Outline of Today’s Lecture

- The I/O system
- Magnetic Disk
- Tape
- Buses
- DMA

The Big Picture: Where are We Now?

- Today’s Topic: I/O Systems
Motivation: Who Cares About I/O?

- CPU Performance goes up: 50% - 80% per year
- I/O system performance limited by mechanical delays < 5% per year (IO per sec or MB per sec)
- Amdahl's Law: system speed-up limited by the slowest part!
 - 10% IO & 10x CPU => 5x Performance (lose 50%)
 - 10% IO & 100x CPU => 10x Performance (lose 90%)
- I/O bottleneck:
 - Diminishing fraction of time in CPU
 - Diminishing value of faster CPUs

I/O System Design Issues

- Performance
- Expandability
- Resilience in the face of failure

I/O System Performance

- I/O System performance depends on many aspects of the system ("weakest link in the chain"):
 - The CPU
 - The memory system:
 - Internal and external caches
 - Main Memory
 - The underlying interconnection (buses)
 - The I/O controller
 - The I/O device
 - The speed of the I/O software (Operating System)
 - The efficiency of the software's use of the I/O devices
- Two common performance metrics:
 - Throughput: I/O bandwidth
 - Response time: Latency
Producer-Server Model

Throughput:
- The number of tasks completed by the server in unit time
- In order to get the highest possible throughput:
 - The server should never be idle
 - The queue should never be empty

Response time:
- Begins when a task is placed in the queue
- Ends when it is completed by the server
- In order to minimize the response time:
 - The queue should be empty
 - The server will be idle

I/O Device Examples

<table>
<thead>
<tr>
<th>Device</th>
<th>Behavior</th>
<th>Partner</th>
<th>Data Rate (KB/sec)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Keyboard</td>
<td>Input</td>
<td>Human</td>
<td>0.01</td>
</tr>
<tr>
<td>Mouse</td>
<td>Input</td>
<td>Human</td>
<td>0.02</td>
</tr>
<tr>
<td>Line Printer</td>
<td>Output</td>
<td>Human</td>
<td>1.00</td>
</tr>
<tr>
<td>Laser Printer</td>
<td>Output</td>
<td>Human</td>
<td>100.00</td>
</tr>
<tr>
<td>Graphics Display</td>
<td>Output</td>
<td>Human</td>
<td>30,000.00</td>
</tr>
<tr>
<td>Network-LAN</td>
<td>Input/Output</td>
<td>Machine</td>
<td>10,000.00</td>
</tr>
<tr>
<td>Floppy disk</td>
<td>Storage</td>
<td>Machine</td>
<td>50.00</td>
</tr>
<tr>
<td>Optical Disk</td>
<td>Storage</td>
<td>Machine</td>
<td>500.00</td>
</tr>
<tr>
<td>Magnetic Disk</td>
<td>Storage</td>
<td>Machine</td>
<td>5,000.00</td>
</tr>
</tbody>
</table>

Technology Trends

- Today: Processing Power Doubles Every 18 months
- Today: Memory Size Doubles Every 18 months
- Today: Disk Capacity Doubles Every 12-18 months
- Disk Positioning Rate (Seek + Rotate) Doubles Every Ten Years!
Organization of a Hard Magnetic Disk

- Typical numbers (depending on the disk size):
 - 500 to 2,000 tracks per surface
 - 32 to 128 sectors per track
 - A sector is the smallest unit that can be read or written
- Traditionally all tracks have the same number of sectors:
 - Constant bit density: record more sectors on the outer tracks
 - Recently relaxed: constant bit size, speed varies with track location

Magnetic Disk Characteristic

- Cylinder: all the tracks under the head at a given point on all surfaces
- Read/write data is a three-stage process:
 - Seek time: position the arm over the proper track
 - Rotational latency: wait for the desired sector to rotate under the read/write head
 - Transfer time: transfer a block of bits (sector) under the read-write head
- Average seek time as reported by the industry:
 - Typically in the range of 8 ms to 12 ms
 - (Sum of the time for all possible seeks) / (total # of possible seeks)
- Due to locality of disk reference, observed average seek time may:
 - Only be 25% to 33% of the advertised number

Typical Numbers of a Magnetic Disk

- Rotational Latency:
 - Most disks rotate at 3,600 or 7200 RPM
 - Approximately 16 ms to 8 ms per revolution, respectively
 - An average latency to the desired information is halfway around the disk: 8 ms at 3600 RPM, 4 ms at 7200 RPM

- Transfer Time is a function of:
 - Transfer size (usually a sector): 1 KB / sector
 - Rotation speed: 3600 RPM to 7200 RPM
 - Recording density: bits per inch on a track
 - Diameter typical diameter ranges from 2.5 to 5.25 in
 - Typical values: 2 to 12 MB per second
Tape vs. Disk

- Longitudinal tape uses same technology as hard disk; tracks its density improvements
- Inherent cost/performance based on geometry:
 - fixed rotating platters with gaps (random access, limited area, fixed media, re-write any block) vs.
 - removable long strips wound on spool (sequential access, "unlimited" length, write only at end)
- New technology trend:
 - Helical Scan (VCR, Camcorder, DAT)
 - Spins head at angle to tape to improve density

Current Drawbacks to Tape

- Tape wear out:
 - Helical 100s of passes to 1000s for longitudinal
- Head wear out:
 - 2000 hours for helical
- Both must be accounted for in economic/reliability model
- Long rewind, eject, load, spin-up times;

CDR vs. Tape

<table>
<thead>
<tr>
<th></th>
<th>CDR</th>
<th>Helical Scan</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type</td>
<td>5.25"</td>
<td>8mm</td>
</tr>
<tr>
<td>Capacity</td>
<td>0.75 GB</td>
<td>5-12 GB</td>
</tr>
<tr>
<td>Media Cost</td>
<td>$3</td>
<td>$8</td>
</tr>
<tr>
<td>Drive Cost</td>
<td>$200</td>
<td>$600</td>
</tr>
<tr>
<td>Access</td>
<td>Write Once</td>
<td>Read/Write</td>
</tr>
<tr>
<td>Robot Time</td>
<td>10 - 20 s</td>
<td>10 - 20 s</td>
</tr>
</tbody>
</table>

Media cost ratio CDR vs. helical tape = 2.7 : 1
Buses: Connecting I/O to Processor and Memory

- A bus is a shared communication link
- It uses one set of wires to connect multiple subsystems

Output Operation
- Output is defined as the Processor sending data to the I/O device:

 Step 1: Request Memory
 - Processor
 - Control (Memory Read Request)
 - Memory
 - I/O Device (Disk)
 - Data (Memory Address)

 Step 2: Read Memory
 - Processor
 - Control
 - Memory
 - I/O Device (Disk)
 - Data

 Step 3: Send Data to I/O Device
 - Processor
 - Control (Device Write Request)
 - Memory
 - I/O Device (Disk)
 - Data (I/O Device Address and then Data)

Input Operation
- Input is defined as the Processor receiving data from the I/O device:

 Step 1: Request Memory
 - Processor
 - Control (Memory Write Request)
 - Memory
 - I/O Device (Disk)
 - Data (Memory Address)

 Step 2: Receive Data
 - Processor
 - Control (I/O Read Request)
 - Memory
 - I/O Device (Disk)
 - Data (I/O Device Address and then Data)
Types of Buses

- Processor-Memory Bus (design specific)
 - Short and high speed
 - Only need to match the memory system
 - Maximize memory-to-processor bandwidth
 - Connects directly to the processor
- I/O Bus (industry standard)
 - Usually is lengthy and slower
 - Need to match a wide range of I/O devices
 - Connects to the processor-memory bus or backplane bus
- Backplane Bus (industry standard)
 - Backplane: an interconnection structure within the chassis
 - Allow processors, memory, and I/O devices to coexist
 - Cost advantage: one single bus for all components

A Computer System with One Bus: Backplane Bus

- A single bus (the backplane bus) is used for:
 - Processor to memory communication
 - Communication between I/O devices and memory
- Advantages: Simple and low cost
- Disadvantages: slow and the bus can become a major bottleneck
- Example: IBM PC

A Two-Bus System

- I/O buses tap into the processor-memory bus via bus adaptors:
 - Processor-memory bus: mainly for processor-memory traffic
 - I/O buses: provide expansion slots for I/O devices
- Example: Apple Macintosh-II
 - NuBus: Processor, memory, and a few selected I/O devices
 - SCCI Bus: the rest of the I/O devices
OS and I/O Systems Communication Requirements

- The Operating System must be able to prevent:
 - The user program from communicating with the I/O device directly

- If user programs could perform I/O directly:
 - Protection to the shared I/O resources could not be provided
 - User could change the OS copy on disk
 - Data privacy could not be maintained

- Three types of communication are required:
 - The OS must be able to give commands to the I/O devices
 - The I/O device must be able to notify the OS when the I/O device has completed an operation or has encountered an error
 - Data must be transferred between memory and an I/O device

OS to I/O Interface

- I/O device control registers are addressable as memory locations
- OS initiates operation of I/O device X by storing into X's control register
 - X's control register might be location 0x100 in memory
 - Each device uses different memory location(s)
- Device indicates “operation complete” (and reports errors) by setting code in another control register, also addressed as memory location
 - OS can “poll” devices – examine control registers of each, in turn
 - Devices can interrupt processor to signal need for attention
 - Each device, or possibly “type” of device, can use a different interrupt location, or cause code
- This approach avoids special I/O op-codes
- Protection of I/O devices handled by memory protection system
 - OS prevents user program from read/write access to I/O locations

I/O Interrupt

- An I/O interrupt is just like any exception except:
 - An I/O interrupt is asynchronous
 - Information about the interrupt needs to be conveyed to OS

- An I/O interrupt is asynchronous with respect to instruction execution:
 - I/O interrupt is not associated with any instruction
 - I/O interrupt does not prevent any instruction from completion
 - Hardware designer can pick any convenient point to take an interrupt

- I/O interrupt is more complicated than exception:
 - Needs to convey the identity of the device generating the interrupt
 - Interrupt requests can have different urgencies:
 - Interrupt request needs to be prioritized
Delegating I/O Responsibility from the CPU: DMA

CPU sends a starting address, direction, and length count to DMAC. Then issues "start".

- Direct Memory Access (DMA):
 - External to the CPU
 - Act as a "master" on the bus
 - Transfers blocks of data to or from memory without CPU intervention

CPU sends a starting address, direction, and length count to DMAC. Then issues "start".

DMAC provides handshake signals for Peripheral Controller, and Memory Addresses and handshake signals for Memory.

Summary:

- I/O performance is weakest link in chain between OS and device
- Disk I/O Benchmarks: I/O rate vs. Data rate vs. latency
- Three Components of Disk Access Time:
 - Seek Time: advertised to be 8 to 12 ms. May be lower in real life.
 - Rotational Latency: 4.1 ms at 7200 RPM and 8.3 ms at 3600 RPM
 - Transfer Time: 2 to 12 MB per second
- Three types of buses: Processor-memory, I/O, Backplane
 - performance vs. cost
- I/O device notifying the operating system:
 - Polling: it can waste a lot of processor time
 - I/O interrupt: similar to exception except it is asynchronous
- Delegating I/O responsibility from the CPU: DMA, or even IOP