Introduction to Algorithms

Lecture 15
Dynamic Programming

• Longest common subsequence
• Optimal substructure
• Overlapping subproblems

Prof. Charles E. Leiserson
Dynamic programming

Design technique, like divide-and-conquer.

Example: Longest Common Subsequence (LCS)

• Given two sequences $x[1 \ldots m]$ and $y[1 \ldots n]$, find a longest subsequence common to them both.
Dynamic programming

Design technique, like divide-and-conquer.

Example: Longest Common Subsequence (LCS)
- Given two sequences \(x[1 \ldots m] \) and \(y[1 \ldots n] \), find a longest subsequence common to them both.

 “a” not “the”
Dynamic programming

Design technique, like divide-and-conquer.

Example: Longest Common Subsequence (LCS)
- Given two sequences $x[1 \ldots m]$ and $y[1 \ldots n]$, find a longest subsequence common to them both.

 “a” *not* “the”

x: A B C B D A B

y: B D C A B A
Dynamic programming

Design technique, like divide-and-conquer.

Example: Longest Common Subsequence (LCS)

- Given two sequences $x[1 \ldots m]$ and $y[1 \ldots n]$, find a longest subsequence common to them both.

“a” not “the”

x: A B C B D A B

y: B D C A B A

BCBA = LCS(x, y)

functional notation, but not a function
Brute-force LCS algorithm

Check every subsequence of $x[1 \ldots m]$ to see if it is also a subsequence of $y[1 \ldots n]$.
Brute-force LCS algorithm

Check every subsequence of $x[1 \ldots m]$ to see if it is also a subsequence of $y[1 \ldots n]$.

Analysis

- Checking $= O(n)$ time per subsequence.
- 2^m subsequences of x (each bit-vector of length m determines a distinct subsequence of x).

Worst-case running time $= O(n2^m) = \text{exponential time.}$
Towards a better algorithm

Simplification:

1. Look at the *length* of a longest-common subsequence.
2. Extend the algorithm to find the LCS itself.
Towards a better algorithm

Simplification:

1. Look at the *length* of a longest-common subsequence.
2. Extend the algorithm to find the LCS itself.

Notation: Denote the length of a sequence s by $|s|$.
Towards a better algorithm

Simplification:
1. Look at the length of a longest-common subsequence.
2. Extend the algorithm to find the LCS itself.

Notation: Denote the length of a sequence s by $|s|$.

Strategy: Consider prefixes of x and y.
• Define $c[i, j] = |\text{LCS}(x[1 \ldots i], y[1 \ldots j])|$.
• Then, $c[m, n] = |\text{LCS}(x, y)|$.

Recursive formulation

Theorem.

$$c[i, j] = \begin{cases}
 c[i-1, j-1] + 1 & \text{if } x[i] = y[j], \\
 \max \{ c[i-1, j], c[i, j-1] \} & \text{otherwise.}
\end{cases}$$
Recursive formulation

Theorem.

\[
c[i, j] = \begin{cases}
 c[i-1, j-1] + 1 & \text{if } x[i] = y[j], \\
 \max \{c[i-1, j], c[i, j-1]\} & \text{otherwise.}
\end{cases}
\]

Proof. Case \(x[i] = y[j]\):

\[\begin{array}{cccccccc}
1 & 2 & \cdots & i & \cdots & \cdots & 1 & 2 & \cdots & m \\
x: & \text{ } \\
1 & 2 & \cdots & j & \cdots & \cdots & 1 & 2 & \cdots & n \\
y: & \text{ } \\
\end{array}\]
Theorem.

\[c[i, j] = \begin{cases}
 c[i-1, j-1] + 1 & \text{if } x[i] = y[j], \\
 \max \{c[i-1, j], c[i, j-1]\} & \text{otherwise.}
\end{cases} \]

\textbf{Proof.} Case } x[i] = y[j]:

Let \(z[1 \ldots k] = \text{LCS}(x[1 \ldots i], y[1 \ldots j]) \), where \(c[i, j] = k \). Then, \(z[k] = x[i] \), or else \(z \) could be extended.

Thus, \(z[1 \ldots k-1] \) is CS of \(x[1 \ldots i-1] \) and \(y[1 \ldots j-1] \).
Proof (continued)

Claim: \(z[1 \ldots k-1] = \text{LCS}(x[1 \ldots i-1], y[1 \ldots j-1]) \).
Suppose \(w \) is a longer CS of \(x[1 \ldots i-1] \) and \(y[1 \ldots j-1] \), that is, \(|w| > k-1 \). Then, **cut and paste:** \(w \| z[k] \) (\(w \) concatenated with \(z[k] \)) is a common subsequence of \(x[1 \ldots i] \) and \(y[1 \ldots j] \) with \(|w \| z[k]| > k \). Contradiction, proving the claim.
Proof (continued)

Claim: \(z[1 \ldots k-1] = \text{LCS}(x[1 \ldots i-1], y[1 \ldots j-1]) \).
Suppose \(w \) is a longer CS of \(x[1 \ldots i-1] \) and \(y[1 \ldots j-1] \), that is, \(|w| > k-1 \). Then, cut and paste: \(w \| z[k] \) (\(w \) concatenated with \(z[k] \)) is a common subsequence of \(x[1 \ldots i] \) and \(y[1 \ldots j] \) with \(|w \| z[k]| > k \). Contradiction, proving the claim.
Thus, \(c[i-1, j-1] = k-1 \), which implies that \(c[i, j] = c[i-1, j-1] + 1 \).
Other cases are similar. □
Dynamic-programming hallmark #1

Optimal substructure
An optimal solution to a problem (instance) contains optimal solutions to subproblems.
Dynamic-programming hallmark #1

Optimal substructure
An optimal solution to a problem (instance) contains optimal solutions to subproblems.

If \(z = \text{LCS}(x, y) \), then any prefix of \(z \) is an LCS of a prefix of \(x \) and a prefix of \(y \).
Recursive algorithm for LCS

\[
\text{LCS}(x, y, i, j)
\]

- if \(x[i] = y[j]\)
 - then \(c[i, j] \leftarrow \text{LCS}(x, y, i-1, j-1) + 1\)
- else \(c[i, j] \leftarrow \max\{\text{LCS}(x, y, i-1, j), \text{LCS}(x, y, i, j-1)\}\)
Recursive algorithm for LCS

\[
\text{LCS}(x, y, i, j)\\
\text{if } x[i] = y[j]\\
\text{then } c[i, j] \leftarrow \text{LCS}(x, y, i-1, j-1) + 1\\
\text{else } c[i, j] \leftarrow \max \left\{ \text{LCS}(x, y, i-1, j), \text{LCS}(x, y, i, j-1) \right\}
\]

Worst-case: \(x[i] \neq y[j] \), in which case the algorithm evaluates two subproblems, each with only one parameter decremented.
Recursion tree

$m = 3, n = 4$:

```
(3,4)
  /    \
(2,4)  (3,3)
 /  \    /  \  
(1,4) (2,3) (2,3) (3,2)
 |    |    |    |    |
(1,3) (2,2) (1,3) (2,2)
```
Recursion tree

$m = 3, n = 4$:

Height $= m + n \Rightarrow$ work potentially exponential.
Recursion tree

\[m = 3, \ n = 4: \]

Height = \(m + n \) \(\Rightarrow \) work potentially exponential, but we’re solving subproblems already solved!
Dynamic-programming hallmark #2

Overlapping subproblems

A recursive solution contains a “small” number of distinct subproblems repeated many times.
Dynamic-programming hallmark #2

Overlapping subproblems
A recursive solution contains a “small” number of distinct subproblems repeated many times.

The number of distinct LCS subproblems for two strings of lengths m and n is only mn.
Memoization: After computing a solution to a subproblem, store it in a table. Subsequent calls check the table to avoid redoing work.
Memoization: After computing a solution to a subproblem, store it in a table. Subsequent calls check the table to avoid redoing work.

\[
\text{LCS}(x, y, i, j) \\
\quad \text{if } c[i, j] = \text{NIL} \\
\quad \quad \text{then if } x[i] = y[j] \\
\quad \quad \quad \text{then } c[i, j] \leftarrow \text{LCS}(x, y, i-1, j-1) + 1 \\
\quad \quad \quad \text{else } c[i, j] \leftarrow \max\left\{ \text{LCS}(x, y, i-1, j), \text{LCS}(x, y, i, j-1) \right\}
\]
Memoization algorithm

Memoization: After computing a solution to a subproblem, store it in a table. Subsequent calls check the table to avoid redoing work.

\[
\text{LCS}(x, y, i, j) \\
\text{if } c[i, j] = \text{NIL} \\
\text{then if } x[i] = y[j] \\
\quad \text{then } c[i, j] \leftarrow \text{LCS}(x, y, i-1, j-1) + 1 \\
\text{else } c[i, j] \leftarrow \max \{ \text{LCS}(x, y, i-1, j), \text{LCS}(x, y, i, j-1) \} \\
\]

\[\text{Time} = \Theta(mn) = \text{constant work per table entry.} \]
\[\text{Space} = \Theta(mn). \]
Dynamic-programming algorithm

Idea:
Compute the table bottom-up.

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>B</th>
<th>D</th>
<th>A</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>B</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>B</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>D</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>C</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>A</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>B</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>A</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>4</td>
</tr>
</tbody>
</table>
Dynamic-programming algorithm

Idea:

Compute the table bottom-up.

Time $= \Theta(mn)$.
Dynamic-programming algorithm

Idea:
Compute the table bottom-up.

Time = $\Theta(mn)$.

Reconstruct LCS by tracing backwards.
Dynamic-programming algorithm

Idea:
Compute the table bottom-up.

Time = $\Theta(mn)$.

Reconstruct LCS by tracing backwards.

Space = $\Theta(mn)$.

Exercise: $O(\min\{m, n\})$