LECTURE 16
Greedy Algorithms (and Graphs)
• Graph representation
• Minimum spanning trees
• Optimal substructure
• Greedy choice
• Prim’s greedy MST algorithm

Prof. Charles E. Leiserson
Graphs (review)

Definition. A directed graph (digraph) \(G = (V, E) \) is an ordered pair consisting of
• a set \(V \) of vertices (singular: vertex),
• a set \(E \subseteq V \times V \) of edges.

In an undirected graph \(G = (V, E) \), the edge set \(E \) consists of unordered pairs of vertices.

In either case, we have \(|E| = O(V^2) \). Moreover, if \(G \) is connected, then \(|E| \geq |V| - 1 \), which implies that \(\lg |E| = \Theta(\lg V) \).

(Review CLRS, Appendix B.)
Adjacency-matrix representation

The *adjacency matrix* of a graph $G = (V, E)$, where $V = \{1, 2, \ldots, n\}$, is the matrix $A[1 \ldots n, 1 \ldots n]$ given by

$$A[i,j] = \begin{cases}
1 & \text{if } (i,j) \in E, \\
0 & \text{if } (i,j) \not\in E.
\end{cases}$$
Adjacency-matrix representation

The **adjacency matrix** of a graph $G = (V, E)$, where $V = \{1, 2, \ldots, n\}$, is the matrix $A[1 \ldots n, 1 \ldots n]$ given by

$$A[i, j] = \begin{cases} 1 & \text{if } (i, j) \in E, \\ 0 & \text{if } (i, j) \notin E. \end{cases}$$

$$
\begin{array}{cccc}
& 1 & 2 & 3 & 4 \\
1 & 1 & 0 & 1 & 1 & 0 \\
2 & 0 & 0 & 1 & 0 \\
3 & 0 & 0 & 0 & 0 & 0 \\
4 & 0 & 0 & 1 & 0 \\
\end{array}
$$

$\Theta(V^2)$ storage \Rightarrow **dense** representation.
Adjacency-list representation

An *adjacency list* of a vertex \(v \in V \) is the list \(Adj[v] \) of vertices adjacent to \(v \).

\[
\begin{align*}
Adj[1] &= \{2, 3\} \\
Adj[2] &= \{3\} \\
Adj[3] &= \{} \\
Adj[4] &= \{3\}
\end{align*}
\]
Adjacency-list representation

An *adjacency list* of a vertex $v \in V$ is the list $\text{Adj}[v]$ of vertices adjacent to v.

$\text{Adj}[1] = \{2, 3\}$
$\text{Adj}[2] = \{3\}$
$\text{Adj}[3] = \{}$
$\text{Adj}[4] = \{3\}$

For undirected graphs, $|\text{Adj}[v]| = \text{degree}(v)$.
For digraphs, $|\text{Adj}[v]| = \text{out-degree}(v)$.
An adjacency list of a vertex \(v \in V \) is the list \(\text{Adj}[v] \) of vertices adjacent to \(v \).

\[
\begin{align*}
\text{Adj}[1] &= \{2, 3\} \\
\text{Adj}[2] &= \{3\} \\
\text{Adj}[3] &= \{\} \\
\text{Adj}[4] &= \{3\}
\end{align*}
\]

For undirected graphs, \(|\text{Adj}[v]| = \text{degree}(v)\).
For digraphs, \(|\text{Adj}[v]| = \text{out-degree}(v)\).

Handshaking Lemma: \(\sum_{v \in V} = 2|E| \) for undirected graphs \(\Rightarrow \) adjacency lists use \(\Theta(V + E) \) storage — a sparse representation (for either type of graph).
Minimum spanning trees

Input: A connected, undirected graph $G = (V, E)$ with weight function $w : E \rightarrow \mathbb{R}$.

- For simplicity, assume that all edge weights are distinct. (CLRS covers the general case.)
Minimum spanning trees

Input: A connected, undirected graph \(G = (V, E) \) with weight function \(w : E \to \mathbb{R} \).
- For simplicity, assume that all edge weights are distinct. (CLRS covers the general case.)

Output: A *spanning tree* \(T \) — a tree that connects all vertices — of minimum weight:

\[
w(T) = \sum_{(u,v) \in T} w(u,v).
\]
Example of MST
Example of MST
Optimal substructure

MST T:

(Other edges of G are not shown.)
Optimal substructure

MST T:

(Other edges of G are not shown.)

Remove any edge $(u, v) \in T$.
Optimal substructure

MST T:

(Other edges of G are not shown.)

Remove any edge $(u, v) \in T$.
Optimal substructure

MST T:

(Other edges of G are not shown.)

Remove any edge $(u, v) \in T$. Then, T is partitioned into two subtrees T_1 and T_2.

T_1

u

T_2

v
Optimal substructure

MST T:

(Other edges of G are not shown.)

Remove any edge $(u, v) \in T$. Then, T is partitioned into two subtrees T_1 and T_2.

Theorem. The subtree T_1 is an MST of $G_1 = (V_1, E_1)$, the subgraph of G induced by the vertices of T_1:

$V_1 = $ vertices of T_1,
$E_1 = \{ (x, y) \in E : x, y \in V_1 \}$.

Similarly for T_2.

Proof of optimal substructure

Proof. Cut and paste:

\[w(T) = w(u, v) + w(T_1) + w(T_2). \]

If \(T_1' \) were a lower-weight spanning tree than \(T_1 \) for \(G_1 \), then \(T' = \{(u, v)\} \cup T_1' \cup T_2 \) would be a lower-weight spanning tree than \(T \) for \(G \). \(\square \)
Proof of optimal substructure

Proof. Cut and paste:

\[w(T) = w(u, v) + w(T_1) + w(T_2). \]

If \(T_1' \) were a lower-weight spanning tree than \(T_1 \) for \(G_1 \), then \(T' = \{(u, v)\} \cup T_1' \cup T_2 \) would be a lower-weight spanning tree than \(T \) for \(G \).

Do we also have overlapping subproblems?
• Yes.
Proof of optimal substructure

Proof. Cut and paste:

\[w(T) = w(u, v) + w(T_1) + w(T_2). \]

If \(T_1' \) were a lower-weight spanning tree than \(T_1 \) for \(G_1 \), then \(T' = \{(u, v)\} \cup T_1' \cup T_2 \) would be a lower-weight spanning tree than \(T \) for \(G \).

Do we also have overlapping subproblems?
• Yes.

Great, then dynamic programming may work!
• Yes, but MST exhibits another powerful property which leads to an even more efficient algorithm.
Hallmark for “greedy” algorithms

Greedy-choice property

A locally optimal choice is globally optimal.
Hallmark for "greedy" algorithms

Greedy-choice property

A locally optimal choice is globally optimal.

Theorem. Let T be the MST of $G = (V, E)$, and let $A \subseteq V$. Suppose that $(u, v) \in E$ is the least-weight edge connecting A to $V - A$. Then, $(u, v) \in T$ or some other edge of equal weight is $\in T$.
Proof of theorem

Proof. Suppose \((u, v) \notin T\) nor an edge of equal weight. Cut and paste.

\(T:\)

\(\in A\)

\(\in V - A\)

\((u, v) = \text{least-weight edge connecting } A \text{ to } V - A\)
Proof of theorem

Proof. Suppose \((u, v) \notin T\) nor an edge of equal weight. Cut and paste.

Consider the unique simple path from \(u\) to \(v\) in \(T\).
Proof of theorem

Proof. Suppose \((u, v) \notin T\) nor an edge of equal weight. Cut and paste.

Consider the unique simple path from \(u\) to \(v\) in \(T\).

Swap \((u, v)\) with the first edge on this path that connects a vertex in \(A\) to a vertex in \(V - A\).
Proof of theorem

Proof. Suppose \((u, v) \notin T\) nor an edge of equal weight. Cut and paste.

Consider the unique simple path from \(u\) to \(v\) in \(T\).
Swap \((u, v)\) with the first edge on this path that connects a vertex in \(A\) to a vertex in \(V - A\).
A lighter-weight spanning tree than \(T\) results.
Prim’s algorithm

IDEA: Maintain $V - A$ as a priority queue Q. Key each vertex in Q with the weight of the least-weight edge connecting it to a vertex in A.

$Q \leftarrow V$

$\text{key}[v] \leftarrow \infty$ for all $v \in V$

$\text{key}[s] \leftarrow 0$ for some arbitrary $s \in V$

while $Q \neq \emptyset$

do $u \leftarrow \text{EXTRACT-MIN}(Q)$

for each $v \in \text{Adj}[u]$

do if $v \in Q$ and $w(u, v) < \text{key}[v]$

then $\text{key}[v] \leftarrow w(u, v)$ \> DECREASE-KEY

$\pi[v] \leftarrow u$

At the end, $\{(v, \pi[v])\}$ forms the MST.
Example of Prim’s algorithm

∈ \(A \)

∈ \(V - A \)

In the diagram, nodes represent vertices and edges represent connections with weights. The algorithm starts from a node and iteratively selects the minimum-weight edge that connects an already visited node to an unvisited node, ensuring that the subset of nodes selected forms a tree that includes all vertices. The process continues until all vertices are included in the tree.
Example of Prim’s algorithm

∈ \(A \)

∈ \(V - A \)
Example of Prim’s algorithm
Example of Prim’s algorithm

∈ A
∈ V – A

![Graph with nodes and edges labeled with weights]
Example of Prim’s algorithm

\[\in A \quad \in V - A \]
Example of Prim’s algorithm
Example of Prim’s algorithm

\[\in A \quad \in V - A \]
Example of Prim’s algorithm

\[\begin{align*}
\in A \\
\in V - A
\end{align*} \]
Example of Prim’s algorithm

\[\begin{align*}
&\in A \\
&\in V - A
\end{align*} \]
Example of Prim’s algorithm

\[\in A \quad \in V - A \]
Example of Prim’s algorithm

\[\in A \]
\[\notin V - A \]
Example of Prim’s algorithm
Example of Prim’s algorithm

\[\begin{align*}
\in & \quad A \\
\in & \quad V - A
\end{align*} \]
Analysis of Prim

\[Q \leftarrow V \]
\[\text{key}[v] \leftarrow \infty \text{ for all } v \in V \]
\[\text{key}[s] \leftarrow 0 \text{ for some arbitrary } s \in V \]

\textbf{while } Q \neq \emptyset \\
\textbf{do } u \leftarrow \text{EXTRACT-MIN}(Q) \\
\textbf{for each } v \in Adj[u] \\
\textbf{do if } v \in Q \text{ and } w(u, v) < \text{key}[v] \\
\textbf{then } \text{key}[v] \leftarrow w(u, v) \\
\text{\pi}[v] \leftarrow u
Analysis of Prim

\[\begin{aligned}
Q & \leftarrow V \\
key[v] & \leftarrow \infty \text{ for all } v \in V \\
key[s] & \leftarrow 0 \text{ for some arbitrary } s \in V \\
\text{while } Q \neq \emptyset \\
& \text{do } u \leftarrow \text{EXTRACT-MIN}(Q) \\
& \text{for each } v \in Adj[u] \\
& \text{do if } v \in Q \text{ and } w(u, v) < \key[v] \\
& \text{then } key[v] \leftarrow w(u, v) \\
& \pi[v] \leftarrow u
\end{aligned} \]
Analysis of Prim

\[Q \leftarrow V \]

\[\text{key}[v] \leftarrow \infty \text{ for all } v \in V \]

\[\text{key}[s] \leftarrow 0 \text{ for some arbitrary } s \in V \]

\[\text{while } Q \neq \emptyset \]

\[\text{do } u \leftarrow \text{EXTRACT-MIN}(Q) \]

\[\text{for each } v \in \text{Adj}[u] \]

\[\text{do if } v \in Q \text{ and } w(u, v) < \text{key}[v] \]

\[\text{then } \text{key}[v] \leftarrow w(u, v) \]

\[\pi[v] \leftarrow u \]
Analysis of Prim

\[Q \leftarrow V \]
\[key[v] \leftarrow \infty \text{ for all } v \in V \]
\[key[s] \leftarrow 0 \text{ for some arbitrary } s \in V \]

while \(Q \neq \emptyset \)

\[u \leftarrow \text{EXTRACT-MIN}(Q) \]

for each \(v \in \text{Adj}[u] \)

\[\text{do if } v \in Q \text{ and } w(u, v) < key[v] \]

\[\text{then } key[v] \leftarrow w(u, v) \]
\[\pi[v] \leftarrow u \]

\(\Theta(V) \) total

\(|V| \) times

\(\text{degree}(u) \) times
Analysis of Prim

\[Q \leftarrow V \]

\[key[v] \leftarrow \infty \text{ for all } v \in V \]

\[key[s] \leftarrow 0 \text{ for some arbitrary } s \in V \]

\textbf{while } \ Q \neq \emptyset \textbf{ \ do } \ u \leftarrow \text{EXTRACT-MIN}(Q) \textbf{ \ do } \textbf{ for each } v \in \text{Adj}[u] \textbf{ \ do if } v \in Q \text{ and } w(u, v) < key[v] \textbf{ \ then } key[v] \leftarrow w(u, v) \pi[v] \leftarrow u \]

\text{Handshaking Lemma } \Rightarrow \Theta(E) \text{ implicit } \text{DECREASE-KEY’s.}
Analysis of Prim

$\Theta(V)$

$\{ Q \leftarrow V$

$\text{key}[v] \leftarrow \infty \text{ for all } v \in V$

$\text{key}[s] \leftarrow 0 \text{ for some arbitrary } s \in V$

while $Q \neq \emptyset$

$\text{do } u \leftarrow \text{EXTRACT-MIN}(Q)$

for each $v \in \text{Adj}[u]$

$\text{do if } v \in Q \text{ and } w(u, v) < \text{key}[v]$

$\text{then } \text{key}[v] \leftarrow w(u, v)$

$\pi[v] \leftarrow u$

Handshaking Lemma $\Rightarrow \Theta(E)$ implicit DECREASE-KEY's.

Time $= \Theta(V) \cdot T_{\text{EXTRACT-MIN}} + \Theta(E) \cdot T_{\text{DECREASE-KEY}}$
Analysis of Prim (continued)

\[
\text{Time} = \Theta(V) \cdot T_{\text{Extract-Min}} + \Theta(E) \cdot T_{\text{Decrease-Key}}
\]
Analysis of Prim (continued)

Time = Θ(V) \cdot T_{\text{EXTRACT-MIN}} + Θ(E) \cdot T_{\text{DECREASE-KEY}}

\begin{array}{cccc}
Q & T_{\text{EXTRACT-MIN}} & T_{\text{DECREASE-KEY}} & \text{Total} \\
\end{array}
Analysis of Prim (continued)

Time = $\Theta(V) \cdot T_{\text{Extract-Min}} + \Theta(E) \cdot T_{\text{Decrease-Key}}$

<table>
<thead>
<tr>
<th>Q</th>
<th>$T_{\text{Extract-Min}}$</th>
<th>$T_{\text{Decrease-Key}}$</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>array</td>
<td>$O(V)$</td>
<td>$O(1)$</td>
<td>$O(V^2)$</td>
</tr>
</tbody>
</table>
Analysis of Prim (continued)

Time = $\Theta(V) \cdot T_{\text{EXTRACT-MIN}} + \Theta(E) \cdot T_{\text{DECREASE-KEY}}$

<table>
<thead>
<tr>
<th>Q</th>
<th>$T_{\text{EXTRACT-MIN}}$</th>
<th>$T_{\text{DECREASE-KEY}}$</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>array</td>
<td>$O(V)$</td>
<td>$O(1)$</td>
<td>$O(V^2)$</td>
</tr>
<tr>
<td>binary heap</td>
<td>$O(\lg V)$</td>
<td>$O(\lg V)$</td>
<td>$O(E \lg V)$</td>
</tr>
</tbody>
</table>

Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson
Analysis of Prim (continued)

Time = $\Theta(V) \cdot T_{\text{EXTRACT-MIN}} + \Theta(E) \cdot T_{\text{DECREASE-KEY}}$

<table>
<thead>
<tr>
<th>Q</th>
<th>$T_{\text{EXTRACT-MIN}}$</th>
<th>$T_{\text{DECREASE-KEY}}$</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>array</td>
<td>$O(V)$</td>
<td>$O(1)$</td>
<td>$O(V^2)$</td>
</tr>
<tr>
<td>binary heap</td>
<td>$O(\lg V)$</td>
<td>$O(\lg V)$</td>
<td>$O(E \lg V)$</td>
</tr>
<tr>
<td>Fibonacci heap</td>
<td>$O(\lg V)$</td>
<td>$O(1)$</td>
<td>$O(E + V \lg V)$</td>
</tr>
<tr>
<td>amortized</td>
<td></td>
<td></td>
<td>worst case</td>
</tr>
</tbody>
</table>
MST algorithms

Kruskal’s algorithm (see CLRS):

• Uses the \textit{disjoint-set data structure} (Lecture 10).
• Running time = $O(E \log V)$.
MST algorithms

Kruskal’s algorithm (see CLRS):
• Uses the \textit{disjoint-set data structure} (Lecture 10).
• Running time = $O(E \lg V)$.

Best to date:
• Karger, Klein, and Tarjan [1993].
• Randomized algorithm.
• $O(V + E)$ expected time.