxels, someray tracingis required,though
signi cantly lessthana full traceper pixel. We begin by performinga full ray tracefor
eachpixel onthe rst row of theimage.Thiswill form asingle at sideof thepolyhedron
fromwhichto build. Subsequentlythenext rows of pixelsareaddedo thedescription.For
thesdaterpixels,however, it is only necessarjo tracea smallportionof thecorresponding
ray. Sincewe areonly concernedvith tracingthe perimeterof theobsenationpolyhedron,
weonly needo performthatsectionof theline tracewhichextendsbeyondthesurrounding
polyhedron Our partialline tracesthereforeproceedasfollows:

For eachpixel, , we rst considerall of the pixelswhich areadjacento within the
imageplane,payingattentionto the onewhosecorrespondinglistancefrom the cameras

thesmallest.Startingfrom theendpointof , wetracearaybadkwardstowardsthecamera,
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Figure 11.3 An exampleof a partial line tracefor a densesensorreading. The darker
lines indicate which portion of the individual rays would needto be tracedin orderto
ensurecoverageof the perimeterof the obsenationpolyhedron.

until we are closerto the camerathanary of the adjacentpixels. This ensureghat ary
portionof theline tracefor which could possiblybe onthe perimeterof the obsenation
polyhedronhasbeencovered. Theremainingsectionof the line tracewhich hasnot been
coveredis all ensuredo be on theinterior of the polyhedron sincethe adjacenpixelsall

projectout pastthatportionof theline trace.

This pointis illustratedin Figure11.3. Here,the obsenration hasagainbeenreduced

to a two dimensionakrosssectionfor easeof illustration. A numberof rays, through
, areemittedfrom a sensorandareassumedo be denseenoughto be treatedtogether
asasinglepolyhedron.Lines and arebothon the far edgesof the polyhedron,and
thus needto performa completeline trace,asindicatedby the thicker line, in orderto
de ne thefaredgesf thethepolyhedronLines and bothconsidertheir neighboring
scansand nd that istheshortestidjacentine. Thereforethey only have to tracethat

portionof their ray tracewhich extendsbeyond . Therestof theray tracewould always
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have anotherscanon all sidesof it, which extendsfurther out. This guaranteeshatthe
remainingportionof thescanwill notbeontheperimeternf the polyhedronandthusdoes
not needto betraced. Theline itself is alocal minimum; all surroundingines extend
furtherthan . This meanghatonly theendpointof line  could possiblybe exposedto
the exterior, andthereforeno portion of thatline needgo betraced.

Along eachpatrtial line trace,we placea marker at eachvoxel we passedhrough,
indicating its possiblestatusas a portion of the perimeter After all pixels are visited,
this collection of perimetermarkers canbe combinedto createa setof emptyintervals,
correspondingo the interior of the polyhedron. Theseempty intervals are theneasyto
incorporateinto the mapasa new setof updates.Occupiedobsenations,by de nition,
will only occurattheendpointof aray, andcaneasilybeinsertednto the mapseparately

We have describedhow to updatea columnof spaceef ciently . However, we have not
speci edwherethe datathatwe modify comesfrom. Recallthatthe mapcachemaintains
only asinglepointerateach location. Therefore gachdataentryfor agrid squaren
thedistributedparticlemapneedgo maintaintheentirecolumnof datafor agivenparticle,
notjustwhatwasobsenedby thatspeci c particle. Otherwisefor eachgapin thecolumn,
correspondindgo unobseredspaceary particleattemptingto accesshis datawould need
to searchacrossall of its ancestorsto seeif ary of themhadobsenedthatprecisevoxel.
This would eliminatethe constantime accessvhich the map cachewasbuilt for. This
impliesthateachtime thata particleupdatesavoxelin ary given position,theentire
columnof informationinheritedby thatparticlewould needto be copiedover into a nev
entry, beforeany updatesouldbe made.As we will seewhenwe analyzethe compleity
of this algorithm, this copying stepis not a limiting factoron the runningtime of entire

method.
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11.4 Computation Complexity

3-D DP-SLAM offersaniceextensionof theframewvork of DP-SLAM into athreedimen-
sionalrepresentationf theworld. Much of the samestructureandmethodsarepresered,
which helpsto provide anef cient runningtime. However, therearea few changesn the
asymptotidimits.

Oneof theimportantdifferencesn the compleity of thelocalizationstageis the sub-
samplingof the obsenations. Insteadof usingthe entire set of obsenations,we usea
distinct subsef the rangemeasurementd.et us denotethe areacoveredby this subset
of dataas . Usingthe mapcachedatastructure we canpresere constantime access
to each positionin the map. However, this only providesthe columndatafor each
grid square.In orderto retrieve the appropriatevoxel informationfor a given height,we

needto searchacrosghis column. If we de ne the maximumnumberof entriesin oneof

thesecolumnsas , eachsearchs limited by . This providesus with anupper
boundfor localizationof . For any naturalervironment,it is reasonablé¢o
expect , asthe numberof objectboundariesn any givencolumnwill be

small. Evenfor manmadeervironmentsthe probabilitythata at surface,suchasawall,
is perfectlyparallelwith the z axisis negligible.

An importantadditionalconsiderations the costof building the mapcache While we
performline tracesonly on a subsebf thedata,thetotal areacoveredby all particleswith
thissubsets likely to bemuchcloserto . However, sincetheparticledistinctionsare
maintainedatthelevel of thegrid, themapcacheonly needdo beaslargeastheprojection
of ontothegrid, . Thedatastoredateachgrid squaren thethreedimensionalmap
is still no morethanone(comple) obsenation per particle. Therefore puilding the map
cachen thethreedimensionatases nomoredif cult thanthetwo dimensionatasethis
stepcanbecompletedn time.

Deletionsfrom the map are very easyto perform. Using the list of map updatesat
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eachancestorparticle, the obsenationscanbe deleteddirectly from the grid. Sinceall
obsenationsmadeby asingleparticleareremovedatthesameime, theinformationwithin
the column dataset can be ignored. Given that the projectionof the areaobsered at
eachtime stepontothegridis , eachiterationwill only addthe potentialfor

deletions.

Merging datafrom the collapseof a branchin the ancestryis simplefor the samerea-
son. Recallthatthe expensve portion of a meige involvescomparingthe list of updated
map locationsfor a parentparticle with that of the child. In the threedimensionalmap,
theselists of updategointto columnsof datastoredin the grid. Therefore the po-
tentialnumberof obsenationsinsertedatany giveniterationis . Whencomparing
thelists, eachentirecolumnfrom thechild is insertednto theparentslist asanentireunit.
Similarly, anentryfrom the parentwhichis beingreplacedy the child's updatecanbere-
movedasasingleunit. Thereforetheamortizedanalysisof meigesprovidesa compleity
of

The rst stepin updatingthe mapis for eachparticleto createa new obsenationin
the grid for eachgrid squarewithin the projectionof the currentobsenration. As
currently described this requiresthe particle to make a copy of all of the datain this
columninheritedfrom its parent. Givena columnof size , thiswill require
time.

To updatethe mapfor a givenparticle,the surfaceof the currentobsenationis traced.
Recordingeachvoxel of the surfacedoesnot requireary accesso the map;this recordof
surfaceis kept separatelyfor the time being. Therefore eachstepin tracingthe surface
canbe performedin constantime. If we denotethe sizeof the surfaceof the obsenation
polyhedromas , thetimerequiredto tracethe surfacefor eachparticleis

In the processof tracing the surface of the obsenation polyhedron,eachcolumnis

assigneda list of  positions,indicatingwherethe surfaceinsectswith this column. As
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we aretracingthe surfaceof the obseredareain orderfrom top to bottom,thislist canbe
assumedo alreadybe sortedby value. Thesepointsof intersectionde ne theintervals
overwhichthemapwill beupdatedvith anemptyobsenation. Thedatawithin thecolumn
is storedin a balancedree,keyedonthe value. Thereforetheitemsin the columncan
be traversedin ordet in time. Giventhesetwo orderedlists, a comparisorto nd

whichitemsin the columnneedto be updatedcanbe performedn , Where is
the numberof intersectiondor that column. This updateneedsto be performedfor each
grid squaren , andfor eachparticle,providing acomplexity of . Note
that is in factthe size of the surfaceof the obseration, . Therefore this bound
canbesimpli ed to , whichis the samecompleity requiredfor thetwo

preliminarystepsof themapupdate.

In analyzingthetotal complexity, we arrive at . Thisisa
comple« boundto placeontherunningtime, but onethataccuratelydescribeshedifferent
in uencesontherunningtime. The amountof resamplingusedfor localization,the com-
plexity of the obsenations,andthe densityof small objectsin the environmentcaneach
de ne thedominanttermfor theupperbound.Therearea coupleof nice propertief this
bound,however. First, the compleity is still linearin the numberof particlesused. This
aspecits particularlyimportant,asthe numberparticlesneededo tracktherobot's motion
in threedimensiongs typically greaterthanthe two dimensionalcase. Second noneof
the areatermsincludethe entire size of obsenation. Using this methodof storingthe
dimensionn columnsof dataallows usto avoid includingthetremendousireacoveredby

thesensoiin our compleity bound.

11.5 Initial Results

To demonstratéhe effectivenesof the proposednethodswe performeda seriesof exper

iments.All of theseexperimentsvereperformedon stereadatacollectedfrom the NASA
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AmesMarscapeusingthe K9 rover. In theseexperimentstherobotobsernedatotal area
of approximately15mby 17m,with atotal heightobsernedof 3m. Thedatacollectedwere

thenrunof ine, in simulationof the actualexploration,with a mapresolutionof 3cm.

First, after giving sucha pessimisticdescriptionof the memoryrequirementdor a
voxel-basedmap,we needto prove thatour proposednaprepresentatioganactuallybe
implementedwithin reasonablenemoryrequirements.To representhis areawith a full
voxel mapwould requirean estimatedl5Gb of memory which was morethanwe have
available. Implementedvith the proposednapstructure the total memoryusedwasonly
511Mhb

Oursecondexperimentwasto demonstratéhe effectivenes®f updatingthe mapusing
the perimeterof the obsened polyhedron. During an experimentalrun of the data,we
recordedhetime requiredto updatethe mapfor a singleparticle. Updatingthe mapwith
afull setof line tracestook anaverageof nearlyanhour. By usingonly the perimeterof

the polyhedronthe mapupdatetime wasreducedo anaverageof 2.5seconds.

Our nal empiricalresultwasto demonstratéhe early resultsof voxel mapping. In
theseexperimentsa signi cant amountof distortionwasobsenedin the stereomatches,
for whichwe wereunableto correct. Therefore givenpoorinputdata,we would notexpect
very goodaccuray for the maps.However, theresultsarestill impressve. In therun, the
robotenteredhe Marscapeandtraversedhe perimeterof acraterbed. Figurell.5shavs
theresultingmapastherobotcompletesaloop, andis ableto seetheentrancdo the crater
again. The mapdisplayedis a topographicaliew, with lighter areasrepresentindiigher
elevationsof the terrain. Several bulgescan be seenin the centerof the crater which
correspondo rocksanddebris. Paying particularattentionto the rocks at the top of the
map,nearwheretheloopis closed,t canbeseenthatwhentheserocksareobsernedfrom
a new angle,the map placesthemat a very similar location, but due to warping effects

of distortedstereotherocksdo presenta slight “doubleimage”. This sensorerrorwould
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Figure11.4 Initial mappingresultsfrom traversingpartof theway aroundtheperimeterof
al5mradiuscrater Themapshovnis atopographicabiew, with lighterareagepresenting
higherelevations.

Figure 11.5 Theresultingtopographicamapafter completingthe loop of the perimeter
of thecrater
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needto becorrectedn future experiments However, theseresultsareencouragingin that

evenwith poordata,theresultantmapis reasonablandrelatively consistent.
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Chapter 12

Futur e Dir ections

12.1 Alter nate Sensors

With theexceptionof the preliminarythreedimensionakxperimentsn the previouschap-
ter, DP-SLAM hasfocusedorimarily onalaserrange nder asour primarysensorThisis
anicetool, in thatit canmake very accurateangemeasurementgndcanreliably sense

objectsoutto distance®f 10-30m,dependingn the particularmodelused.

However, laserrange nders do have certaindravbacks. A lasernecessarilftracesa
single,nearlyonedimensionaline throughtheworld. Thismeanghatalaserrange nder,
emittingseveralof thesdaserbeamsalongaplane,is necessarilyatwo dimensionasensoy
andcannotdetectoverhangsor cliff ledges. The otherimplicationis thatasthe rangeto
anobjectincreasesthedensityof the pointrangeestimatescrossts surfacecandecrease
dramatically At a distanceof even5m, thereadingsarebecomingvery sparseandlarge
sectionf thesurfacewill notbeobseredatall, evenover multiple time steps.Lik ewise,
mary smaller distinctive variationsin the environmentwhich could be very informative
arecompletelymissed andarenot usableto estimatethe robot's precisepose.

To createa bettersetof obsenationsaboutthe world, we would lik e to includesensor
fusionwith othertypesof sensorssuchassonaror infraredsensorsAlso, we would like
to considera greatemrelianceon computervision techniquesnot just stereoto provide a
gooddensityof sensoryinformation. Theseinclusionswould entailmuchmorecomplec
obsenation models,and possibly storing more information within the map. However,
we expectthis approachwould resultin muchgreateraccurag, andmoreef cient useof

particlesto localizetherobotcorrectly while building a morecompletemap.
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12.1.1 Adapting Better StereoVision

In the three dimensionalversionof DP-SLAM that we have proposed stereovision is
alreadyusedasthe primaryrangesensor However, stereasuffersfrom a numberof com-
plicationsfor our application.

One of the mostdif cult aspectsf using stereovision for SLAM is the lack of an
appropriatmbsenationmodel. As we have notedbefore thedepthmapreturnedoy stereo
necessariljynasdependentoise.Thiswill naturallycreatedif culties in modelingthesen-
sor. Perhapsquallyimportantis that the amountof noisefor any given depthestimate
canchangedependingn thetexturein the scene.Using stereovision, it is muchharder
to determinethe distanceto a blankwall thana texturedone. However, currentmethods
for stereovision do not include ary indication of the amountof certaintyin a given ob-
senation, or possiblealternatedepthmapsthat could resultfrom the givenimagepair.
Quantifyingtheuncertaintyin thedepthmaps,or providing somemeanf samplingfrom
possibledepthmapswould greatlyaffect the potentialaccurag of SLAM methodswvhich
usestereovision.

As wasnotedearlier anotherimitation of usingstereocamerassthe primary sensor
is the assumptiorof perfectcalibration. While thereexist mary methodsfor achiezing
goodstereocalibration,mostof the moreaccurateonesaretime consumingandrequire
signi cant humanintervention. Giventhatthe algorithm's performanceloesnot degrade
gracefully as the calibrationaccurayg decreasest would be usefulto develop a better
methodfor correctingthe stereocalibrationin the eld. This could eitherbe tracked as
extraparameters the SLAM formulation,or couldbeplacedin anexternalloop, suchas

the EM framework usedfor odometrycalibration.
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12.2 ProposalDistrib utions

As with all samplingbasednethod DP-SLAM is heavily reliantonagoodproposadistri-
butionfor fast,accurateesults.Maintainingajoint distribution over mapsandrobotposes
createsa high dimensionakpacewithin which to sample andkeepingthis spaceassmall
aspossibleis crucialto real-timeperformance.

Autonomoudearningof therobot's motionmodelis agreatbene t to generatingaccu-
rateproposaldistributions. However, this is speci cally a singlesetof parametersor the
proposaldistribution, basedentirely on the odometryreadings.The possibility still exists
to allow themotionmodelparameterto changegvenwhile therobotis exploring,to adapt
to changesn terrainor degradinghardwareon therobot.

Also, theinclusionof the sensormataitself could be usedto aid the generatiorof the
proposaldistribution. Re ning the motionbasedupontherangesensordiasbeenusedby
otherresearcherwith differentSLAM methodq11, 30]. It seemdik ely thatthereexistsa
similar methodwhich canbeappliedto DP-SLAM.

Anotherareaof futureresearchncludesthe developmenibf alternatesensorgo useas
amotion estimate.Odometryis known to be a very poor estimateof the actualmotion of
arobot. Furtherinvestigationis needednto the suitability of adaptingor designingother
sensorgo solve the problem. The preliminarywork for 3-D DP-SLAM indicatesthatthe
useof visualkeypoints,suchasSIFT, hastremendougotentialfor giving accuratenotion

estimatesvith lessnoise.

12.2.1 Adaptive Particle Numbers

Beyond the questionof how to generatgroposaldistributionsis the questionof how to
usethem. Many situationsarisewherethe uncertaintyin the systemis signi cantly lower
thannormal. In thesecasesit is naturalto questionwhetherthe resourceshouldbe

distributedin the sameway. In fact, perhapseven fewer particlescan be usedat these
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times, thus freeing the processoffor otherusefultasksfor the robot. Alternatiely, the
extra resourcesould be usedfor processingnoredata,in orderto give a more detailed
mapof the ervironmentin thatarea,and perhapgurtherreducingthe uncertaintyat later

time steps.

In the oppositedirection,it would be usefulto know how mary particlesareneededo
estimatetherobot's posefor a givenproposadistribution, to betterhandlethosesituations
wherethe uncertaintyhasgrown larger thannormal. This canreducethe amountof drift
in the map, and greatly reducethe possibility of losing track of the robot's poseduring
unlikely events.

In general,determiningan appropriatenumberof particlesfor a given proposaldis-
tribution could greatlyimprove the reliability of DP-SLAM underparticularlydif cult or
uncertaincircumstancesln alarger senseusingan appropriateamountof resourcegan
alsoallow therobotin generato performothertasksmoreef ciently , andallow DP-SLAM

to beamoreusefultool for acompleteautonomousystem.

12.3 Alter native Map Representations

DP-SLAM gainsmuch of its succesdy maintaininga distributed particle map over a
simplestochasti@ccupang grid. Theformulationof distributedparticlemapsallows DP-
SLAM to maintainmary differentmaphypothese®f ciently. However, thereis nothing
in this formulationwhich is necessarilyestrictingus to the simplestgrid representation.
A large numberof alternatemap representationare possible,arny one of which could

potentiallybene t theaccurag or the ef ciency of the DP-SLAM algorithm.

12.3.1 Quad  Trees

Oneof the mostpopularwaysof improving the ef ciency of occupang grids s the use

of quadtrees. This methodseekgo improve boththe runningtime of line tracesaswell

130



reducethe spacerequiredto storethe map,by combiningadjacengrid squaresf they are
identicalin theirmakeup.A treestructuras maintainedeffectively representinghegrid at
a seriesof exponentially ner resolution.At eachlevel in thetree,if eachsub-component
doesnot agreeon the occupanyg for the larger grid square the quadtree breaksthe grid

squareup into thefour componensub-squares.

Adaptingthisideato DP mapspresentanumberof challengesTheprimarychallenge
is that the grid squaresn a DP map are very rarely identical. Sinceeachgrid square
potentiallyhasa large setof differententries;t is unlikely thatadjacengrid squaresagree
acrossall possiblehypotheses.Even for a single patrticle, the stochasticnatureof the
occupanyg grid meanghatadjacengrid square®ften have differingamountsof evidence
to supportanobsenation. Evenunderthe bestof assumptionst seemsunlikely thatquad
treescould presenta signi cant advantagen termsof spacerequirementsHowever, it is
possiblethatsomelevel of speednaybegained,f the quadtreeis formulatedcorrectly

Instead]etusconcentratenincreasinghespeedf line traceghroughthemap,which
will improve runningtime of thelocalizationstage empirically the mosttime consuming
portion of DP-SLAM. If the quadtreeis built by ignoring the amountof supportingevi-
dence grid squarexouldbe generalizedver their densityvalues, . Theonly situations
wherethis valuecould be expectedto generalizewith ary regularity is in areasobsenred
to beempty or in areasvhereno obsenationhasbeenmadeatall. Fortunatelythesetwo
typesof grid squaresdominatethe bulk of the map. The moststraightforvard approach
would involve maintainingan entire obsenation list at eachlevel in the quadtree, and
the decisionasto whetherto look at the next level would be madeindividually for each
particle.

Thereremaina numberof issuegegardingpreciselyhow to implementthis basiccon-
cept, particularly concerninghow to maintainthe map cacheeffectively. However, it is

possiblethatthetime requiredto performthe necessarjine tracesthroughthe mapcould
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bedramaticallyreducedlt is alsopossiblethatit couldbe usedto helpwith mapupdates,

with somefurtherresearch.

12.3.2 Variable Map Resolution

Anotherissuethatneedgo beaddresse the possibility of variableresolutionoccupanyg
grids. Most existing sensorslegradein resolutionasthe distanceincreases.This occurs
notonly from apotentialincreasean the noisefrom the sensoyrbut alsofrom the expansion
of the eld of view. Sincethe datapointsfrom a single obsenationdo not cover parallel
lines,thedistanceébetweerthe datapointsgrows asthe distancerom the sensoincreases.

This leadsto a sparsecoverageof the ervironmentatthe far endof the sensorange.

To dealwith this problemappropriatelyparticularlywith very high resolutionmapsor
long rangesensorsijt would seemappropriateto be ableto representhe map at several
differentlevels of resolution. Areas rst obsened at a greatdistancewould be entered
into the mapat the lowestresolution,andasthe robotapproachedloserto thatarea,the
datacould be resohed into a higherresolution. How exactly to generalizedataboth to
higher and lower resolutions,in a principled and ef cient manney is an openquestion
which is worth someseriousinvestigation. This would be particularlyusefulfor outdoor
ervironmentswith a threedimensionaimap, both in termsof increasingthe accurag of

themapaswell aspossiblyincreasinghe practicalspeedf thealgorithm.

12.3.3 Soft Updates

In DP-SLAM thereis a slight inconsisteng in the way that the sensoris handled. For
purpose®f localization,the obsenationsaretreatedasnoisy, to createa a morerealistic
probabilityfor eachobsenation,giventherobot's poseandmap.However, whenupdating
themap,the sensoiis treatedasa deterministicsensorandthe obsenationis addedo the

mapasif it werecompletelyaccurateThisis notacompletecontradictionasthemapcan
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beviewedasanaccumulatiorof evidence andthusa predictorof whatfutureobsenations

mightreturn.

In orderto build abettermap,particularlywith greatemotionbetweerobsenationsor
a ner grid resolutionjt maybeusefulto treatthe sensolasanoisyreadingwhenupdating
themapaswell. Thiswouldentailmakingasoftupdateto themap,perhapdy distributing
the obsenation of stoppingthe sensoracrossmultiple grid squaresThe original work on
occupang grids[22] developeda very goodearlytreatmenbf thisideafor sonarsensors.
This couldalsobeextendedo includesomedegreeof hypothesizedliataassociationsoas
to attemptto exactly pinpointthe true locationsof objects,ascomparedo wherewe can

expectthemto be obsenedin future sensoreadings.

12.3.4 Impr ovedPriors

In earliersectionswe describethe treatmentof previously unobsered grid squaresand
theprior thatis usedfor determiningheiroccupanyg duringlocalization.Thedevelopment
of thisprior haslargely beenintuitiveandempirical. After usingourknowledgeof thelaser
range nder in generalwe wereableto make areasonablassumptioraboutthe behaior
of a sensorin the absencef previous knowledge,which we have foundto workswell in
practice.However, signi cant improvementon this treatmenif unknovn spaces likely
possible.

More examinationof the propertreatmenbf previously unobseredsquaresould po-
tentially develop a superiormethod. Experimentsto determinethe likelihood of a grid
squares occupang, basedon other nearbyobsenations, might uncover a useful set of
dependenciedhis couldleadto atreatmenwery similar to soft updatesor variablereso-
lution. Anotherapproactihathasbeenrecentlysuggesteébr occupanyg gridsis theuseof
polygonalrandom elds to provide aprincipledsetof priorsfor theunobseredareasn the

map[39]. Giventhe signi cant amountof new areawhich is obsenedat eachtime step,
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it is couldbeveryvaluableto extractarny possibleextrainformationwhich couldimprove

theaccurag of themap.

12.3.5 Spheresof In uence

Previously, all of the discussiorof occupang grids has,not surprisingly assumea dis-
crete,grid-like structureto storethe evidencein. However, thereis nothing speci cally
holding usto this structure.One of the mostinterestingpossibledirectionsto investigate

for mappingis the possibility of otherrepresentationsf a metricmap.

Onepossibleaxtensionto occupanyg grid involvesremaoving theinherentdiscretization
of the world. While this is a very corvenientform for storingthe information collected
by the sensorsjt canleadto possiblebiasesor loss of information acrossthe discrete

boundarie®f thegrid.

Considera maprepresentatiowheretheinformationis still storedat regularintervals
alongagrid-like structure However, insteadof eachpointrepresenting nite grid square,
overwhichthisdatais theonly pertinentsetof obsenations,we canallow thedatapointsto
have overlappingareasof in uence. Thusthe probabilitythata givenlocationis occupied
is a combinationof several of the nearbydatapoints, weightedby somefunction of the
distancefrom the givenlocationto the datapoint. This allows usto not only avoid the
discretizationproblemsinherentin anoccupang grid, but alsosuggests partial solution
to thetreatmenbf unobseredareas This formulationalsoprovidesa naturalprogression

acrosamultiple resolutions.

Severalissuesvouldstill needo beinvestigatedn thisformulationof themap.Certain
technicalissuesvould needto behandled suchastheappropriateveightingfunctionused
to determinghein uence of a particulardatapoint. Also, anev methodwould have to be
developedto determinenow to computetheprobabilityof aline trace ,now thatthedensity

of an areais a smoothfunction, ratherthan a seriesof stepfunctions. It may become
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necessaryo computea full integral of the probability of stoppingthe sensoyratherthan
taking a sumof discretesteps. However, even an approximationof anintegral could be
moreaccuratgéhantheimplicit approximatiorintroducedby thediscreteoccupang grid.
This maprepresentatiorgr otherslikeit, is likely to requiresigni cant amountsof re-
searcho developfully. However, the potentialrewardsfor amoredynamicandmoreexact
maprepresentationouldbeveryuseful,notonly for SLAM, but otherroboticapplications

aswell.

12.4 Active SLAM and Exploration

Typically, SLAM is treatedpurely asa passve algorithm;the robot's motionandsensors
areleft underthe control of anotherprocesson the robot. This restrictionis not neces-
sary however, andinterestingcontrolquestionsarisewhenthe uncertaintyof of SLAM is

consideredn determiningthe bestactionsfor therobot.

In the eld of purelocalization thereis someresearclhinto the problemof activelocal-
ization[40]. For this problem,thelocalizationalgorithmis recognizedashaving dif culty
undercertaincircumstancesrlo reducethe probability of therobotbecomingostduringa
trajectory the potentialuncertaintyin the robot's poseis takenasanadditionalcostwhile

performingpathplanningfor therobot.

Interestingdecisioncouldresultfrom attemptingo solvethesameproblemfor SLAM.
While mary of the samesituationswhich are unfavorablefor localizationwould alsobe
undesirabldor SLAM, thereexist mary new andmorecomplicatedproblemsfor SLAM.
The precisepath usedto arrive at a given location hasa signi cantly greaterimpacton
SLAM thanon purelocalization. This could possiblyleadto betterpathswhich include
severalsmallloopsin thetrajectory sincethis could greatlyreducethe uncertaintyin the

map,allowing therobotto arrive atthedesiredocationwith morecertainty

In additionto optimizing pathplanningwith respecto thedif culties of SLAM, there
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areotherquestionghatconcernintegratingSLAM with controlstratgies.Oneareawhich
hasrecevedverylittle rigorousattentionis the problemof exploration.In mary situations,
suchasscienti ¢ missions searchandrescuepr surweillancethe collectionof new infor-
mationis the very goal of the robotic motion. In thesecaseswe would like to determine
theoptimalpathfor therobotto take thatprovidesthe mostinformationaboutthe erviron-
ment,andexpandshemapasmuchaspossible.In thecaseof exploration,therobotmust
prioritize which unknonvn areado visit next, andhow bestto placeitself soasto obsere
themostnew information,while still maintaininga high degreeof reliability andaccurag

for themapandpositionof therobot.

12.5 Principled Loop Closing

A large numberof existing SLAM methodshave loop closingasanexplicit featureof the
algorithm. Whenever the robotrevisits an areaby a differentpath,thereexists additional
informationwhich canbeleveragedor improvedaccurag. However, themajority of these
methodgerceveloop closingasaseparateventfrom therestof mappingandincorporate
theadditionalinformationin aweakandunprincipledmanner

DP-SLAM doesnot currentlyaddresghe loop closingissuedirectly, aswe have con-
centratedon improving the overall accurag of the algorithm,and useloop closureasa
an evaluationmeasureratherthanasawayto x problems.In particular the hierarchi-
cal mappingmethodleveragesnuchof the sameinformationusedin explicit loop closing
techniquesin amoreprincipledapproachHowever, otherapproachet thesameproblem
couldpossiblyresultin bettersolutions.

One potentialmethodto exploit the informationin closing a loop is very similar to
the hierarchicaimappingmethodalreadydescribedHowever, insteadof usingDP-SLAM
at all levels, it may be a betterideato only usethe particle Iter at the lowestlevel. At

the higherlevel, we couldinsteadusean extendedKalman Iter to maintaintherelations
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betweenthe variouslocal maps. This would allow the high level to choosea variety of

methodsto “sense”the variouslocal maps. Landmarkscould be identi ed as features
within thelocalmaps keepingn thespirit of mostEKF methods Alternatively, arestricted
methodof globallocalizationcouldbe performedonthedifferentlocal mapsasit became

likely thatrobothadreturnedo thatarea.
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