Lecture 1
Analysis of Algorithms

- Insertion sort
- Asymptotic analysis
- Merge sort
- Recurrences

Prof. Charles E. Leiserson
Analysis of algorithms

The theoretical study of computer-program performance and resource usage.

What’s more important than performance?

- modularity
- correctness
- maintainability
- functionality
- robustness
- user-friendliness
- programmer time
- simplicity
- extensibility
- reliability
Why study algorithms and performance?

- Speed is fun!
- Performance is the currency of computing.
- Performance is the currency of computing.
- The lessons of program performance generalize.
- Performance often draws the line between what is feasible and what is impossible.
- Performance often draws the line between what is feasible and what is impossible.
- Scalability.
- Scalability.
- Algorithms help us to understand.

Proof (completed)

Q. How many h’s cause x and y to collide?

A. There are m choices for each of a_1, a_2, …, a_r, but once these are chosen, exactly one choice for a_0 causes x and y to collide, namely

\[
\sum_{i=1}^{r} a_i (x_i - y_i) \mod m.
\]

Thus, the number of h’s that cause x and y to collide is m^r = |H|/m.
The problem of sorting

Input: sequence \(\langle a_1, a_2, \ldots, a_n \rangle \) of numbers.

Output: permutation \(\langle a'_1, a'_2, \ldots, a'_n \rangle \) such that \(a'_1 \leq a'_2 \leq \cdots \leq a'_n \).

Example:

Input: 8 2 4 9 3 6

Output: 2 3 4 6 8 9
Insertion sort

```
"pseudocode"

\begin{algorithm}
\caption{Insertion-Sort ($A$, $n$) $\triangleright A[1 \ldots n]$
\begin{algorithmic}
\FOR {$j \leftarrow 2$ \TO $n$}
\STATE $key \leftarrow A[j]$
\STATE $i \leftarrow j - 1$
\WHILE {$i > 0$ \AND $A[i] > key$}
\STATE $A[i+1] \leftarrow A[i]$
\STATE $i \leftarrow i - 1$
\ENDWHILE
\STATE $A[i+1] = key$
\ENDFOR
\end{algorithmic}
\end{algorithm}
```
Insertion sort

\[
\text{INSERTION-SORT} \ (A, n) \quad \triangleright \quad A[1 \ldots n]
\]

\[
\begin{align*}
\text{for } j & \leftarrow 2 \text{ to } n \\
\text{do } & \quad \text{key} \leftarrow A[j] \\
& \quad i \leftarrow j - 1 \\
& \quad \text{while } i > 0 \text{ and } A[i] > \text{key} \\
& \quad \text{do } A[i+1] \leftarrow A[i] \\
& \quad \quad i \leftarrow i - 1 \\
& \quad A[i+1] = \text{key}
\end{align*}
\]

A:

\[
\begin{array}{ccccccc}
1 & i & j & \text{sorted} & \text{key} & n
\end{array}
\]
Example of insertion sort

8 2 4 9 3 6
Example of insertion sort

8 2 4 9 3 6
Example of insertion sort

8 2 4 9 3 6

2 8 4 9 3 6
Example of insertion sort

8 2 4 9 3 6

2 8 4 9 3 6
Example of insertion sort

8 2 4 9 3 6

2 8 4 9 3 6

2 4 8 9 3 6

Proof (completed)

Q. How many h's cause x and y to collide?
A. There are m choices for each of a₁, a₂, …, aᵣ, but once these are chosen, exactly one choice for a₀ causes x and y to collide, namely

\[
\begin{bmatrix}
\vdots \\
1 \\
\vdots
\end{bmatrix} = \sum_{i=1}^{r} (x_{i} - y_{i}) \mod m.
\]

Thus, the number of h's that cause x and y to collide is mᵣ = \(|H|/m|.

October 5, 2005
Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson
Example of insertion sort

8 2 4 9 3 6
2 8 4 9 3 6
2 4 8 9 3 6
Example of insertion sort

\[
\begin{array}{ccccccc}
8 & 2 & 4 & 9 & 3 & 6 \\
2 & 8 & 4 & 9 & 3 & 6 \\
2 & 4 & 8 & 9 & 3 & 6 \\
2 & 4 & 8 & 9 & 3 & 6 \\
\end{array}
\]
Example of insertion sort

8 2 4 9 3 6
2 8 4 9 3 6
2 4 8 9 3 6
2 4 8 9 3 6
2 4 8 9 3 6
Example of insertion sort

To sort the list [8, 2, 4, 9, 3, 6], we insert each element into its correct position in the sorted list:

1. Insert 2 into [8, 4, 9, 3, 6]: [2, 8, 4, 9, 3, 6]
2. Insert 4 into [2, 8, 4, 9, 3, 6]: [2, 8, 4, 9, 3, 6]
3. Insert 9 into [2, 8, 4, 9, 3, 6]: [2, 8, 4, 9, 3, 6]
4. Insert 3 into [2, 8, 4, 9, 3, 6]: [2, 8, 4, 9, 3, 6]
5. Insert 6 into [2, 8, 4, 9, 3, 6]: [2, 8, 4, 9, 3, 6]

The sorted list is [2, 3, 4, 8, 9, 6].
Example of insertion sort

8 2 4 9 3 6
2 8 4 9 3 6
2 4 8 9 3 6
2 4 8 9 3 6
2 3 4 8 9 6
Example of insertion sort

<table>
<thead>
<tr>
<th></th>
<th>8</th>
<th>2</th>
<th>4</th>
<th>9</th>
<th>3</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>2</td>
<td>8</td>
<td>4</td>
<td>9</td>
<td>3</td>
<td>6</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>4</td>
<td>8</td>
<td>9</td>
<td>3</td>
<td>6</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>4</td>
<td>8</td>
<td>9</td>
<td>3</td>
<td>6</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>8</td>
<td>9</td>
<td>6</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>6</td>
<td>8</td>
<td>9</td>
</tr>
</tbody>
</table>

`done`
Running time

• The running time depends on the input: an already sorted sequence is easier to sort.
• Parameterize the running time by the size of the input, since short sequences are easier to sort than long ones.
• Generally, we seek upper bounds on the running time, because everybody likes a guarantee.
Kinds of analyses

Worst-case: (usually)
- \(T(n) = \) maximum time of algorithm on any input of size \(n \).

Average-case: (sometimes)
- \(T(n) = \) expected time of algorithm over all inputs of size \(n \).
- Need assumption of statistical distribution of inputs.

Best-case: (bogus)
- Cheat with a slow algorithm that works fast on *some* input.
Machine-independent time

What is insertion sort’s worst-case time?

• It depends on the speed of our computer:
 • relative speed (on the same machine),
 • absolute speed (on different machines).

Big Idea:

• Ignore machine-dependent constants.
• Look at growth of $T(n)$ as $n \to \infty$.

“Asymptotic Analysis”
Θ-notation

Math:
\[\Theta(g(n)) = \{ f(n) : \text{there exist positive constants } c_1, c_2, \text{ and } n_0 \text{ such that } 0 \leq c_1 g(n) \leq f(n) \leq c_2 g(n) \text{ for all } n \geq n_0 \} \]

Engineering:
- Drop low-order terms; ignore leading constants.
- Example: \[3n^3 + 90n^2 - 5n + 6046 = \Theta(n^3) \]
Asymptotic performance

When n gets large enough, a $\Theta(n^2)$ algorithm always beats a $\Theta(n^3)$ algorithm.

- We shouldn’t ignore asymptotically slower algorithms, however.
- Real-world design situations often call for a careful balancing of engineering objectives.
- Asymptotic analysis is a useful tool to help to structure our thinking.
Insertion sort analysis

Worst case: Input reverse sorted.

\[T(n) = \sum_{j=2}^{n} \Theta(j) = \Theta(n^2) \quad \text{[arithmetic series]} \]

Average case: All permutations equally likely.

\[T(n) = \sum_{j=2}^{n} \Theta(j/2) = \Theta(n^2) \]

Is insertion sort a fast sorting algorithm?

- Moderately so, for small \(n \).
- Not at all, for large \(n \).
Merge sort

MERGE-SORT $A[1 \ldots n]$

1. If $n = 1$, done.
2. Recursively sort $A[1 \ldots \lceil n/2 \rceil]$ and $A[\lceil n/2 \rceil + 1 \ldots n]$.
3. “Merge” the 2 sorted lists.

Key subroutine: MERGE
Merging two sorted arrays

20 12
13 11
 7 9
2 1

Proof (completed)

Q. How many h's cause x and y to collide?
A. There are m choices for each of a₁, a₂, …, aᵣ, but once these are chosen, exactly one choice for a₀ causes x and y to collide, namely

\[
\begin{pmatrix}
\sum_{i=1}^{r} (x_i - y_i) \\
\end{pmatrix}
\]

Thus, the number of h's that cause x and y to collide is

\[
m \cdot r = \frac{|H|}{m}.
\]
Merging two sorted arrays

20 12
13 11
7 9
2 1

1
Merging two sorted arrays
Merging two sorted arrays

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>12</td>
<td>20</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>11</td>
<td>13</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>9</td>
<td>7</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td></td>
</tr>
</tbody>
</table>
Merging two sorted arrays

20 12 20 12 20 12
13 11 13 11 13 11
7 9 7 9 7 9
2 1 2 1 2
1 2 1 2
Merging two sorted arrays

20 12 || 20 12 || 20 12
13 11 || 13 11 || 13 11
7 9 || 7 9 || 7 9
2 1 || 2 1 || 7
1 2 7

Proof (completed)

Q. How many h's cause x and y to collide?
A. There are m choices for each of a1, a2, …, ar, but once these are chosen, exactly one choice for a0 causes x and y to collide, namely

\[a_0 \in H(x) \mod m. \]

Thus, the number of h's that cause x and y to collide is

\[m \cdot 1 = m = |H|/m. \]
Merging two sorted arrays
Merging two sorted arrays

20 12
13 11
7 9
2 1

1 2
Merging two sorted arrays

20 12 20 12 20 12 20 12 20 12
13 11 13 11 13 11 13 11 13 11
7 9 7 9 7 9 7 9 7 9
2 1 2 2 7 9 9 9 9
1 2 7 9
Merging two sorted arrays

20 12 | 20 12 | 20 12 | 20 12 | 20 12
13 11 | 13 11 | 13 11 | 13 11 | 13 11
7 9 | 7 9 | 7 9 | 9 | 9
2 1 | 2 | 7 | 9 | 9
1 | 2 | 7 | 9 | 11

Proof (completed)

Q. How many h's cause x and y to collide?
A. There are m choices for each of a₁, a₂, …, ar, but once these are chosen, exactly one choice for a₀ causes x and y to collide, namely

\[
\begin{pmatrix}
 r \\
 \sum
\end{pmatrix} \cdot \left(x_0 - y_0 - a_i (x_i - y_i) \mod m \right).
\]

Thus, the number of h's that cause x and y to collide is m·r = |H|/m.

October 5, 2005
Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson
Merging two sorted arrays

20 12
13 11
7 9
2 1

20 12
13 11
7 9
2 2

20 12
13 11
7 9
7 9

20 12
13 11
9 9

20 12
13 11
11 11

20 12
13 13

20 12

1
2
7
9
11
12
Merging two sorted arrays
Merging two sorted arrays

Time = \(\Theta(n) \) to merge a total of \(n \) elements (linear time).
Analyzing merge sort

T(n) \(\Theta(1)\) \(2T(n/2)\) \(\Theta(n)\)

MERGE-SORT \(A[1 \ldots n]\)

1. If \(n = 1\), done.
2. Recursively sort \(A[1 \ldots \lceil n/2 \rceil]\) and \(A[\lceil n/2 \rceil + 1 \ldots n]\).
3. "Merge" the 2 sorted lists

Sloppiness: Should be \(T(\lceil n/2 \rceil) + T(\lfloor n/2 \rfloor)\), but it turns out not to matter asymptotically.
Recurrence for merge sort

\[
T(n) = \begin{cases}
\Theta(1) & \text{if } n = 1; \\
2T(n/2) + \Theta(n) & \text{if } n > 1.
\end{cases}
\]

• We shall usually omit stating the base case when \(T(n) = \Theta(1) \) for sufficiently small \(n \), but only when it has no effect on the asymptotic solution to the recurrence.

• CLRS and Lecture 2 provide several ways to find a good upper bound on \(T(n) \).
Recursion tree

Solve \(T(n) = 2T(n/2) + cn \), where \(c > 0 \) is constant.
Recursion tree

Solve $T(n) = 2T(n/2) + cn$, where $c > 0$ is constant.

$$T(n)$$
Recursion tree

Solve $T(n) = 2T(n/2) + cn$, where $c > 0$ is constant.
Recursion tree

Solve $T(n) = 2T(n/2) + cn$, where $c > 0$ is constant.
Recursion tree

Solve \(T(n) = 2T(n/2) + cn \), where \(c > 0 \) is constant.
Recursion tree

Solve \(T(n) = 2T(n/2) + cn \), where \(c > 0 \) is constant.

\[
\begin{align*}
 h &= \lg n \\
 \Theta(1) &= cn/4 \quad cn/4 \quad cn/4 \quad cn/4
\end{align*}
\]
Recursion tree

Solve \(T(n) = 2T(n/2) + cn \), where \(c > 0 \) is constant.

\[
T(n) = \begin{cases}
cn & \text{if } h = 0 \\
2T(n/2) + cn & \text{if } h = 1 \\
\vdots \\
T(n/4) + cn/4 & \text{if } h = \log n \\
\Theta(1) & \text{if } h = \log n \end{cases}
\]

\(h = \log n \)

\(cn \)

\(cn/2 \)

\(cn/4 \)

\(\Theta(1) \)
Recursion tree

Solve \(T(n) = 2T(n/2) + cn \), where \(c > 0 \) is constant.
Recursion tree

Solve $T(n) = 2T(n/2) + cn$, where $c > 0$ is constant.

$h = \lg n$

$\Theta(1)$
Recursion tree

Solve $T(n) = 2T(n/2) + cn$, where $c > 0$ is constant.
Recursion tree

Solve \(T(n) = 2T(n/2) + cn \), where \(c > 0 \) is constant.

\[
\begin{align*}
T(n) &= cn + \frac{cn}{2} + \frac{cn}{4} + \cdots + \frac{cn}{2^h} + \Theta(1) \\
&= \frac{cn}{2^h} \cdot n + \Theta(1) \\
&= cn \cdot \frac{\lg n}{2^h} + \Theta(1) \\
&= \Theta(n \lg n)
\end{align*}
\]
Conclusions

- $\Theta(n \lg n)$ grows more slowly than $\Theta(n^2)$.
- Therefore, merge sort asymptotically beats insertion sort in the worst case.
- In practice, merge sort beats insertion sort for $n > 30$ or so.
- Go test it out for yourself!