Introduction to Algorithms

Lecture 10
Balanced Search Trees
- Red-black trees
- Height of a red-black tree
- Rotations
- Insertion

Prof. Erik Demaine
Balanced search trees

Balanced search tree: A search-tree data structure for which a height of $O(\lg n)$ is guaranteed when implementing a dynamic set of n items.

Examples:
- AVL trees
- 2-3 trees
- 2-3-4 trees
- B-trees
- Red-black trees
Red-black trees

This data structure requires an extra one-bit color field in each node.

Red-black properties:

1. Every node is either red or black.
2. The root and leaves (NIL’s) are black.
3. If a node is red, then its parent is black.
4. All simple paths from any node x to a descendant leaf have the same number of black nodes $= \text{black-height}(x)$.
Example of a red-black tree

$$h = 4$$
1. Every node is either red or black.
Example of a red-black tree

2. The root and leaves (NIL’s) are black.
Example of a red-black tree

3. If a node is red, then its parent is black.
4. All simple paths from any node x to a descendant leaf have the same number of black nodes $= \text{black-height}(x)$.
Height of a red-black tree

Theorem. A red-black tree with \(n \) keys has height
\[
h \leq 2 \lg(n + 1).
\]

Proof. (The book uses induction. Read carefully.)

Intuition:
- Merge red nodes into their black parents.
Height of a red-black tree

Theorem. A red-black tree with \(n \) keys has height

\[h \leq 2 \lg(n + 1). \]

Proof. (The book uses induction. Read carefully.)

Intuition:

- Merge red nodes into their black parents.
Height of a red-black tree

Theorem. A red-black tree with n keys has height $h \leq 2 \lg(n + 1)$.

Proof. (The book uses induction. Read carefully.)

Intuition:
- Merge red nodes into their black parents.
Height of a red-black tree

Theorem. A red-black tree with \(n \) keys has height

\[
h \leq 2 \lg(n + 1).
\]

Proof. (The book uses induction. Read carefully.)

Intuition:
- Merge red nodes into their black parents.
Height of a red-black tree

Theorem. A red-black tree with \(n\) keys has height
\[
h \leq 2 \lg(n + 1).
\]

Proof. (The book uses induction. Read carefully.)

Intuition:
- Merge red nodes into their black parents.
- This process produces a tree in which each node has 2, 3, or 4 children.
- The 2-3-4 tree has uniform depth \(h'\) of leaves.
Proof (continued)

- We have $h' \geq h/2$, since at most half the nodes on any path are red.

- The number of leaves in each tree is $n + 1$
 \[\Rightarrow n + 1 \geq 2^{h'} \]
 \[\Rightarrow \lg(n + 1) \geq h' \geq h/2 \]
 \[\Rightarrow h \leq 2 \lg(n + 1). \]

\[H\]
Query operations

Corollary. The queries **Search**, **Min**, **Max**, **Successor**, and **Predecessor** all run in $O(\lg n)$ time on a red-black tree with n nodes.
Modifying operations

The operations \texttt{INSERT} and \texttt{DELETE} cause modifications to the red-black tree:

- the operation itself,
- color changes,
- restructuring the links of the tree via “rotations”.
Rotations maintain the inorder ordering of keys:

- \(a \in \alpha, \ b \in \beta, \ c \in \gamma \Rightarrow a \leq A \leq b \leq B \leq c \).

A rotation can be performed in \(O(1) \) time.
Insertion into a red-black tree

IDEA: Insert x in tree. Color x red. Only red-black property 3 might be violated. Move the violation up the tree by recoloring until it can be fixed with rotations and recoloring.

Example:
Insertion into a red-black tree

Idea: Insert x in tree. Color x red. Only red-black property 3 might be violated. Move the violation up the tree by recoloring until it can be fixed with rotations and recoloring.

Example:
- Insert $x = 15$.
- Recolor, moving the violation up the tree.
Insertion into a red-black tree

Idea: Insert x in tree. Color x red. Only red-black property 3 might be violated. Move the violation up the tree by recoloring until it can be fixed with rotations and recoloring.

Example:
- Insert $x = 15$.
- Recolor, moving the violation up the tree.
- **Right-Rotate**(18).
Insertion into a red-black tree

Idea: Insert x in tree. Color x red. Only red-black property 3 might be violated. Move the violation up the tree by recoloring until it can be fixed with rotations and recoloring.

Example:
- Insert $x = 15$.
- Recolor, moving the violation up the tree.
- **Right-Rotate**(18).
- **Left-Rotate**(7) and recolor.
Insertion into a red-black tree

Idea: Insert x in tree. Color x red. Only red-black property 3 might be violated. Move the violation up the tree by recoloring until it can be fixed with rotations and recoloring.

Example:
- Insert $x = 15$.
- Recolor, moving the violation up the tree.
- **Right-Rotate(18).**
- **Left-Rotate(7)** and recolor.
Pseudocode

RB-INSERT\((T, x)\)

TREE-INSERT\((T, x)\)

\[
\text{color}[x] \leftarrow \text{RED} \quad \text{▷ only RB property 3 can be violated}
\]

\[
\text{while } x \neq \text{root}[T] \text{ and color}[\text{p}[x]] = \text{RED} \\
\text{do if } \text{p}[x] = \text{left}[\text{p}[p[x]]] \\
\text{then } y \leftarrow \text{right}[\text{p}[p[x]]] \quad \text{▷ } y = \text{aunt/uncle of } x \\
\text{if } \text{color}[y] = \text{RED} \\
\text{then } \langle \text{Case 1} \rangle \\
\text{else if } x = \text{right}[\text{p}[x]] \\
\text{then } \langle \text{Case 2} \rangle \quad \text{▷ Case 2 falls into Case 3} \\
\langle \text{Case 3} \rangle \\
\text{else } \langle \text{“then” clause with “left” and “right” swapped} \rangle \\
\text{color}[\text{root}[T]] \leftarrow \text{BLACK}
\]
Graphical notation

Let denote a subtree with a black root.

All ’s have the same black-height.
Case 1

(Or, children of A are swapped.)

Push C’s black onto A and D, and recurse, since C’s parent may be red.
Case 2

\textbf{LEFT-ROTATE}(A)

Transform to Case 3.
Case 3

RIGHT-ROTATE(C)

Done! No more violations of RB property 3 are possible.
Analysis

• Go up the tree performing Case 1, which only recolors nodes.

• If Case 2 or Case 3 occurs, perform 1 or 2 rotations, and terminate.

Running time: \(O(\lg n) \) with \(O(1) \) rotations.

RB-DELETE — same asymptotic running time and number of rotations as **RB-INSERT** (see textbook).