Lecture 13
Amortized Analysis
- Dynamic tables
- Aggregate method
- Accounting method
- Potential method

Prof. Charles E. Leiserson
How large should a hash table be?

Goal: Make the table as small as possible, but large enough so that it won’t overflow (or otherwise become inefficient).

Problem: What if we don’t know the proper size in advance?

Solution: *Dynamic tables.*

Idea: Whenever the table overflows, “grow” it by allocating (via `malloc` or `new`) a new, larger table. Move all items from the old table into the new one, and free the storage for the old table.
Example of a dynamic table

1. INSERT
2. INSERT

overflow
Example of a dynamic table

1. **INSERT**
2. **INSERT**

\[\text{overflow} \]
Example of a dynamic table

1. **INSERT**
2. **INSERT**
Example of a dynamic table

1. INSERT
2. INSERT
3. INSERT

overflow
Example of a dynamic table

1. INSERT
2. INSERT
3. INSERT

overflow
Example of a dynamic table

1. INSERT
2. INSERT
3. INSERT
Example of a dynamic table

1. INSERT
2. INSERT
3. INSERT
4. INSERT
Example of a dynamic table

1. INSERT
2. INSERT
3. INSERT
4. INSERT
5. INSERT

overflow
Example of a dynamic table

1. **INSERT**
2. **INSERT**
3. **INSERT**
4. **INSERT**
5. **INSERT**

overflow
Example of a dynamic table

1. INSERT
2. INSERT
3. INSERT
4. INSERT
5. INSERT
Example of a dynamic table

1. INSERT
2. INSERT
3. INSERT
4. INSERT
5. INSERT
6. INSERT
7. INSERT
Worst-case analysis

Consider a sequence of n insertions. The worst-case time to execute one insertion is $\Theta(n)$. Therefore, the worst-case time for n insertions is $n \cdot \Theta(n) = \Theta(n^2)$.

WRONG! In fact, the worst-case cost for n insertions is only $\Theta(n) \ll \Theta(n^2)$.

Let’s see why.
Tighter analysis

Let $c_i = \begin{cases} i & \text{if } i - 1 \text{ is an exact power of 2,} \\ 1 & \text{otherwise.} \end{cases}$

<table>
<thead>
<tr>
<th>i</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>$size_i$</td>
<td>1</td>
<td>2</td>
<td>4</td>
<td>4</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>16</td>
<td>16</td>
</tr>
<tr>
<td>c_i</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>5</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>9</td>
<td>1</td>
</tr>
</tbody>
</table>
Tighter analysis

Let \(c_i = \) the cost of the \(i \)th insertion

\[
= \begin{cases}
 i & \text{if } i - 1 \text{ is an exact power of } 2, \\
 1 & \text{otherwise.}
\end{cases}
\]
Tighter analysis (continued)

Cost of n insertions $= \sum_{i=1}^{n} c_i$

\[
\leq n + \sum_{j=0}^{\lfloor \lg(n-1) \rfloor} 2^j
\]

\[
\leq 3n
\]

$= \Theta(n)$.

Thus, the average cost of each dynamic-table operation is $\Theta(n)/n = \Theta(1)$.
Amortized analysis

An *amortized analysis* is any strategy for analyzing a sequence of operations to show that the average cost per operation is small, even though a single operation within the sequence might be expensive.

Even though we’re taking averages, however, probability is not involved!

- An amortized analysis guarantees the average performance of each operation in the *worst case*.
Types of amortized analyses

Three common amortization arguments:

- the *aggregate* method,
- the *accounting* method,
- the *potential* method.

We’ve just seen an aggregate analysis.

The aggregate method, though simple, lacks the precision of the other two methods. In particular, the accounting and potential methods allow a specific *amortized cost* to be allocated to each operation.
Accounting method

- Charge ith operation a fictitious *amortized cost* \hat{c}_i, where 1 pays for 1 unit of work (i.e., time).
- This fee is consumed to perform the operation.
- Any amount not immediately consumed is stored in the *bank* for use by subsequent operations.
- The bank balance must not go negative! We must ensure that
 \[
 \sum_{i=1}^{n} c_i \leq \sum_{i=1}^{n} \hat{c}_i
 \]
 for all n.
- Thus, the total amortized costs provide an upper bound on the total true costs.
Accounting analysis of dynamic tables

Charge an amortized cost of $\hat{c}_i = \$3$ for the ith insertion.

- $\$1$ pays for the immediate insertion.
- $\$2$ is stored for later table doubling.

When the table doubles, $\$1$ pays to move a recent item, and $\$1$ pays to move an old item.

Example:

```
$0$ $0$ $0$ $0$ $2$ $2$ $2$ $2$ overflow
```
Accounting analysis of dynamic tables

Charge an amortized cost of $\hat{c}_i = 3$ for the ith insertion.
- 1 pays for the immediate insertion.
- 2 is stored for later table doubling.

When the table doubles, 1 pays to move a recent item, and 1 pays to move an old item.

Example:

```
$0 \quad $0
```

overflow
Accounting analysis of dynamic tables

Charge an amortized cost of $\hat{c}_i = $3 for the ith insertion.

- 1 pays for the immediate insertion.
- 2 is stored for later table doubling.

When the table doubles, 1 pays to move a recent item, and 1 pays to move an old item.

Example:

<p>| | | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>
Accounting analysis (continued)

Key invariant: Bank balance never drops below 0. Thus, the sum of the amortized costs provides an upper bound on the sum of the true costs.

<table>
<thead>
<tr>
<th>(i)</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>(size_i)</td>
<td>1</td>
<td>2</td>
<td>4</td>
<td>4</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>16</td>
<td>16</td>
</tr>
<tr>
<td>(c_i)</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>5</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>9</td>
<td>1</td>
</tr>
<tr>
<td>(\hat{c}_i)</td>
<td>2*</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>(bank_i)</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>4</td>
<td>2</td>
<td>4</td>
<td>6</td>
<td>8</td>
<td>2</td>
<td>4</td>
</tr>
</tbody>
</table>

Okay, so I lied. The first operation costs only $2, not $3.
Potential method

Idea: View the bank account as the potential energy (à la physics) of the dynamic set.

Framework:
- Start with an initial data structure D_0.
- Operation i transforms D_{i-1} to D_i.
- The cost of operation i is c_i.
- Define a potential function $\Phi : \{D_i\} \rightarrow \mathbb{R}$, such that $\Phi(D_0) = 0$ and $\Phi(D_i) \geq 0$ for all i.
- The amortized cost \hat{c}_i with respect to Φ is defined to be $\hat{c}_i = c_i + \Phi(D_i) - \Phi(D_{i-1})$.
Understanding potentials

\[\hat{c}_i = c_i + \Phi(D_i) - \Phi(D_{i-1}) \]

potential difference \(\Delta \Phi_i \)

- If \(\Delta \Phi_i > 0 \), then \(\hat{c}_i > c_i \). Operation \(i \) stores work in the data structure for later use.
- If \(\Delta \Phi_i < 0 \), then \(\hat{c}_i < c_i \). The data structure delivers up stored work to help pay for operation \(i \).
The amortized costs bound the true costs

The total amortized cost of \(n \) operations is

\[
\sum_{i=1}^{n} \hat{c}_i = \sum_{i=1}^{n} (c_i + \Phi(D_i) - \Phi(D_{i-1}))
\]

Summing both sides.
The amortized costs bound the true costs

The total amortized cost of n operations is

$$\sum_{i=1}^{n} \hat{c}_i = \sum_{i=1}^{n} (c_i + \Phi(D_i) - \Phi(D_{i-1}))$$

$$= \sum_{i=1}^{n} c_i + \Phi(D_n) - \Phi(D_0)$$

The series telescopes.
The amortized costs bound the true costs

The total amortized cost of \(n \) operations is

\[
\sum_{i=1}^{n} \hat{c}_i = \sum_{i=1}^{n} \left(c_i + \Phi(D_i) - \Phi(D_{i-1}) \right)
\]

\[
= \sum_{i=1}^{n} c_i + \Phi(D_n) - \Phi(D_0)
\]

\[
\geq \sum_{i=1}^{n} c_i \quad \text{since } \Phi(D_n) \geq 0 \text{ and } \Phi(D_0) = 0.
\]
Potential analysis of table doubling

Define the potential of the table after the ith insertion by \(\Phi(D_i) = 2i - 2^{\lceil \lg i \rceil} \). (Assume that \(2^{\lceil \lg 0 \rceil} = 0 \).)

Note:
- \(\Phi(D_0) = 0 \),
- \(\Phi(D_i) \geq 0 \) for all \(i \).

Example:

\[
\begin{array}{|c|c|c|c|c|c|c|c|}
\hline
\bullet & \bullet & \bullet & \bullet & \bullet & \bullet & \bullet \\
\hline
\end{array}
\]

\(\Phi = 2 \cdot 6 - 2^3 = 4 \)

(accounting method)
Calculation of amortized costs

The amortized cost of the ith insertion is

$$\hat{c}_i = c_i + \Phi(D_i) - \Phi(D_{i-1})$$
Calculation of amortized costs

The amortized cost of the ith insertion is

$$
\hat{c}_i = c_i + \Phi(D_i) - \Phi(D_{i-1})
$$

$$
= \begin{cases}
 i & \text{if } i - 1 \text{ is an exact power of 2}, \\
 1 & \text{otherwise}; \\
+ \left(2i - 2^{\lfloor \log i \rfloor}\right) - \left(2(i-1) - 2^{\lfloor \log (i-1) \rfloor}\right)
\end{cases}
$$
Calculation of amortized costs

The amortized cost of the ith insertion is

$$\hat{c}_i = c_i + \Phi(D_i) - \Phi(D_{i-1})$$

$$= \begin{cases}
i & \text{if } i - 1 \text{ is an exact power of 2,} \\
1 & \text{otherwise;}
\end{cases}$$

$$+ \left(2i - 2^{[\lg i]} \right) - \left(2(i - 1) - 2^{[\lg (i - 1)]} \right)$$

$$= \begin{cases}
i & \text{if } i - 1 \text{ is an exact power of 2,} \\
1 & \text{otherwise;}
\end{cases}$$

$$+ 2 - 2^{[\lg i]} + 2^{[\lg (i - 1)]}.$$
Calculation

Case 1: $i - 1$ is an exact power of 2.

$$\hat{c}_i = i + 2 - 2^{\lfloor \log_2 i \rfloor} + 2^{\lfloor \log_2 (i-1) \rfloor}$$
Calculation

Case 1: $i - 1$ is an exact power of 2.

$$\hat{c}_i = i + 2 - 2^{\lfloor \log i \rfloor} + 2^{\lfloor \log (i - 1) \rfloor}$$

$$= i + 2 - 2(i - 1) + (i - 1)$$
Calculation

Case 1: $i - 1$ is an exact power of 2.

\[
\hat{c}_i = i + 2 - 2^{\lfloor \log_2 i \rfloor} + 2^{\lfloor \log_2 (i-1) \rfloor}
\]
\[
= i + 2 - 2(i - 1) + (i - 1)
\]
\[
= i + 2 - 2i + 2 + i - 1
\]
Calculation

Case 1: \(i - 1 \) is an exact power of 2.

\[
\hat{c}_i = i + 2 - 2^{\lceil \lg i \rceil} + 2^{\lceil \lg (i-1) \rceil}
\]

\[
= i + 2 - 2(i - 1) + (i - 1)
\]

\[
= i + 2 - 2i + 2 + i - 1
\]

\[
= 3
\]
Calculation

Case 1: \(i - 1 \) is an exact power of 2.

\[
\hat{c}_i = i + 2 - 2^{\lfloor \log i \rfloor} + 2^{\lfloor \log (i-1) \rfloor}
\]

\[
= i + 2 - 2(i - 1) + (i - 1)
\]

\[
= i + 2 - 2i + 2 + i - 1
\]

\[
= 3
\]

Case 2: \(i - 1 \) is not an exact power of 2.

\[
\hat{c}_i = 1 + 2 - 2^{\lfloor \log i \rfloor} + 2^{\lfloor \log (i-1) \rfloor}
\]
Calculation

Case 1: \(i - 1 \) is an exact power of 2.

\[
\hat{c}_i = i + 2 - 2^{\lfloor \log i \rfloor} + 2^{\lfloor \log (i-1) \rfloor}
\]

\[
= i + 2 - 2(i - 1) + (i - 1)
\]

\[
= i + 2 - 2i + 2 + i - 1
\]

\[
= 3
\]

Case 2: \(i - 1 \) is not an exact power of 2.

\[
\hat{c}_i = 1 + 2 - 2^{\lfloor \log i \rfloor} + 2^{\lfloor \log (i-1) \rfloor}
\]

\[
= 3 \quad \text{ (since } 2^{\lfloor \log i \rfloor} = 2^{\lfloor \log (i-1) \rfloor})
\]
Calculation

Case 1: $i - 1$ is an exact power of 2.

$$\hat{c}_i = i + 2 - 2^{\lfloor \lg i \rfloor} + 2^{\lfloor \lg (i-1) \rfloor}$$

$$= i + 2 - 2(i - 1) + (i - 1)$$

$$= i + 2 - 2i + 2 + i - 1$$

$$= 3$$

Case 2: $i - 1$ is not an exact power of 2.

$$\hat{c}_i = 1 + 2 - 2^{\lfloor \lg i \rfloor} + 2^{\lfloor \lg (i-1) \rfloor}$$

$$= 3$$

Therefore, n insertions cost $\Theta(n)$ in the worst case.
Calculation

Case 1: \(i - 1 \) is an exact power of 2.
\[
\hat{c}_i = i + 2 - 2^{\lfloor \lg i \rfloor} + 2^{\lfloor \lg (i-1) \rfloor} \\
= i + 2 - 2(i - 1) + (i - 1) \\
= i + 2 - 2i + 2 + i - 1 \\
= 3
\]

Case 2: \(i - 1 \) is *not* an exact power of 2.
\[
\hat{c}_i = 1 + 2 - 2^{\lfloor \lg i \rfloor} + 2^{\lfloor \lg (i-1) \rfloor} \\
= 3
\]

Therefore, \(n \) insertions cost \(\Theta(n) \) in the worst case.

Exercise: Fix the bug in this analysis to show that the amortized cost of the first insertion is only 2.
Conclusions

• Amortized costs can provide a clean abstraction of data-structure performance.

• Any of the analysis methods can be used when an amortized analysis is called for, but each method has some situations where it is arguably the simplest or most precise.

• Different schemes may work for assigning amortized costs in the accounting method, or potentials in the potential method, sometimes yielding radically different bounds.