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Why Study Linear Methods?

• Simplicity

• Opacity

• Recent trend in machine learning towards • Recent trend in machine learning towards 
using “embellished” linear methods

– Boosting

– SVMs

– Recent work of Mahadevan et al. for RL



Outline

• Introduce terminology

• Various forms of linear value function approximation

• Linear approximate model formulation• Linear approximate model formulation

• Show equivalence between linear fixed point approximation 
and linear model approximation



Focus on Value Determination

• Compute expected (discounted) value of a policy

– Return on an investment strategy

– Reward for navigating a robot successfully to a goal– Reward for navigating a robot successfully to a goal

– Cost of an equipment maintenance strategy

• Value determination is (often) a precursor to optimization



Notation and Assumptions

• State space: S

• Reward function: R(s)

• Transition function:  P(s’|s), and matrix P

• Discount factor: 0≤γ<1• Discount factor: 0≤γ<1

• Value of a state

• Value function
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Approximation

• Since |S| is typically large, would like to 
approximate V more succinctly

• Many ways to approach this• Many ways to approach this

• We consider approximations that, loosely 
speaking, aim to achieve what linear 
regression would do given true V



Regression Notation

• Given some target vector x=[x1…xn]

• Set of features/basis vectors/basis 
functions h1(x)…hk(x)

• Find weight vector w=[w …w ] s.t.• Find weight vector w=[w1…wk] s.t.
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More Regression Notation

K basis functions

Data points x …x

h1(s1)  h2(s1)...
h1(s2)  h2(s2)…
.
.A=

• A is a design matrix

• Aw is our approximation to x

Data points x1…xn
.
.

A=



Still more notation…

• We want:

• Regression/orthogonal projection/least 
squares/max likelihood yield

xAw ≈

• w = projection weights

• Projection into column space of A
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Weighted Projections

• Can introduce a diagonal weight matrix

• Weighted projection is a projection in a skewed 

space; minimizes weighted error

ρ
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• We omit     for compactness 

(but remember that we have the option!)  
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Fixed Points of Linear Approximations

• Approximation solution of:

• Substitute linear approximation:

VRV Pγ+=

• Problem:  Solution may not exist b/c RHS 
may not be in column space of A

AwRAw Pγ+=



Approximation w/Projection Step
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Projection Matrix

• Leads to several algorithms distinguished by
– Direct vs. Indirect solution for w

– Assumptions about P and R

– (Recall that P and R are too big!)

• Varying convergence, optimality properties
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• Introduce terminology

• Various forms of linear value function approximation

• Linear approximate model formulation

• Show equivalence between linear fixed point 

approximation and linear model approximation



Indirect Update
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• Convergence is not guaranteed in general

• Can guarantee convergence w/projection weighted by 
stationary distribution of P [Tsitsiklis & Van Roy 96]

• Still not practical if done explicitly (P and R too big)



Indirect Update, Factored Model

• Suppose P can be factored (Bayes net)
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• Suppose P can be factored (Bayes net)

• Suppose basis functions have limited support

• Can project exponentially many states in 

polynomial time [Koller & Parr 99]

• Can (optionally) approximate stationary 

distribution to do weighted projection



Direct Solution
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• Solution may exist even if iterative solution is unstable

– Solution almost always exists (depending on  γ)

– Can use SVD for linearly dependent basis fns.

• Not practical in general (P and R too big)

• Efficient for factored models, bases with small support

[Koller & Parr 00]



Direct Solution w/Sampling

• In general, can’t explicitly construct A,P

• Assume a corpus of samples:  (s,r,s’)
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• Assume a corpus of samples:  (s,r,s’)

• Construct ATA from s in (s,s’) samples

• Construct ATPA from (s,s’) pairs

• If states are drawn from   ,converges to    weighted fixed point.

• Known as LSTD [Bradtke & Barto 96]

• Generalized to λ-case [Boyan 99]

• Generalized for control (LSPI) [Lagoudakis & Parr 03]

ρ ρ



Linear TD(0)

• Recall indirect update:

• States, next states, rewards are sampled
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• Given (s,r,s’), stochastic approximation:

• Stable if states are sampled from P

[Tsitsiklis & Van Roy 96]
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Linear VFA Summary

(In)Direct Stable Sampled

Linear TD Indirect From 

Trajectories

Yes

LSTD Direct Almost 

always

Yes

Factored 

MDP

Both Yes* No

All Solve for same fixed point:  )()(
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Suppose we start with a linear model…

• Suppose we have:

– k features (h1…hk)

– Deterministic feature-to-feature (k x k) linear model Q

– x’=QTx, AQ = matrix of next feature values

– Deterministic reward xTwr,, Awr,=vector of rewards

• Simple generalizations

– White noise

– Noise = convex combination of possible Q matrices



Value Function for our Model

• Normally:  

• For our model:
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• Matrix form, assuming V is linear:

• We never leave the column space of A

)()( xQVwxxV r γ+=

AQwAwAw r γ+=

n x k next feature matrix



Solving for w

• From the last slide:

• Indirect:

AQwAwAw r γ+=

iri Qwww γ+=
+1

• Direct:

• Q behaves like P, but
– k x k, not n x n

– Not necessarily stable
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Producing Linear Models

• Approximate reward:
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Projection

• Find Q minimizing squared error in next features:
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Expected next feature vector

Projection

Project
Each column of PA
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Putting it all Together

• Linear fixed point solution:
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• Linear model w/approximation:
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Concluding comments

• Linear value function approximation =

deterministic linear model approximation

• Questions:• Questions:

– Is this unsatisfying?

• Weren’t we doing stochastic processes?

• Does it seem crude when viewed this way?

– Should we address model approximation head-on?

– How does this inform feature selection?


