Introduction to Algorithms

Lecture 10
Balanced Search Trees
- Red-black trees
- Height of a red-black tree
- Rotations
- Insertion

Prof. Erik Demaine
Balanced search trees

Balanced search tree: A search-tree data structure for which a height of $O(\lg n)$ is guaranteed when implementing a dynamic set of n items.

- AVL trees
- 2-3 trees
- 2-3-4 trees
- B-trees
- Red-black trees
Red-black trees

This data structure requires an extra one-bit color field in each node.

Red-black properties:

1. Every node is either red or black.
2. The root and leaves (NIL’s) are black.
3. If a node is red, then its parent is black.
4. All simple paths from any node x to a descendant leaf have the same number of black nodes = black-height(x).
Example of a red-black tree

1. **Root**: Node 7
2. **Left Subtree**:
 - Node 3
 - Left child: NIL
 - Right child: NIL
3. **Right Subtree**:
 - Node 18
 - Left child: Node 10
 - Left child: Node 8
 - Left child: NIL
 - Right child: NIL
 - Right child: Node 11
 - Left child: NIL
 - Right child: NIL
 - Right child: Node 22
 - Left child: NIL
 - Right child: Node 26
 - Left child: NIL
 - Right child: NIL

Height of the tree: $h = 4$
Example of a red-black tree

1. Every node is either red or black.
Example of a red-black tree

2. The root and leaves (NIL’s) are black.
Example of a red-black tree

3. If a node is red, then its parent is black.
Example of a red-black tree

4. All simple paths from any node \(x \) to a descendant leaf have the same number of black nodes = \textit{black-height}(x).
Height of a red-black tree

Theorem. A red-black tree with n keys has height $h \leq 2 \lg(n + 1)$.

Proof. (The book uses induction. Read carefully.)

Intuition:
- Merge red nodes into their black parents.
Height of a red-black tree

Theorem. A red-black tree with \(n \) keys has height
\[
h \leq 2 \log(n + 1).
\]

Proof. (The book uses induction. Read carefully.)

Intuition:
- Merge red nodes into their black parents.
Height of a red-black tree

Theorem. A red-black tree with n keys has height

$$h \leq 2 \log(n + 1).$$

Proof. (The book uses induction. Read carefully.)

Intuition:
- Merge red nodes into their black parents.
Height of a red-black tree

Theorem. A red-black tree with n keys has height
\[h \leq 2 \lg(n + 1). \]

Proof. (The book uses induction. Read carefully.)

Intuition:
- Merge red nodes into their black parents.
Height of a red-black tree

Theorem. A red-black tree with \(n \) keys has height
\[
h \leq 2 \log(n + 1).
\]

Proof. (The book uses induction. Read carefully.)

Intuition:
- Merge red nodes into their black parents.
Height of a red-black tree

Theorem. A red-black tree with n keys has height
\[h \leq 2 \lg(n + 1). \]

Proof. (The book uses induction. Read carefully.)

Intuition:
- Merge red nodes into their black parents.
- This process produces a tree in which each node has 2, 3, or 4 children.
- The 2-3-4 tree has uniform depth \(h' \) of leaves.
Proof (continued)

- We have $h' \geq h/2$, since at most half the leaves on any path are red.

- The number of leaves in each tree is $n + 1$
 \[\Rightarrow n + 1 \geq 2^{h'} \]
 \[\Rightarrow \lg(n + 1) \geq h' \geq h/2 \]
 \[\Rightarrow h \leq 2 \lg(n + 1). \]
Query operations

Corollary. The queries Search, Min, Max, Successor, and Predecessor all run in $O(\lg n)$ time on a red-black tree with n nodes.
Modifying operations

The operations **INSERT** and **DELETE** cause modifications to the red-black tree:

- the operation itself,
- color changes,
- restructuring the links of the tree via “rotations”.
Rotations maintain the inorder ordering of keys:
• $a \in \alpha$, $b \in \beta$, $c \in \gamma \implies a \leq A \leq b \leq B \leq c$.

A rotation can be performed in $O(1)$ time.
Insertion into a red-black tree

Idea: Insert x in tree. Color x red. Only red-black property 3 might be violated. Move the violation up the tree by recoloring until it can be fixed with rotations and recoloring.

Example:

```
            7
           / \
          3   18
         /    / \    
        10   22   11  26
       /    /     /     
      8     11     26   
```
Insertion into a red-black tree

Idea: Insert x in tree. Color x red. Only red-black property 3 might be violated. Move the violation up the tree by recoloring until it can be fixed with rotations and recoloring.

Example:
- Insert $x = 15$.
- Recolor, moving the violation up the tree.
Insertion into a red-black tree

Idea: Insert x in tree. Color x red. Only red-black property 3 might be violated. Move the violation up the tree by recoloring until it can be fixed with rotations and recoloring.

Example:
- Insert $x = 15$.
- Recolor, moving the violation up the tree.
- **Right-Rotate(18).**
Insertion into a red-black tree

Idea: Insert \(x \) in tree. Color \(x \) red. Only red-black property 3 might be violated. Move the violation up the tree by recoloring until it can be fixed with rotations and recoloring.

Example:
- Insert \(x = 15 \).
- Recolor, moving the violation up the tree.
- **Right-Rotate(18).**
- **Left-Rotate(7) and recolor.**
Insertion into a red-black tree

Idea: Insert x in tree. Color x red. Only red-black property 3 might be violated. Move the violation up the tree by recoloring until it can be fixed with rotations and recoloring.

Example:
- Insert $x = 15$.
- Recolor, moving the violation up the tree.
- **Right-Rotate**(18).
- **Left-Rotate**(7) and recolor.
Pseudocode

RB-INSERT(T, x)

TREE-INSERT(T, x)

color[x] ← RED ▷ only RB property 3 can be violated

while x ≠ root[T] and color[p[x]] = RED
 do if p[x] = left[p[p[x]]
 then y ← right[p[p[x]]] ▷ y = aunt/uncle of x
 if color[y] = RED
 then ⟨Case 1⟩
 else if x = right[p[x]]
 then ⟨Case 2⟩ ▷ Case 2 falls into Case 3
 ⟨Case 3⟩
 else ⟨“then” clause with “left” and “right” swapped⟩

color[root[T]] ← BLACK
Graphical notation

Let ▲ denote a subtree with a black root.

All ▲’s have the same black-height.
Case 1

Recolor

(Or, children of A are swapped.)

Push C’s black onto A and D, and recurse, since C’s parent may be red.
Case 2

\text{LEFT-ROTATE}(A)

Transform to Case 3.
Case 3

\[
\text{RIGHT-ROTATE}(C)
\]

Done! No more violations of RB property 3 are possible.
Analysis

• Go up the tree performing Case 1, which only recolors nodes.

• If Case 2 or Case 3 occurs, perform 1 or 2 rotations, and terminate.

Running time: $O(\lg n)$ with $O(1)$ rotations.

RB-DELETE — same asymptotic running time and number of rotations as RB-INSERT (see textbook).