Proof (completed)

Q. How many ha's cause x and y to collide?

A. There are m choices for each of a_1, a_2, …, a_r, but once these are chosen, exactly one choice for a_0 causes x and y to collide, namely

\[
\begin{pmatrix}
 \sum_{i=1}^{r} a_i (x_i - y_i) \\
 \mod m
 \end{pmatrix}
\]

Thus, the number of ha's that cause x and y to collide is

\[
m^r = |H|/m.
\]

October 5, 2005
Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson
Graphs (review)

Definition. A *directed graph (digraph) $G = (V, E)$* is an ordered pair consisting of

- a set V of *vertices* (singular: *vertex*),
- a set $E \subseteq V \times V$ of *edges*.

In an *undirected graph* $G = (V, E)$, the edge set E consists of *unordered* pairs of vertices.

In either case, we have $|E| = O(V^2)$. Moreover, if G is connected, then $|E| \geq |V| - 1$, which implies that $\log |E| = \Theta(\log V)$.

(Review CLRS, Appendix B.)
Adjacency-matrix representation

The *adjacency matrix* of a graph $G = (V, E)$, where $V = \{1, 2, \ldots, n\}$, is the matrix $A[1 \ldots n, 1 \ldots n]$ given by

$$A[i, j] = \begin{cases}
1 & \text{if } (i, j) \in E, \\
0 & \text{if } (i, j) \notin E.
\end{cases}$$
Adjacency-matrix representation

The **adjacency matrix** of a graph $G = (V, E)$, where $V = \{1, 2, \ldots, n\}$, is the matrix $A[1 \ldots n, 1 \ldots n]$ given by

$$A[i, j] = \begin{cases} 1 & \text{if } (i, j) \in E, \\ 0 & \text{if } (i, j) \notin E. \end{cases}$$

\[
\begin{array}{c|cccc}
 & 1 & 2 & 3 & 4 \\
\hline
1 & 0 & 1 & 1 & 0 \\
2 & 0 & 0 & 1 & 0 \\
3 & 0 & 0 & 0 & 0 \\
4 & 0 & 0 & 1 & 0 \\
\end{array}
\]

$\Theta(V^2)$ storage \Rightarrow **dense** representation.
Adjacency-list representation

An **adjacency list** of a vertex \(v \in V \) is the list \(Adj[v] \) of vertices adjacent to \(v \).

\[
\begin{align*}
Adj[1] &= \{2, 3\} \\
Adj[2] &= \{3\} \\
Adj[3] &= \emptyset \\
Adj[4] &= \{3\}
\end{align*}
\]
Adjacency-list representation

An adjacency list of a vertex \(v \in V \) is the list \(Adj[v] \) of vertices adjacent to \(v \).

\[
\begin{align*}
\text{Adj}[1] &= \{2, 3\} \\
\text{Adj}[2] &= \{3\} \\
\text{Adj}[3] &= \{\} \\
\text{Adj}[4] &= \{3\}
\end{align*}
\]

For undirected graphs, \(|Adj[v]| = \text{degree}(v) \).
For digraphs, \(|Adj[v]| = \text{out-degree}(v) \).
Adjacency-list representation

An *adjacency list* of a vertex \(v \in V \) is the list \(Adj[v] \) of vertices adjacent to \(v \).

\[
\begin{align*}
 Adj[1] &= \{2, 3\} \\
 Adj[2] &= \{3\} \\
 Adj[3] &= \{} \\
 Adj[4] &= \{3\}
\end{align*}
\]

For undirected graphs, \(|Adj[v]| = degree(v) \).
For digraphs, \(|Adj[v]| = out-degree(v) \).

Handshaking Lemma: \(\sum_{v \in V} = 2|E| \) for undirected graphs \(\Rightarrow \) adjacency lists use \(\Theta(V + E) \) storage — a *sparse* representation (for either type of graph).
Minimum spanning trees

Input: A connected, undirected graph $G = (V, E)$ with weight function $w : E \rightarrow \mathbb{R}$.

- For simplicity, assume that all edge weights are distinct. (CLRS covers the general case.)
Minimum spanning trees

Input: A connected, undirected graph $G = (V, E)$ with weight function $w : E \rightarrow \mathbb{R}$.

- For simplicity, assume that all edge weights are distinct. (CLRS covers the general case.)

Output: A *spanning tree* T — a tree that connects all vertices — of minimum weight:

$$w(T) = \sum_{(u,v) \in T} w(u, v).$$
Example of MST
Example of MST
Optimal substructure

MST T:

(Other edges of G are not shown.)
Optimal substructure

MST T:

(Other edges of G are not shown.)

Remove any edge $(u, v) \in T$.
Optimal substructure

MST T: (Other edges of G are not shown.)

Remove any edge $(u, v) \in T$.
Optimal substructure

MST T:

(Other edges of G are not shown.)

Remove any edge $(u, v) \in T$. Then, T is partitioned into two subtrees T_1 and T_2.

Optimal substructure

MST T:

(Other edges of G are not shown.)

Remove any edge $(u, v) \in T$. Then, T is partitioned into two subtrees T_1 and T_2.

Theorem. The subtree T_1 is an MST of $G_1 = (V_1, E_1)$, the subgraph of G induced by the vertices of T_1:

- $V_1 = \text{vertices of } T_1$,
- $E_1 = \{ (x, y) \in E : x, y \in V_1 \}$.

Similarly for T_2.
Proof of optimal substructure

Proof. Cut and paste:

\[w(T) = w(u, v) + w(T_1) + w(T_2). \]

If \(T_1' \) were a lower-weight spanning tree than \(T_1 \) for \(G_1 \), then \(T' = \{(u, v)\} \cup T_1' \cup T_2 \) would be a lower-weight spanning tree than \(T \) for \(G \). \qed
Proof of optimal substructure

Proof. Cut and paste:

\[w(T) = w(u, v) + w(T_1) + w(T_2). \]

If \(T_1' \) were a lower-weight spanning tree than \(T_1 \) for \(G_1 \), then \(T' = \{(u, v)\} \cup T_1' \cup T_2 \) would be a lower-weight spanning tree than \(T \) for \(G \). □

Do we also have overlapping subproblems?
• Yes.
Proof of optimal substructure

Proof. Cut and paste:

\[w(T) = w(u, v) + w(T_1) + w(T_2). \]

If \(T'_1 \) were a lower-weight spanning tree than \(T_1 \) for \(G_1 \), then \(T' = \{(u, v)\} \cup T'_1 \cup T_2 \) would be a lower-weight spanning tree than \(T \) for \(G \). □

Do we also have overlapping subproblems?
• Yes.

Great, then dynamic programming may work!
• Yes, but MST exhibits another powerful property which leads to an even more efficient algorithm.
Hallmark for “greedy” algorithms

Greedy-choice property
A locally optimal choice is globally optimal.
Hallmark for “greedy” algorithms

Greedy-choice property
A locally optimal choice is globally optimal.

Theorem. Let T be the MST of $G = (V, E)$, and let $A \subseteq V$. Suppose that $(u, v) \in E$ is the least-weight edge connecting A to $V - A$. Then, $(u, v) \in T$ or some other edge of equal weight is $\in T$.
Proof of theorem

Proof. Suppose \((u, v) \notin T\) nor an edge of equal weight. Cut and paste.

T:

- \(\in A\)
- \(\in V - A\)

\((u, v) = \) least-weight edge connecting \(A\) to \(V - A\)
Proof of theorem

Proof. Suppose \((u, v) \notin T\) nor an edge of equal weight. Cut and paste.

\[T: \]

- \(\in A\)
- \(\in V - A\)

\((u, v) = \) least-weight edge connecting \(A\) to \(V - A\)

Consider the unique simple path from \(u\) to \(v\) in \(T\).
Proof of theorem

Proof. Suppose \((u, v) \notin T\) nor an edge of equal weight. Cut and paste.

\(T:\)

\[u \in A \]
\[v \in V - A \]

\((u, v) = \text{least-weight edge connecting } A \text{ to } V - A\)

Consider the unique simple path from \(u\) to \(v\) in \(T\).
Swap \((u, v)\) with the first edge on this path that connects a vertex in \(A\) to a vertex in \(V - A\).
Proof of theorem

Proof. Suppose \((u, v) \notin T\) nor an edge of equal weight. Cut and paste.

\(T'\):

- \(\in A\)
- \(\in V - A\)

\((u, v) = \text{least-weight edge connecting } A \text{ to } V - A\)

Consider the unique simple path from \(u\) to \(v\) in \(T\).

Swap \((u, v)\) with the first edge on this path that connects a vertex in \(A\) to a vertex in \(V - A\).

A lighter-weight spanning tree than \(T\) results.
Prim’s algorithm

IDEA: Maintain $V - A$ as a priority queue Q. Key each vertex in Q with the weight of the least-weight edge connecting it to a vertex in A.

\[
Q \leftarrow V \\
key[v] \leftarrow \infty \text{ for all } v \in V \\
key[s] \leftarrow 0 \text{ for some arbitrary } s \in V \\
\text{while } Q \neq \emptyset \\
\quad \text{do } u \leftarrow \text{EXTRACT-MIN}(Q) \\
\quad \quad \text{for each } v \in \text{Adj}[u] \\
\quad \quad \quad \text{do if } v \in Q \text{ and } w(u, v) < \key[v] \\
\quad \quad \quad \quad \text{then } \key[v] \leftarrow w(u, v) \quad \triangle \text{DECREASE-KEY} \\
\quad \quad \pi[v] \leftarrow u
\]

At the end, $\{(v, \pi[v])\}$ forms the MST.
Example of Prim’s algorithm

\[\in A \]
\[\in V - A \]
Example of Prim’s algorithm

$\in A$

$\in V - A$
Example of Prim’s algorithm

\[\in A \quad \in V - A \]
Example of Prim’s algorithm

∈ A
∈ V − A
Example of Prim’s algorithm

\[\in A \]
\[\in V - A \]
Example of Prim’s algorithm

\[A \in U \]

\[V - A \]
Example of Prim’s algorithm

\[\in A \]

\[\in V - A \]

Diagram of a graph with nodes and edges labeled with weights.
Example of Prim’s algorithm

\[\epsilon A \]
\[\epsilon V - A \]
Example of Prim’s algorithm

\[\in A \quad \in V - A \]
Example of Prim’s algorithm
Example of Prim’s algorithm

\[\epsilon \in A \]
\[\epsilon \in V - A \]
Example of Prim’s algorithm

\[\in A \]
\[\notin V - A \]
Example of Prim’s algorithm

\[\in A \quad \in V - A\]
Analysis of Prim

\[Q \leftarrow V \]
\[
key[v] \leftarrow \infty \text{ for all } v \in V
\]
\[key[s] \leftarrow 0 \text{ for some arbitrary } s \in V \]
\[\textbf{while } Q \neq \emptyset \]
\[\text{do } u \leftarrow \text{EXTRACT-MIN}(Q) \]
\[\text{for each } v \in Adj[u] \]
\[\text{do if } v \in Q \text{ and } w(u, v) < key[v] \]
\[\text{then } key[v] \leftarrow w(u, v) \]
\[\pi[v] \leftarrow u \]
Analysis of Prim

\[\Theta(V) \text{ total} \begin{cases} Q \leftarrow V \\ key[v] \leftarrow \infty \text{ for all } v \in V \\ key[s] \leftarrow 0 \text{ for some arbitrary } s \in V \\ \text{while } Q \neq \emptyset \\ \text{do } u \leftarrow \text{EXTRACT-MIN}(Q) \\ \text{for each } v \in Adj[u] \\ \text{do if } v \in Q \text{ and } w(u, v) < key[v] \\ \text{then } key[v] \leftarrow w(u, v) \\ \pi[v] \leftarrow u \end{cases} \]
Analysis of Prim

\[\begin{align*}
\Theta(V) & \quad \text{total} \\
|V| & \quad \text{times}
\end{align*} \]

\[\begin{align*}
Q & \leftarrow V \\
key[v] & \leftarrow \infty \text{ for all } v \in V \\
key[s] & \leftarrow 0 \text{ for some arbitrary } s \in V \\
\text{while } Q & \neq \emptyset \\
\text{do } u & \leftarrow \text{EXTRACT-MIN}(Q) \\
\text{for each } v & \in \text{Adj}[u] \\
\text{do if } v & \in Q \text{ and } w(u, v) < key[v] \\
\text{then } key[v] & \leftarrow w(u, v) \\
\pi[v] & \leftarrow u
\end{align*} \]
Analysis of Prim

\[Q \leftarrow V \]
\[key[v] \leftarrow \infty \text{ for all } v \in V \]
\[key[s] \leftarrow 0 \text{ for some arbitrary } s \in V \]

while \(Q \neq \emptyset \)

\[u \leftarrow \text{EXTRACT-MIN}(Q) \]

for each \(v \in \text{Adj}[u] \)

\[\text{do if } v \in Q \text{ and } w(u, v) < key[v] \]

\[\text{then } key[v] \leftarrow w(u, v) \]
\[\pi[v] \leftarrow u \]
Analysis of Prim

\[\Theta(V) \] total

\[Q \leftarrow V \]
\[\text{key}[v] \leftarrow \infty \text{ for all } v \in V \]
\[\text{key}[s] \leftarrow 0 \text{ for some arbitrary } s \in V \]

while \(Q \neq \emptyset \)

\[\text{do } u \leftarrow \text{EXTRACT-MIN}(Q) \]

\[|V| \text{ times} \]

\[\text{degree}(u) \text{ times} \]

\[\text{for each } v \in \text{Adj}[u] \]
\[\text{do if } v \in Q \text{ and } w(u, v) < \text{key}[v] \]
\[\text{then } \text{key}[v] \leftarrow w(u, v) \]
\[\pi[v] \leftarrow u \]

Handshaking Lemma \(\Rightarrow \Theta(E) \) implicit \text{DECREASE-KEY}'s.
Analysis of Prim

\[Q \leftarrow V \]
\[key[v] \leftarrow \infty \text{ for all } v \in V \]
\[key[s] \leftarrow 0 \text{ for some arbitrary } s \in V \]

while \(Q \neq \emptyset \)

\[u \leftarrow \text{EXTRACT-MIN}(Q) \]

for each \(v \in \text{Adj}[u] \)

\[\text{do if } v \in Q \text{ and } w(u, v) < key[v] \]

then \[key[v] \leftarrow w(u, v) \]

\[\pi[v] \leftarrow u \]

Handshaking Lemma \(\Rightarrow \Theta(E) \) implicit \text{DECREASE-KEY}'s.

Time = \(\Theta(V) \cdot T_{\text{EXTRACT-MIN}} + \Theta(E) \cdot T_{\text{DECREASE-KEY}} \)
Analysis of Prim (continued)

\[\text{Time} = \Theta(V) \cdot T_{\text{EXTRACT-MIN}} + \Theta(E) \cdot T_{\text{DECREASE-KEY}} \]
Analysis of Prim (continued)

\[\text{Time} = \Theta(V) \cdot T_{\text{Extract-Min}} + \Theta(E) \cdot T_{\text{Decrease-Key}} \]

<table>
<thead>
<tr>
<th>Q</th>
<th>$T_{\text{Extract-Min}}$</th>
<th>$T_{\text{Decrease-Key}}$</th>
<th>Total</th>
</tr>
</thead>
</table>
Analysis of Prim (continued)

\[\text{Time} = \Theta(V) \cdot T_{\text{EXTRACT-MIN}} + \Theta(E) \cdot T_{\text{DECREASE-KEY}} \]

<table>
<thead>
<tr>
<th>Q</th>
<th>(T_{\text{EXTRACT-MIN}})</th>
<th>(T_{\text{DECREASE-KEY}})</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>array</td>
<td>(O(V))</td>
<td>(O(1))</td>
<td>(O(V^2))</td>
</tr>
</tbody>
</table>
Analysis of Prim (continued)

\[
\text{Time} = \Theta(V) \cdot T_{\text{Extract-Min}} + \Theta(E) \cdot T_{\text{Decrease-Key}}
\]

<table>
<thead>
<tr>
<th>(Q)</th>
<th>(T_{\text{Extract-Min}})</th>
<th>(T_{\text{Decrease-Key}})</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>array</td>
<td>(O(V))</td>
<td>(O(1))</td>
<td>(O(V^2))</td>
</tr>
<tr>
<td>binary heap</td>
<td>(O(\lg V))</td>
<td>(O(\lg V))</td>
<td>(O(E \lg V))</td>
</tr>
</tbody>
</table>
Analysis of Prim (continued)

Time = $\Theta(V) \cdot T_{\text{EXTRACT-MIN}} + \Theta(E) \cdot T_{\text{DECREASE-KEY}}$

<table>
<thead>
<tr>
<th>Q</th>
<th>$T_{\text{EXTRACT-MIN}}$</th>
<th>$T_{\text{DECREASE-KEY}}$</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>array</td>
<td>$O(V)$</td>
<td>$O(1)$</td>
<td>$O(V^2)$</td>
</tr>
<tr>
<td>binary heap</td>
<td>$O(\lg V)$</td>
<td>$O(\lg V)$</td>
<td>$O(E \lg V)$</td>
</tr>
<tr>
<td>Fibonacci heap</td>
<td>$O(\lg V)$</td>
<td>amortized</td>
<td>$O(1)$</td>
</tr>
<tr>
<td>amortized</td>
<td>$O(1)$</td>
<td>amortized</td>
<td>worst case</td>
</tr>
</tbody>
</table>
MST algorithms

Kruskal’s algorithm (see CLRS):
• Uses the *disjoint-set data structure* (Lecture 10).
• Running time $= O(E \lg V)$.
MST algorithms

Kruskal’s algorithm (see CLRS):
- Uses the *disjoint-set data structure* (Lecture 10).
- Running time = $O(E \lg V)$.

Best to date:
- Karger, Klein, and Tarjan [1993].
- Randomized algorithm.
- $O(V + E)$ expected time.