Approximation Algorithms

- Finding solution to NP-complete problem is difficult.
- Two possible approaches.
 - If input is small enough, use exponential algorithm.
 - Otherwise, craft poly-time approximation algorithm.

We’ll look at approximation algorithms for

1. Vertex Cover
2. Traveling Salesman Problem
3. Set Partition Problem
Definitions

• Optimization problem on input of size n.
• $C^* = \text{cost of optimal solution}.$
• $C = \text{cost of approximation algorithm’s solution}.$

• Ratio Bound: $\rho(n)$ such that for input size n
 \[
 \max \left(\frac{C}{C^*}, \frac{C^*}{C} \right) \leq \rho(n).
 \]

• Relative Error Bound: $\epsilon(n)$ such that
 \[
 \frac{|C - C^*|}{C^*} \leq \epsilon(n).
 \]
 for any n.
Vertex Cover Problem

• Undirected graph $G = (V, E)$.

• **Vertex cover** of G is $V' \subseteq V$ such that for every $(u, v) \in E$, either $u \in V'$ or $v \in V'$ (or both).

• **Vertex-cover problem**: find vertex cover of minimum size (optimal vertex cover).

• NP-complete (reduction from CLIQUE; see CLRS).
Example

- Find optimal vertex cover:
A possible solution

- Only solution for this graph.
- How might we approximate a solution to vertex cover problem?
Idea

- Choose vertices of max degree.
- Works for previous example.

October 5, 2005
Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L7.15
Problem

• What about the following graph?

• max-degree strategy gives:
Problem

- Actual optimal solution is:

- Is there a better approximation alg.?
Approximation Algorithm

Approx-Vertex-Cover(\(G\))

1. \(C \leftarrow \emptyset\) \(\triangleright \ C\) to be cover
2. \(E' \leftarrow E[G]\)
3. while \(E' \neq \emptyset\)
4. \(\text{do let } (u, v) \text{ be an arbitrary edge of } E'\)
5. \(C \leftarrow C \cup \{u, v\}\)
6. remove from \(E'\) every edge incident on either \(u\) or \(v\)
7. \(\text{return } C\)
Proof (completed)

Q. How many h_a's cause x and y to collide?

A. There are m choices for each of a_1, a_2, \ldots, a_r, but once these are chosen, exactly one choice for a_0 causes x and y to collide, namely

$$\sum_{i=1}^{r} a_i \left(x^i y^i \right) \mod m.$$

Thus, the number of h_a's that cause x and y to collide is $m^r \cdot 1 = m^r = |H|/m$.

October 5, 2005
Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson

L7.15
Vertex Cover Approximation Example Cont.

Q. How many h_a's cause x and y to collide?

A. There are m choices for each of a_1, a_2, \ldots, a_r, but once these are chosen, exactly one choice for a_0 causes x and y to collide, namely

$$\sum_{i=1}^{r} a_i (x_i - y_i) \mod m.$$

Thus, the number of h_a's that cause x and y to collide is $m^r = |H|/m$.

October 5, 2005

Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson
Analysis of Vertex Cover Approximation

• Correctness
 – Only remove “covered” edges from E'.
 – APPROX-VERTEX-COVER returns a vertex cover.

• Running Time is $O(|V| + |E|)$.

Further Analysis

• **Theorem** \textsc{Approx-Vertex-Cover} has ratio bound 2.

• **Proof**

\[A = \{\text{edges picked in line 4}\} \text{ (A is a set).} \]

No two edges in \(A \) share an endpoint.

\[|C| = 2 |A|. \]

Optimal cover, \(C^* \) must include at least one endpoint for each edge in \(A \).

\[|A| \leq |C^*|. \]

Conclude that \[|C| \leq 2 |C^*|; \]

that is, size of approximate cover is at worst twice size of optimal cover!
Traveling-Salesman Problem

- Given: **complete** undirected graph $G = (V, E)$.
- Each edge $(u, v) \in E$ has integer cost $c(u, v)$.
- Each path has an associated cost.

![Graph Diagram]

Traveling-Salesman Problem (TSP):
Optimization: find min-cost hamilt. cycle of G; i.e., a min-cost cycle visiting each vertex exactly once.
Decision: NP-complete (reduction from HAM-CYCLE, see CLRS).

Page 14
Proof (completed)

Q. How many h's cause x and y to collide?

A. There are m choices for each of a_1, a_2, \ldots, a_r, but once these are chosen, exactly one choice for a_0 causes x and y to collide, namely

$$a_0 \cdot \left(x_0 - y_0 \right) \mod m.$$

Thus, the number of h's that cause x and y to collide is $m^r \cdot 1 = m^r = |H|/m$.

October 5, 2005

Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson

L7.15
TSP Approximation Algorithm

Suppose weights satisfy triangle inequality:

\[c(u, w) \leq c(u, v) + c(v, w) \]

for all \(u, v, w \in V \)

\[a + b \leq c \]

TSP is still NP-complete! However...
TSP Approximation Algorithm

APPROX-TSP-TOUR(*G, c*)
1 select a vertex *r* ∈ *V[G]* to be a “root” vertex
2 grow minimum spanning tree *T* for *G* from root *r* using **MST-PRIM**(*G, c, r*)
3 let *L* be the list of vertices visited in preorder tree walk of *T*
4 **return** hamiltonian cycle *H* that visits vertices in the order *L*
Example

- Find shortest tour for:

- Find MST (with root a).

Proof (completed)

Q. How many h's cause x and y to collide?

A.

Thus, the number of h's that cause x and y to collide is $m^r \cdot 1 = m^r = |H|/m$.

October 5, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L7.15
Example

- Pre-order walk of MST (node first, then children)

- Yielding tour:

- Total distance \(\approx 24.00\) units.
Q. How many h's cause x and y to collide?

A. There are m choices for each of a_1, a_2, \ldots, a_r, but once these are chosen, exactly one choice for a_0 causes x and y to collide, namely $\frac{a_0}{a_i} \cdot \frac{a_i}{a_j} \cdot \ldots \cdot \frac{a_j}{a_k} \mod m$.

Thus, the number of h's that cause x and y to collide is $m^r = |H|/m$.

October 5, 2005
Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson

Optimal Solution

- Total distance ≈ 20.44 units.
Theorem: \textsc{approx-tsp-tour} with triangle inequality has ratio bound 2.

Proof:

\[H^* = \text{optimal tour for } G. \]

\(T \) is a MST for \(G \) \(\rightarrow c(T) \leq c(H^*) \).

\(W = \text{full walk of } T. \ c(W) = 2c(T). \)

\[c(W) \leq 2c(H^*). \]

\(H \) is preorder walk of \(T \). By triangle inequality, \(c(H) \leq c(W) \)

\[c(H) \leq 2c(H^*) \]

Best ratio was \(\frac{3}{2} \) for long time; now \(\epsilon \).
ε-Approximation Schemes

- Input of size \(n \) and relative error bound \(\epsilon > 0 \).
- Returns solution with \(\frac{|C-C^*|}{C^*} < \epsilon \).

- **Polynomial-time Approximation Scheme**
 \(O(n^{O(1)}) \) time for any constant \(\epsilon \).

- **Fully Polynomial Time Approximation Scheme**
 Polynomial in both \(n \) and \(1/\epsilon \).
Partition Problem

• Given:

\[S = \{a_1, a_2, \ldots, a_n\} \]
\[a_1 \geq a_2 \geq \ldots \geq a_n \]

• **Problem:** Partition \(S \) into \(A \cup B \) such that
\[
\max (w(A), w(B))
\]
is minimized.

• NP-Complete (reduction from 3D matching).

• Can we find a polynomial-time approximation scheme?
Example

S:

A:

B:

\[w(A) = 15 \]

\[w(B) = 14 \]

Proof (completed)

Q. How many \(h^{a} \)'s cause \(x \) and \(y \) to collide?

A. There are \(m \) choices for each of \(a_1, a_2, \ldots, a_r \), but once these are chosen, exactly one choice for \(a_0 \) causes \(x \) and \(y \) to collide, namely:

\[
\frac{m \cdot 1}{m} = \frac{|H|}{m}.
\]

October 5, 2005
Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson
• Given:

\[S = \{a_1, a_2, \ldots, a_n\} \]

\[a_1 \geq a_2 \geq \ldots \geq a_n \]

Approximation Scheme

• Let \(m = \lceil 1/\epsilon \rceil \)

• Find optimal partition of \(S' = \{a_1, a_2, \ldots, a_m\} \) by exhaustive enumeration.

• Consider \(a_{m+1}, a_{m+2}, \ldots, a_n \) in turn and add to currently lighter set.
Example

\[S: \begin{align*} 7 & \quad 7 & \quad 5 & \quad 4 & \quad 3 & \quad 2 & \quad 1 \end{align*} \]

- \(\epsilon = \frac{1}{3} \)
- \(m = 3 \)
- Partition \(\{7, 7, 5\} \)

\[A: \begin{align*} 7 & \quad 5 \end{align*} \]

\[B: \begin{align*} 7 \end{align*} \]
Example Cont.

- Insert 4.

A:

| 7 | 5 |

B:

| 7 | 4 |

- Insert 3.

A:

| 7 | 5 |

B:

| 7 | 4 | 3 |
Proof (completed)

Q. How many h's cause x and y to collide?

A. There are m choices for each of a_1, a_2, \ldots, a_r, but once these are chosen, exactly one choice for a_0 causes x and y to collide, namely

$$\sum_{i=1}^{r} a_i^i \cdot x^i \cdot y^i \mod m.$$

Thus, the number of h's that cause x and y to collide is $m^r \cdot 1 = m^r = |H|/m$.

October 5, 2005

Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson

- Insert 2.

- Insert 1.

- $w(A) = 15$, $w(B) = 14$.

- What is the running time for this algorithm?
Partition Problem

- Given:

\[S = \{ a_1, a_2, \ldots, a_n \} \]
\[a_1 \geq a_2 \geq \ldots \geq a_n \]

- Problem: Partition \(S \) into \(A \cup B \) such that \(\max (w(A), w(B)) \) is minimized.

Approximation Scheme with Relative Error \(< \varepsilon \):

- Let \(m = \lceil 1/\varepsilon \rceil \)

- Find optimal partition of \(S' = \{ a_1, a_2, \ldots, a_m \} \) by exhaustive enumeration.

- Consider \(a_{m+1}, a_{m+2}, \ldots, a_n \) in turn and add to currently lighter set.

Time Bounds for Approximation Scheme:

Running Time

- Finding optimal partition of \(S' \) takes \(O(2^m) \) time.

- Considering each of the remaining elements of \(S \) takes \(O(n) \) time.

- Total running time is

\[
O(2^m + n) = O(2^{1/\varepsilon} + n)
\]

\[= O(n) \text{ for constant } \varepsilon \]
• Given:
 \[S = \{a_1, a_2, \ldots, a_n\} \]
 \[a_1 \geq a_2 \geq \ldots \geq a_n \]

• **Problem:** Partition \(S \) into \(A \cup B \) such that
 \[\max (w(A), w(B)) \] is minimized.

Approximation Scheme

• Let \(m = \lfloor 1/\varepsilon \rfloor \)

• Find optimal partition of \(S' = \{a_1, a_2, \ldots, a_m\} \)
 by exhaustive enumeration.

• Consider \(a_{m+1}, a_{m+2}, \ldots, a_n \) in turn and
 add to currently lighter set.

Proof Approximation Scheme has Relative Error < \(\varepsilon \):

Theorem: Partition produced by approximation scheme has relative error < \(\varepsilon \).

Proof:

• Let \(A' \cup B' \) be an optimal partition of \(S' \).

• Assume \(w(A') \geq w(B') \).
Proof of Approximation Scheme:

- Let $A' \cup B'$ be an optimal partition of S'.
- Assume $w(A') \geq w(B')$.
- Case 1

\[w(A') \geq \frac{1}{2}w(S) \]

Then $A = A'$, $B = B' \cup \{a_{m+1}, a_{m+2}, \ldots, a_n\}$.
Proof of Approximation Scheme:

- Let $A' \cup B'$ be an optimal partition of S'.
- Assume $w(A') \geq w(B')$.
- Case 1

\[w(A') \geq \frac{1}{2} w(S) \]

Then $A = A'$, $B = B' \cup \{a_{m+1}, a_{m+2}, \ldots, a_n\}$.

In Case 1, Approximation is Exact Solution:

Claim: $A \cup B$ is optimal (Relative error $= 0$)

* Consider optimal solution $A^* \cup B^* = S$.
* $w(A^*) \geq w(A^* \cap \{a_1, a_2, \ldots, a_m\})$ [why?]
* $w(B^*) \geq w(B^* \cap \{a_1, a_2, \ldots, a_m\})$
* Therefore,

\[\max(w(A^*), w(B^*)) \geq \max(w(A'), w(B')) \]

\[= w(A') \]

\[= w(A). \]

* Hence, $A \cup B$ is optimal.
Proof of Approximation Scheme:

- Let $A' \cup B'$ be an optimal partition of S'.
- Assume $w(A') \geq w(B')$.

In Case 2, Approximation is has Relative Error $< \varepsilon$:

- Case 2:

\[
|w(A) - w(B)| \leq a_{m+1}
\]

\[
w(A) + w(B) = w(S)
\]

\[
2 \max(w(A), w(B)) \leq w(A) + w(B) + a_{m+1}
\]

\[
\leq w(S) + a_{m+1}
\]

\[
\Rightarrow C = \max(w(A), w(B)) \leq \frac{w(S) + a_{m+1}}{2}
\]
In Case 2, Approximation is has Relative Error < ε

Case 2: $w(A') \leq \frac{1}{2}w(S)$

Problem: Partition S into $A \cup B$ such that
$C = \max (w(A), w(B)) \leq \frac{w(S) + a_{m+1}}{2}$ minimized.

Relative Error
$\frac{C - C^*}{C^*}$
$= \frac{\frac{w(S) + a_{m+1}}{2} - \frac{w(S)}{2}}{\frac{w(S)}{2}}$
$= \frac{a_{m+1}}{w(S)}$
$\leq \frac{a_{m+1}}{(m + 1)a_{m+1}}$
$= \frac{1}{m + 1}$
Since $m = \lceil 1/\varepsilon \rceil$
$< \varepsilon$

Hence: approx. alg. for partition
has relative error < ε!