Proof (completed)

Q. How many h's cause x and y to collide?

A. There are m choices for each of a_1, a_2, ..., a_r, but once these are chosen, exactly one choice for a_0 causes x and y to collide, namely

\[
\begin{pmatrix}
\sum_{i=1}^{r} \cdot (x_0 - y_0) - 1
\end{pmatrix}
\begin{pmatrix}
\sum_{i=1}^{r} \cdot (x_i - y_i)
\end{pmatrix}
\mod m.
\]

Thus, the number of h's that cause x and y to collide is m \cdot 1 = m = |H|/m.

October 5, 2005
Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L7.15
Dynamic programming

Design technique, like divide-and-conquer.

Example: Longest Common Subsequence (LCS)

- Given two sequences $x[1 \ldots m]$ and $y[1 \ldots n]$, find a longest subsequence common to them both.
Dynamic programming

Design technique, like divide-and-conquer.

Example: Longest Common Subsequence (LCS)

- Given two sequences $x[1 \ldots m]$ and $y[1 \ldots n]$, find a longest subsequence common to them both.

 “a” *not* “the”
Dynamic programming

Design technique, like divide-and-conquer.

Example: Longest Common Subsequence (LCS)
- Given two sequences \(x[1\ldots m]\) and \(y[1\ldots n]\), find a longest subsequence common to them both.

 “a” not “the”

\[
x: \ A \ B \ C \ B \ D \ A \ B
\]

\[
y: \ B \ D \ C \ A \ B \ A
\]
Dynamic programming

Design technique, like divide-and-conquer.

Example: Longest Common Subsequence (LCS)

- Given two sequences $x[1 \ldots m]$ and $y[1 \ldots n]$, find a longest subsequence common to them both.

 "a" not "the"

 \[x: \text{A B C B D A B} \]
 \[y: \text{B D C A B A} \]

 $\{\text{BCBA} = \text{LCS}(x, y)\}$

 functional notation, but not a function
Multiple Possible LCS of Same Length:

\[
\begin{align*}
 x: & \quad A \quad B \quad C \quad B \quad D \quad A \quad B \\
 y: & \quad B \quad D \quad C \quad A \quad B \quad A
\end{align*}
\]

\[\text{BCBA} = \text{LCS}(x, y)\]

functional notation, but not a function

Alternative Solution:

\[
\begin{align*}
 x: & \quad A \quad B \quad C \quad B \quad D \quad A \quad B \\
 y: & \quad B \quad D \quad C \quad A \quad B \quad A
\end{align*}
\]
Brute-force LCS algorithm

Check every subsequence of $x[1 \ldots m]$ to see if it is also a subsequence of $y[1 \ldots n]$.
Brute-force LCS algorithm

Check every subsequence of $x[1 \ldots m]$ to see if it is also a subsequence of $y[1 \ldots n]$.

Analysis

- Checking $= O(n)$ time per subsequence.
- 2^m subsequences of x (each bit-vector of length m determines a distinct subsequence of x).

Worst-case running time $= O(n2^m)$

$= \text{exponential time.}$
Towards a better algorithm

Simplification:

1. Look at the *length* of a longest-common subsequence.
2. Extend the algorithm to find the LCS itself.
Towards a better algorithm

Simplification:

1. Look at the *length* of a longest-common subsequence.
2. Extend the algorithm to find the LCS itself.

Notation: Denote the length of a sequence s by $|s|$.
Towards a better algorithm

Simplification:
1. Look at the *length* of a longest-common subsequence.
2. Extend the algorithm to find the LCS itself.

Notation: Denote the length of a sequence s by $|s|$.

Strategy: Consider *prefixes* of x and y.
- Define $c[i, j] = |\text{LCS}(x[1 \ldots i], y[1 \ldots j])|$.
- Then, $c[m, n] = |\text{LCS}(x, y)|$.
Recursive formulation

Theorem.

\[c[i, j] = \begin{cases}
 c[i-1, j-1] + 1 & \text{if } x[i] = y[j], \\
 \max \{ c[i-1, j], c[i, j-1] \} & \text{otherwise.}
\end{cases} \]
Recursive formulation

Theorem.

\[c[i, j] = \begin{cases}
 c[i-1, j-1] + 1 & \text{if } x[i] = y[j], \\
 \max \{c[i-1, j], c[i, j-1]\} & \text{otherwise.}
\end{cases} \]

Proof. Case \(x[i] = y[j] \):

\[
\begin{array}{cccccc}
1 & 2 & \ldots & \ldots & m \\
x: & & & & \\
1 & 2 & \ldots & \ldots & n \\
y: & & & & \\
\end{array}
\]
Theorem.

\[c[i, j] = \begin{cases}
 c[i-1, j-1] + 1 & \text{if } x[i] = y[j], \\
 \max \{c[i-1, j], c[i, j-1]\} & \text{otherwise.}
\end{cases} \]

Proof. Case \(x[i] = y[j] \):

Let \(z[1 \ldots k] = LCS(x[1 \ldots i], y[1 \ldots j]) \), where \(c[i, j] = k \). Then, \(z[k] = x[i] \), or else \(z \) could be extended.
Let $z[1 \ldots k] = \text{LCS}(x[1 \ldots i], y[1 \ldots j])$

Claim: $z[1 \ldots k–1] = \text{LCS}(x[1 \ldots i–1], y[1 \ldots j–1])$. Suppose w is a longer LCS of $x[1 \ldots i–1]$ and $y[1 \ldots j–1]$, that is, $|w| > k–1$. Then, *cut and paste:* $w \parallel z[k]$ (w concatenated with $z[k]$) is a common subsequence of $x[1 \ldots i]$ and $y[1 \ldots j]$ with $|w \parallel z[k]| > k$. Contradiction, proving the claim.
Recursive formulation

Theorem.

\[
c[i, j] = \begin{cases} c[i-1, j-1] + 1 & \text{if } x[i] = y[j], \\
\max \{c[i-1, j], c[i, j-1]\} & \text{otherwise.}
\end{cases}
\]

Proof. Case \(x[i] = y[j]\):

Let \(z[1 \ldots k] = \text{LCS}(x[1 \ldots i], y[1 \ldots j])\), where \(c[i, j] = k\). Then, \(z[k] = x[i]\), or else \(z\) could be extended.

Claim: \(z[1 \ldots k-1] = \text{LCS}(x[1 \ldots i-1], y[1 \ldots j-1])\). Thus, \(c[i-1, j-1] = k-1\), which implies that \(c[i, j] = c[i-1, j-1] + 1\).

Other cases are similar.
Dynamic-programming hallmark #1

Optimal substructure
An optimal solution to a problem (instance) contains optimal solutions to subproblems.
Dynamic-programming hallmark #1

Optimal substructure
An optimal solution to a problem (instance) contains optimal solutions to subproblems.

If $z = \text{LCS}(x, y)$, then any prefix of z is an LCS of a prefix of x and a prefix of y.
Recursive algorithm for LCS

\[
\text{LCS}(x, y, i, j) \\
\text{if } x[i] = y[j] \\
\quad \text{then } c[i, j] \leftarrow \text{LCS}(x, y, i-1, j-1) + 1 \\
\text{else } c[i, j] \leftarrow \max \{ \text{LCS}(x, y, i-1, j), \\
\quad \text{LCS}(x, y, i, j-1) \}\]
Recursive algorithm for LCS

\[\text{LCS}(x, y, i, j) \]

\[\text{if } x[i] = y[j] \]

\[\text{then } c[i, j] \leftarrow \text{LCS}(x, y, i-1, j-1) + 1 \]

\[\text{else } c[i, j] \leftarrow \max \{ \text{LCS}(x, y, i-1, j), \text{LCS}(x, y, i, j-1) \} \]

Worst-case: \(x[i] \neq y[j] \), in which case the algorithm evaluates two subproblems, each with only one parameter decremented.
Recursion tree

$m = 3$, $n = 4$:
Recursion tree

$m = 3$, $n = 4$:

Height $= m + n \Rightarrow$ work potentially exponential.
Recursion tree

$m = 3, n = 4$:

![Recursion Tree Diagram]

Height $= m + n \Rightarrow$ work potentially exponential, but we’re solving subproblems already solved!
Dynamic-programming hallmark #2

Overlapping subproblems
A recursive solution contains a “small” number of distinct subproblems repeated many times.
Dynamic-programming hallmark #2

Overlapping subproblems

A recursive solution contains a “small” number of distinct subproblems repeated many times.

The number of distinct LCS subproblems for two strings of lengths m and n is only mn.
Memoization algorithm

Memoization: After computing a solution to a subproblem, store it in a table. Subsequent calls check the table to avoid redoing work.
Memoization algorithm

Memoization: After computing a solution to a subproblem, store it in a table. Subsequent calls check the table to avoid redoing work.

\[
\text{LCS}(x, y, i, j) \\
\hspace{1cm} \text{if } c[i, j] = \text{NIL} \\
\hspace{2cm} \text{then if } x[i] = y[j] \\
\hspace{3cm} \text{then } c[i, j] \leftarrow \text{LCS}(x, y, i-1, j-1) + 1 \\
\hspace{1cm} \text{else } c[i, j] \leftarrow \max \{ \text{LCS}(x, y, i-1, j), \text{LCS}(x, y, i, j-1) \}
\]

same as before
Memoization: After computing a solution to a subproblem, store it in a table. Subsequent calls check the table to avoid redoing work.

\[
\text{LCS}(x, y, i, j)
\]

- if \(c[i, j] = \text{NIL} \)
 - then if \(x[i] = y[j] \)
 - then \(c[i, j] \leftarrow \text{LCS}(x, y, i-1, j-1) + 1 \)
 - else \(c[i, j] \leftarrow \max \{ \text{LCS}(x, y, i-1, j), \text{LCS}(x, y, i, j-1) \} \)

Time = \(\Theta(mn) = \) constant work per table entry.
Space = \(\Theta(mn) \).
Dynamic-programming algorithm

Idea:
Compute the table bottom-up.

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>B</th>
<th>D</th>
<th>A</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>B</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>D</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>C</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>A</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>B</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>A</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>4</td>
</tr>
</tbody>
</table>
Dynamic-programming algorithm

Idea:

Compute the table bottom-up.

Time $= \Theta(mn)$.

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>B</th>
<th>D</th>
<th>A</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>B</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>D</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>C</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>A</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>B</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>A</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>4</td>
<td></td>
</tr>
</tbody>
</table>
Dynamic-programming algorithm

IDEA:
Compute the table bottom-up.

Time $= \Theta(mn)$.

Reconstruct LCS by tracing backwards.
IDEA:
Compute the table bottom-up.

Time = $\Theta(mn)$.

Reconstruct LCS by tracing backwards.

Space = $\Theta(mn)$.

Dynamic-programming algorithm

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>B</th>
<th>D</th>
<th>A</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>B</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>C</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>D</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>A</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>B</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>A</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>4</td>
<td>4</td>
</tr>
</tbody>
</table>

Proof (completed)

Q. How many ha's cause x and y to collide?
A. There are m choices for each of a_1, a_2, \ldots, a_r, but once these are chosen, exactly one choice for a_0 causes x and y to collide, namely $\frac{H}{m}$.

October 5, 2005
Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson

L7.15