Approximation Algorithms

- Finding solution to NP-complete problem is difficult.
- Two possible approaches.
 - If input is small enough, use exponential algorithm.
 - Otherwise, craft poly-time approximation algorithm.

We’ll look at approximation algorithms for
1. Vertex Cover
2. Traveling Salesman Problem
3. Set Partition Problem
Definitions

- Optimization problem on input of size \(n \).
- \(C^* \) = cost of optimal solution.
- \(C \) = cost of approximation algorithm’s solution.
- **Ratio Bound:** \(\rho(n) \) such that for input size \(n \)
 \[
 \max \left(\frac{C}{C^*}, \frac{C^*}{C} \right) \leq \rho(n) .
 \]
- **Relative Error Bound:** \(\epsilon(n) \) such that
 \[
 \frac{|C - C^*|}{C^*} \leq \epsilon(n) .
 \]
 for any \(n \).
Vertex Cover Problem

• Undirected graph $G = (V, E)$.

• Vertex cover of G is $V' \subseteq V$ such that for every $(u, v) \in E$, either $u \in V'$ or $v \in V'$ (or both).

• Vertex-cover problem: find vertex cover of minimum size (optimal vertex cover).

• NP-complete (reduction from CLIQUE; see CLRS).
Example

- Find optimal vertex cover:
A possible solution

- Only solution for this graph.
- How might we approximate a solution to vertex cover problem?
Idea

- Choose vertices of max degree.
- Works for previous example.

![Diagram of a network with black and gray nodes connected by lines.](image-url)
Problem

• What about the following graph?

• max-degree strategy gives:
Problem

- Actual optimal solution is:

- Is there a better approximation alg.?
Approximation Algorithm

APPROX-VERTEX-COVER\((G)\)

1. \(C \leftarrow \emptyset\) \(\triangleright\) \(C\) to be cover
2. \(E' \leftarrow E[G]\)
3. \textbf{while} \(E' \neq \emptyset\)
4. \textbf{do} let \((u, v)\) be an arbitrary edge of \(E'\)
5. \(C \leftarrow C \cup \{u, v\}\)
6. remove from \(E'\) every edge incident on either \(u\) or \(v\)
7. \textbf{return} \(C\)
Vertex Cover Approximation Example

Proof (completed)

Q. How many h's cause x and y to collide?

A. There are m choices for each of a_1, a_2, …, a_r, but once these are chosen, exactly one choice for a_0 causes x and y to collide, namely

$$\sum_{i=1}^{r} a_i (x_i y_i) \pmod{m}.$$

Thus, the number of h's that cause x and y to collide is $m r = |H|/m$.

October 5, 2005

Copyright © 2001-2005 by Erik D. Demaine and Charles E. Leiserson
Vertex Cover Approximation Example Cont.

Proof (completed)

Q. How many h's cause x and y to collide?

A. There are m choices for each of a_1, a_2, …, a_r, but once these are chosen, exactly one choice for a_0 causes x and y to collide, namely

\[\frac{m^r}{m} = |H|/m. \]

October 5, 2005
Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson

L7.15
Analysis of Vertex Cover Approximation

• Correctness
 – Only remove “covered” edges from E'.
 – APPROX-VERTEX-COVER returns a vertex cover.

• Running Time is $O(|V| + |E|)$.
Further Analysis

• **Theorem** **APPROX-VERTEX-COVER** has ratio bound 2.

• **Proof**

\[A = \{ \text{edges picked in line 4} \} \ (A \text{ is a set}). \]
No two edges in \(A \) share an endpoint.
\[|C'| = 2 |A|. \]
Optimal cover, \(C^* \) must include at least one end-point for each edge in \(A \).
\[|A| \leq |C^*|. \]
Conclude that \(|C'| \leq 2 |C^*|; \)
that is, size of approximate cover is at worst twice size of optimal cover!
Traveling-Salesman Problem

- Given: **complete** undirected graph $G = (V, E)$.
- Each edge $(u, v) \in E$ has integer cost $c(u, v)$.
- Each path has an associated cost.

Traveling-Salesman Problem (TSP):

Optimization: find min-cost hamilt. cycle of G; i.e., a min-cost cycle visiting each vertex exactly once.

Decision: NP-complete (reduction from HAM-CYCLE, see CLRS).
Proof (completed)
Q. How many h's cause x and y to collide?
A. There are m choices for each of a_1, a_2, \ldots, a_r, but once these are chosen, exactly one choice for a_0 causes x and y to collide, namely $\mathbb{A} \cdot \mathbb{B} \cdots \mathbb{C} \cdot \mathbb{D} \cdots \mathbb{F} (x_0 y_0) \equiv a_i (x_i y_i) \pmod{m}$. Thus, the number of h's that cause x and y to collide is $m r = |H| / m$.

October 5, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L7.15
TSP Approximation Algorithm

Suppose weights satisfy triangle inequality:

\[c(u, w) \leq c(u, v) + c(v, w) \]

for all \(u, v, w \in V \)

\[a + b \leq c \]

TSP is still NP-complete! However...
TSP Approximation Algorithm

\textbf{APPROX-TSP-TOUR}(G, c)

1 select a vertex \(r \in V[G] \) to be a “root” vertex
2 grow minimum spanning tree \(T \) for \(G \) from root \(r \) using \textbf{MST-PRIM}(G, c, r)
3 let \(L \) be the list of vertices visited in preorder tree walk of \(T \)
4 \textbf{return} hamiltonian cycle \(H \) that visits vertices in the order \(L \)

October 5, 2005
Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson
Example

- Find shortest tour for:

- Find MST (with root a).
Example

- Pre-order walk of MST (node first, then children)

- Yielding tour:

- Total distance ≈ 24.00 units.
Optimal Solution

- Total distance ≈ 20.44 units.
• **Theorem:** **APPROX-TSP-TOUR** with triangle inequality has ratio bound 2.

• **Proof:**

\[H^* = \text{optimal tour for } G. \]
\[T \text{ is a MST for } G \rightarrow c(T) \leq c(H^*). \]
\[W = \text{full walk of } T. \ c(W) = 2c(T). \]
\[c(W) \leq 2c(H^*). \]
\[H \text{ is preorder walk of } T. \ \text{By triangle inequality, } c(H) \leq c(W) \]
\[c(H) \leq 2c(H^*) \]

Best ratio was \(\frac{3}{2} \) for long time; now \(\epsilon \).
\(\varepsilon \)-Approximation Schemes

- Input of size \(n \) and relative error bound \(\varepsilon > 0 \).
- Returns solution with \(\frac{|C - C^*|}{C^*} \) < \(\varepsilon \).
- **Polynomial-time Approximation Scheme**
 \(O(n^{O(1)}) \) time for any constant \(\varepsilon \).
- **Fully Polynomial Time Approximation Scheme**
 Polynomial in both \(n \) and \(1/\varepsilon \).
Partition Problem

• Given:

\[S = \{a_1, a_2, \ldots, a_n\} \]
\[a_1 \geq a_2 \geq \ldots \geq a_n \]

• **Problem:** Partition \(S \) into \(A \cup B \) such that \(\max (w(A), w(B)) \) is minimized.

• NP-Complete (reduction from 3D matching).

• Can we find a polynomial-time approximation scheme?
Example

\[S: \]
\[
\begin{array}{cccccccc}
7 & 7 & 5 & 4 & 3 & 2 & 1 \\
\end{array}
\]

\[A: \]
\[
\begin{array}{cccc}
7 & 4 & 3 & 1 \\
\end{array}
\]
\[w(A)=15 \]

\[B: \]
\[
\begin{array}{cccc}
7 & 5 & 2 \\
\end{array}
\]
\[w(B)=14 \]
• Given:

\[S = \{a_1, a_2, \ldots, a_n\} \]
\[a_1 \geq a_2 \geq \ldots \geq a_n \]

Approximation Scheme

• Let \(m = \lfloor 1/\epsilon \rfloor \)

• Find optimal partition of \(S' = \{a_1, a_2, \ldots, a_m\} \)
 by exhaustive enumeration.

• Consider \(a_{m+1}, a_{m+2}, \ldots, a_n \) in turn and add to currently lighter set.
Example

S:
| 7 | 7 | 5 | 4 | 3 | 2 | 1 |

- $\epsilon = 1/3$
- $m = 3$
- Partition $\{7, 7, 5\}$

A:
| 7 | 5 |

B:
| 7 |
Example Cont.

- Insert 4.

\[A: \begin{align*}
7 & \quad 5 \\
\end{align*} \]

\[B: \begin{align*}
7 & \quad 4 \\
\end{align*} \]

- Insert 3.

\[A: \begin{align*}
7 & \quad 5 \\
\end{align*} \]

\[B: \begin{align*}
7 & \quad 4 & \quad 3 \\
\end{align*} \]
• Insert 2.

A:

7
5
2

B:

7
4
3

• Insert 1.

A:

7
5
2
1

B:

7
4
3

• $w(A) = 15$, $w(B) = 14$.

• What is the running time for this algorithm?
Partition Problem

- **Given:**

 \[S = \{a_1, a_2, \ldots, a_n\} \]

 \[a_1 \geq a_2 \geq \ldots \geq a_n \]

- **Problem:** Partition \(S \) into \(A \cup B \) such that \(\max(w(A), w(B)) \) is minimized.

Approximation Scheme with Relative Error < \(\varepsilon \):

- Let \(m = \lceil 1/\varepsilon \rceil \)

- Find optimal partition of \(S' = \{a_1, a_2, \ldots, a_m\} \) by exhaustive enumeration.

- Consider \(a_{m+1}, a_{m+2}, \ldots, a_n \) in turn and add to currently lighter set.

Time Bounds for Approximation Scheme:

Running Time

- Finding optimal partition of \(S' \) takes \(O(2^m) \) time.

- Considering each of the remaining elements of \(S \) takes \(O(n) \) time.

- Total running time is

\[
O(2^m + n) = O(2^{1/\varepsilon} + n)
\]

\[= O(n) \text{ for constant } \varepsilon \]
• Given:
 \[S = \{a_1, a_2, \ldots, a_n\} \]
 \[a_1 \geq a_2 \geq \ldots \geq a_n \]

• **Problem:** Partition \(S \) into \(A \cup B \) such that \(\max(w(A), w(B)) \) is minimized.

Approximation Scheme

• Let \(m = \lfloor 1/\epsilon \rfloor \)

• Find optimal partition of \(S' = \{a_1, a_2, \ldots, a_m\} \) by exhaustive enumeration.

• Consider \(a_{m+1}, a_{m+2}, \ldots, a_n \) in turn and add to currently lighter set.

Proof Approximation Scheme has Relative Error < \(\epsilon \):

Theorem: Partition produced by approximation scheme has relative error < \(\epsilon \).

Proof:

• Let \(A' \cup B' \) be an optimal partition of \(S' \).

• Assume \(w(A') \geq w(B') \).

In Case 2, Approximation is has Relative Error < \(\epsilon \) :
Proof of Approximation Scheme:

- Let $A' \cup B'$ be an optimal partition of S'.
- Assume $w(A') \geq w(B')$.
- Case 1
 \[w(A') \geq \frac{1}{2} w(S) \]

Then $A = A'$, $B = B' \cup \{a_{m+1}, a_{m+2}, \ldots, a_n\}$.
Proof of Approximation Scheme:
- Let $A' \cup B'$ be an optimal partition of S'.
- Assume $w(A') \geq w(B')$.
- Case 1

$$w(A') \geq \frac{1}{2}w(S)$$

Then $A = A'$, $B = B' \cup \{a_{m+1}, a_{m+2}, \ldots, a_n\}$.

In Case 1, Approximation is Exact Solution:
Claim: $A \cup B$ is optimal (Relative error = 0)
- Consider optimal solution $A^* \cup B^* = S$.
- $w(A^*) \geq w(A^* \cap \{a_1, a_2, \ldots, a_m\})$ [why?]
- $w(B^*) \geq w(B^* \cap \{a_1, a_2, \ldots, a_m\})$
- Therefore,
 $$\max (w(A^*), w(B^*)) \geq \max (w(A'), w(B'))$$
 $$= w(A')$$
 $$= w(A).$$
- Hence, $A \cup B$ is optimal.
Proof of Approximation Scheme:

- Let \(A' \cup B' \) be an optimal partition of \(S' \).
- Assume \(w(A') \geq w(B') \).

In Case 2, Approximation is has Relative Error \(< \varepsilon>\):

- Case 2

\[
 w(A') \leq \frac{1}{2}w(S)
\]

\[
 |w(A) - w(B)| \leq a_{m+1}
\]

\[
 w(A) + w(B) = w(S)
\]

\[
 2 \max (w(A), w(B)) \leq w(A) + w(B) + a_{m+1}
\]

\[
 \leq w(S) + a_{m+1}
\]

\[
 \Rightarrow \quad C = \max (w(A), w(B)) \leq \frac{w(S) + a_{m+1}}{2}
\]
In Case 2, Approximation has Relative Error < \(\varepsilon \):

Case 2 \(\mathcal{A}' \), \(w(\mathcal{A}') \leq \frac{1}{2} w(\mathcal{S}) \)

\[
\text{Problem: } \text{Partition } \mathcal{S} \text{ into } \mathcal{A} \cup \mathcal{B} \text{ such that } C = \max \left(w(\mathcal{A}), w(\mathcal{B}) \right) \leq \frac{w(\mathcal{S}) + a_{m+1}}{2} \text{ minimized.}
\]

Relative Error \[
= \frac{C - C^*}{C^*} = \frac{w(\mathcal{S}) + a_{m+1}}{2} - \frac{w(\mathcal{S})}{2}
\]

\[
= \frac{a_{m+1}}{w(\mathcal{S})} \leq \frac{a_{m+1}}{(m + 1)a_{m+1}} = \frac{1}{m + 1} \leq \varepsilon \]

Since \(m = \left\lfloor 1/\varepsilon \right\rfloor \)

\[
\text{approx. alg. for partition has relative error } < \varepsilon!
\]