1 Dynamic programming

- We have previously discussed how divide-and-conquer can often be used to obtain efficient algorithms.

 - Examples: matrix multiplication, merge sort, quicksort,....

- Sometimes direct use of divide-and-conquer does not yield efficient algorithms—in fact, sometimes it results in really bad algorithms.

- Today we will discuss a technique which can often be used to improve upon an inefficient divide-and-conquer algorithm.

 - The technique is called “Dynamic programming” for historical reasons. It really is neither especially “dynamic” nor especially “programming” related.

 - We will discuss dynamic programming by looking at an example.
Example of Memoization:

1.1 Computing Fibonacci numbers

- The Fibonacci numbers F_n are defined by the well-known recurrence

 $$
 F_n = \begin{cases}
 F_{n-1} + F_{n-2} & \text{if } n \geq 2 \\
 1 & \text{if } n = 1 \\
 0 & \text{if } n = 0
 \end{cases}
 $$

 (1)

 The sequence for $n = 0, 1, 2, 3, \ldots$ is 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, \ldots.

- The sequence is related to rabbits, how needles arrange themselves on pine cones, aesthetics, and graduate students, among other things.

- A naive recursive program to compute Fibonacci numbers based upon (1) would require $O(F_n)$ time, which is exponential in n.

- The reason is that the same subproblem is solved multiple times. For example, to compute $F(6)$, we need to compute $F(5)$ and $F(4)$. To compute $F(7)$, we recompute $F(6)$ and $F(5)$. The waste compounds recursively!

Use Memoization!

- The obvious remedy is to store the value of each Fibonacci number in a table when it is computed. Next time it is needed, we won’t have to recompute it from scratch, but rather we can just look up its value in the table.

 $\implies O(n)$ time to compute F_n!!!

- As an aside, using generating functions or the trial-and-error method (see earlier hand-out), we can derive a closed-form expression for F_n:

 $$
 F_n = \frac{1}{\sqrt{5}} (\Phi^n - \hat{\Phi}^n),
 $$

 (2)

 where $\Phi = (1 + \sqrt{5})/2 \approx 1.61803\ldots$ and $\hat{\Phi} = -1/\Phi \approx -0.61803$ are the solutions to the equation $1 - z - z^2 = 0$. We refer to Φ as the golden ratio. Note that the second term in (2) is exponentially small. We can compute F_n simply by rounding $\Phi^n/\sqrt{5}$ to the nearest integer.

- Therefore, using a table to store subproblem solutions reduces the running time from $O(\Phi^n)$ to $O(n)$. Pretty big improvement!
1.2 Matrix-chain multiplication

- Problem: Given a sequence of matrices $A_1, A_2, A_3, \ldots, A_n$, find the best way (using the minimal number of multiplications) to compute their product.

 - Isn’t there only one way? $((\cdots ((A_1 \times A_2) \times A_3) \times \cdots) \times A_n)$
 - No, matrix multiplication is associative; e.g., $A_1 \times (A_2 \times (A_3 \times (\cdots \times (A_{n-1} \times A_n) \cdots)))$ yields the same matrix.
 - Different multiplication orders do not cost the same:
 * Multiplying $p \times q$ matrix A and $q \times r$ matrix B takes $p \cdot q \cdot r$ multiplications; the result is a $p \times r$ matrix.
 * Consider multiplying 10×100 matrix A_1 with 100×5 matrix A_2 and 5×50 matrix A_3.
 - $(A_1 \times A_2) \times A_3$ takes $10 \cdot 100 \cdot 5 + 10 \cdot 5 \cdot 50 = 7500$ multiplications.
 - $A_1 \times (A_2 \times A_3)$ takes $100 \cdot 5 \cdot 50 + 10 \cdot 50 \cdot 100 = 75000$ multiplications.

- In general, let A_i be a $p_{i-1} \times p_i$ matrix.
 - $A_1, A_2, A_3, \ldots, A_n$ can be represented by the $n + 1$ integers $p_0, p_1, p_2, p_3, \ldots, p_n$

- Let $m(i, j)$ denote the minimum number of multiplications needed to compute $A_i \times A_{i+1} \times \cdots \times A_j$

 - We want to compute $m(1, n)$.

- Divide-and-conquer solution/recursive algorithm:

 - Divide the problem into $j - i$ subproblems by considering the outer-level parentheses in all $j - i$ possible positions. (E.g., $(A_i \times A_{i+1} \times \cdots \times A_k) \times (A_{k+1} \times \cdots \times A_j)$ corresponds to multiplying a $p_{i-1} \times p_k$ matrix by a $p_k \times p_j$ matrix.)

 - Recursively find best way of solving subproblems. (i.e., find the best way of computing $A_i \times A_{i+1} \times \cdots \times A_k$ and the best way of computing $A_{k+1} \times A_{k+2} \times \cdots \times A_j$)

 - Pick best solution.

- Algorithm expressed in terms of $m(i, j)$:

 $$m(i, j) = \begin{cases}
 0 & \text{if } i = j \\
 \min_{i \leq k < j} \{m(i, k) + m(k + 1, j) + p_{i-1} \cdot p_k \cdot p_j\} & \text{if } i < j
 \end{cases}$$
- Program: Without Memoization!

\[
\text{Matrix-chain}(i, j) \\
\quad \text{IF } i = j \text{ THEN return 0} \\
\quad m(i, j) = \infty \\
\quad \text{FOR } k = i \text{ TO } j - 1 \text{ DO} \\
\quad \quad q = \text{Matrix-chain}(i, k) + \text{Matrix-chain}(k + 1, j) + p_{i-1} \cdot p_k \cdot p_j \\
\quad \quad \text{IF } q < m(i, j) \text{ THEN } m(i, j) = q \\
\quad \text{OD} \\
\quad \text{Return } m(i, j) \\
\text{END Matrix-chain} \\
\text{Return Matrix-chain}(1, n)
\]

- Running time: Let \(T(k) \) be the time to compute the optimal computation order for the product of \(k \) matrices. We define \(T(1) = 0 \).

\[
T(n) = \sum_{k=1}^{n-1} (T(k) + T(n-k) + c) \\
= cn + 2 \cdot \sum_{k=1}^{n-1} T(k) \\
= T(n-1) + c + 2T(n-1) \\
= 3T(n-1) + c \\
\sim \frac{3c3^n-2}{2}
\]

- Easy to prove by induction or telescoping the recurrence.

- Problem is that, as in the Fibonacci example, we compute the same result over and over again.

 - Example: Recursion tree for \text{Matrix-chain}(1, 4)

```
1,4
/    \
/     \
1,1   2,4
/   \
/    \
2,2 3,4
/   \
/    \
2,2 3,3
```

For example, we compute \text{Matrix-chain}(3, 4) twice.
Use Memoization!

- Solution is to “remember” values we have already computed in an $n \times n$ table—
 memoization

\[
\text{MATRIX-CHAIN}(i, j)
\]

\[
\begin{align*}
\text{IF } i &= j \text{ THEN return 0} \\
\text{IF } m(i, j) &< \infty \text{ THEN return } m(i, j) \text{ /* This line has changed */} \\
\text{FOR } k &= i \text{ to } j - 1 \text{ DO} \\
&\quad q = \text{MATRIX-CHAIN}(i, k) + \text{MATRIX-CHAIN}(k + 1, j) + p_{i-1} \cdot p_k \cdot p_j \\
&\quad \text{IF } q < m(i, j) \text{ THEN } m(i, j) = q \\
\text{OD} \\
\text{return } m(i, j)
\end{align*}
\]

\text{END MATRIX-CHAIN}

\text{FOR } i = 1 \text{ to } n \text{ DO}

\text{FOR } j = i \text{ to } n \text{ DO}

\[m(i, j) = \infty \]

\text{OD}

\text{OD}

\text{return } \text{MATRIX-CHAIN}(1, n)

- Running time:
 - $\Theta(n^2)$ different calls to $\text{MATRIX-CHAIN}(i, j)$.
 - The first time a call is made it takes $O(n)$ time, not counting recursive calls.
 - When a call has been made once it costs $O(1)$ time to make it again.
 \[\Rightarrow O(n^3) \text{ time} \]
 - Another way of thinking about it: $\Theta(n^2)$ total entries to fill; it takes $O(n)$ time
to fill each one.
1.3 Alternative view of Dynamic Programming

- Often (including in the book) dynamic programming is presented in a different way, namely, as filling up a table from the bottom to the top.

- Matrix-chain example:
 Key is that $m(i,j)$ only depends upon $m(i,k)$ and $m(k+1,j)$ where $i \leq k < j$.

\implies If we have already computed $m(i,k)$ and $m(k+1,j)$ for each k, then we can compute $m(i,j)$ in $O(j-i)$ time by taking the appropriate minimum over all k.

 - We can easily compute $m(i,i)$ for all $1 \leq i \leq n$: $m(i,i) = 0$
 - Then we can easily compute $m(i,i+1)$ for all $1 \leq i \leq n-1$:
 $m(i,i+1) = m(i,i) + m(i+1,i+1) + p_{i-1} \cdot p_i \cdot p_{i+1}$
 - Then we can compute $m(i,i+2)$ for all $1 \leq i \leq n-2$:
 $m(i,i+2) = \min\{ m(i,i) + m(i+1,i+2) + p_{i-1} \cdot p_i \cdot p_{i+2}, m(i,i+1) + m(i+2,i+2) + p_{i-1} \cdot p_{i+1} \cdot p_{i+2}\}$

 :
 - Until finally we compute $m(1,n)$ and we’re done.
 - Computation order is indicated by the numbers in the slots below:

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
</tbody>
</table>
- Program:

```
FOR i = 1 to n DO 
  m(i,i) = 0 
OD
FOR l = 1 to n-1 DO 
  FOR i = 1 to n-l DO 
    j = i + l 
    m(i, j) = ∞ 
    FOR k = 1 to j-1 DO 
      q = m(i, k) + m(k+1, j) + p_{i-1} \cdot p_k \cdot p_j 
      IF q < m(i, j) THEN m(i, j) = q 
    OD 
  OD 
OD
```

- Analysis:

- $O(n^2)$ entries, $O(n)$ time to compute each $\implies O(n^3)$ total time.

```
<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
</tbody>
</table>
```

- Computation order: 1, 2, 3, 4, 5, 6, 7
1.4 Overview of dynamic programming

Dynamic programming is a way of improving on inefficient divide-and-conquer algorithms. By “inefficient”, we mean that the same recursive call is made over and over.

- If same subproblem is solved several times, we can use table to store result of a subproblem the first time it is computed and thus never have to recompute it again.

- Alternatively, we can think about filling up a table of subproblem solutions from the bottom up.