COMPSCI 110
Operating Systems

• Who - Introductions
• How - Policies and Administrative Details
• Why - Objectives and Expectations
• What - Our Topic: Operating Systems

How COMPSCI 110 will work

• It’s all explained on the web
• Don’t expect handouts regularly
• Discussion sections
 – Goals: provide opportunity for interaction, questions
 answered, exploration of details that can’t be covered in
 lecture, problem-solving experiences.
 – Based on problems assigned from textbook
 – Bring your Nachos questions there

How COMPSCI 110 will work

• Immediate ToDo’s:
 – Form project groups - email me
 • new@cs.duke.edu subject: 110 groups
 • Info needed:
 – name for group;
 – desired password;
 – names and emails for each member of group
 – Begin reading textbook:
 • Chapter 1
 • Next lecture - Review of CPS 104
 • First big topic, Process Mgt and Concurrency - Chapter 2
 • Read introductory material on NACHOS (see “Assignments”)
 – Fill out and leave “Who’s who” questionnaire
 – Take pictures of each other
 • Sign-up sheet, associating your picture with sequential number on
 sign-up sheet (include “frame” number on camera also)
 • Tips for “good” photos – not too close, zoom in to fill viewfinder

• Form project groups - email me
 • new@cs.duke.edu subject: 110 groups
 • Info needed:
 – name for group;
 – desired password;
 – names and emails for each member of group
 • Begin reading textbook:
 • Chapter 1
 • Next lecture - Review of CPS 104
 • First big topic, Process Mgt and Concurrency - Chapter 2
 • Read introductory material on NACHOS (see “Assignments”)
 • Fill out and leave “Who’s who” questionnaire
 • Take pictures of each other
 • Sign-up sheet, associating your picture with sequential number on
 sign-up sheet (include “frame” number on camera also)
 • Tips for “good” photos – not too close, zoom in to fill viewfinder
Objectives/Expectations

• What we want to accomplish today.
• What I want you to learn in this class ...
• What you can expect from me.
• What I expect from you.

What you will learn

• What an OS does. What services are provided, what functions are performed, what resources are managed, and what interfaces and abstractions are supported.
• How the OS is implemented. How the code is structured. What algorithms are used.
• Techniques, skills, and "systems intuition" (e.g., concurrent programming).
• Peaks at current research topics.

What’s an OS for?

• Purposes:
 – To allow a computer to be SHARED among several tasks or jobs safely and efficiently.
 • Sequentially in time, or
 • In parallel (timesharing, or batch)
 – To make the machine easier to program
 – To help in porting programs between machines
What is an OS?

- **Resource Manager** of physical (HW) devices ...
- **Abstract machine** environment. The OS defines a set of logical resources (objects) and operations on those objects (an interface on the use of those objects).
- Allows *sharing* of resources. Controls interactions among different users.
- Privileged, protected software - the *kernel*. Different kind relationship between OS and user code (entry via system calls, interrupts).

What is an OS?

- Birthplace of system design principles: e.g., Separation of Policy and Mechanism.
- Supporting role - to provide services for the target workload, not an end product itself.
- Not the command interpreter and not a library of utility functions that can be linked into user programs.
HW Resources to be Managed

- CPU (computation cycles)
- Primary memory
- Secondary memory devices (disk, tapes)
- Networks
- Input devices (keyboard, mouse, camera)
- Output devices (printers, display, speakers)

Working simultaneously. Shared among tasks. ||ism - concurrent demands from all directions.

Examples of Abstractions

- Threads or Processes (Fork)
- Address spaces (Allocate)
- Files (Open, Close, Read, Write)
- Messages (Send, Receive)
Main Issues in OS

- Structure
- Concurrency and Synchronization
- Extensibility, Compatibility
- Communication
- Sharing
- Naming
- Performance
- Protection, Access control, Security
- Reliability, Fault Tolerance
- Persistence, Longevity
- Scalability, Distribution
- Accounting - $$