LECTURE 17
Shortest Paths I
• Properties of shortest paths
• Dijkstra’s algorithm
• Correctness
• Analysis
• Breadth-first search

Prof. Erik Demaine
Paths in graphs

Consider a digraph $G = (V, E)$ with edge-weight function $w : E \rightarrow \mathbb{R}$. The **weight** of path $p = v_1 \rightarrow v_2 \rightarrow \cdots \rightarrow v_k$ is defined to be

$$w(p) = \sum_{i=1}^{k-1} w(v_i, v_{i+1}).$$
Paths in graphs

Consider a digraph $G = (V, E)$ with edge-weight function $w : E \rightarrow \mathbb{R}$. The **weight** of path $p = v_1 \rightarrow v_2 \rightarrow \cdots \rightarrow v_k$ is defined to be

$$w(p) = \sum_{i=1}^{k-1} w(v_i, v_{i+1}).$$

Example:

![Diagram](image)

$v_1 \rightarrow v_2 \rightarrow v_3 \rightarrow v_4 \rightarrow v_5$

$w(p) = -2$
Shortest paths

A *shortest path* from u to v is a path of minimum weight from u to v. The *shortest-path weight* from u to v is defined as

$$\delta(u, v) = \min \{ w(p) : p \text{ is a path from } u \text{ to } v \}.$$

Note: $\delta(u, v) = \infty$ if no path from u to v exists.
Optimal substructure

Theorem. A subpath of a shortest path is a shortest path.
Optimal substructure

Theorem. A subpath of a shortest path is a shortest path.

Proof. Cut and paste:
Optimal substructure

Theorem. A subpath of a shortest path is a shortest path.

Proof. Cut and paste:
Triangle inequality

Theorem. For all $u, v, x \in V$, we have
\[\delta(u, v) \leq \delta(u, x) + \delta(x, v). \]
Triangle inequality

Theorem. For all $u, v, x \in V$, we have
\[
\delta(u, v) \leq \delta(u, x) + \delta(x, v).
\]

Proof.

![Diagram showing the triangle inequality with nodes u, x, and v, and edges labeled with distances δ(u, v), δ(u, x), and δ(x, v).]
Well-definedness of shortest paths

If a graph G contains a negative-weight cycle, then some shortest paths may not exist.
Well-definedness of shortest paths

If a graph G contains a negative-weight cycle, then some shortest paths may not exist.

Example:
Single-source shortest paths

Problem. From a given source vertex \(s \in V \), find the shortest-path weights \(\delta(s, v) \) for all \(v \in V \).

If all edge weights \(w(u, v) \) are *nonnegative*, all shortest-path weights must exist.

Idea: Greedy.

1. Maintain a set \(S \) of vertices whose shortest-path distances from \(s \) are known.
2. At each step add to \(S \) the vertex \(v \in V - S \) whose distance estimate from \(s \) is minimal.
3. Update the distance estimates of vertices adjacent to \(v \).
Dijkstra’s algorithm

\[d[s] \leftarrow 0\]
for each \(v \in V - \{s\}\)
 \[d[v] \leftarrow \infty\]
\(S \leftarrow \emptyset\)
\(Q \leftarrow V\) \quad \triangleright Q \text{ is a priority queue maintaining } V - S
Dijkstra’s algorithm

\[d[s] \leftarrow 0 \]

for each \(v \in V - \{s\} \)
 do \(d[v] \leftarrow \infty \)

\(S \leftarrow \emptyset \)

\(Q \leftarrow V \quad \triangledown Q \) is a priority queue maintaining \(V - S \)

while \(Q \neq \emptyset \)
 do \(u \leftarrow \text{Extract-Min}(Q) \)
 \(S \leftarrow S \cup \{u\} \)
 for each \(v \in \text{Adj}[u] \)
 do if \(d[v] > d[u] + w(u, v) \)
 then \(d[v] \leftarrow d[u] + w(u, v) \)
Dijkstra’s algorithm

\[
d[s] \leftarrow 0
\]

for each \(v \in V - \{s\} \) do \(d[v] \leftarrow \infty \)

\(S \leftarrow \emptyset \)

\(Q \leftarrow V \quad \text{\(\triangleright \) \(Q \) is a priority queue maintaining \(V - S \)} \)

while \(Q \neq \emptyset \) do

\(u \leftarrow \text{EXTRACT-MIN}(Q) \)

\(S \leftarrow S \cup \{u\} \)

for each \(v \in Adj[u] \) do

if \(d[v] > d[u] + w(u, v) \) then \(d[v] \leftarrow d[u] + w(u, v) \)

relaxation step

Implicit DECREASE-KEY
Example of Dijkstra’s algorithm

Graph with nonnegative edge weights:
Example of Dijkstra’s algorithm

Initialize:

\[Q: \begin{array}{cccccc}
A & B & C & D & E \\
0 & \infty & \infty & \infty & \infty & \infty \\
\end{array} \]

\[S: \{ \} \]
Example of Dijkstra’s algorithm

“A” \leftarrow **Extract-Min(Q):**

Q: $\begin{array}{cccccc}
A & B & C & D & E \\
0 & \infty & \infty & \infty & \infty
\end{array}$

S: $\{ A \}$

Diagram:

- A connected to B, C, and D with weights 10, 3, and 1 respectively.
- B connected to A and D with weights 10 and 2 respectively.
- C connected to A, D, and E with weights 3, 4, and 8 respectively.
- D connected to B, C, and E with weights 2, 8, and 7 respectively.
- E connected to C and D with weights 2 and 9 respectively.

Weights shown as labels on the edges.
Example of Dijkstra’s algorithm

Relax all edges leaving A:

Q: $\begin{array}{cccccc}
A & B & C & D & E \\
0 & \infty & \infty & \infty & \infty \\
10 & 3 & \infty & \infty & \infty \\
\end{array}$

S: $\{A\}$
Example of Dijkstra’s algorithm

“C” \leftarrow \textsc{Extract-Min}(Q):

\[
Q: \begin{array}{cccccc}
A & B & C & D & E \\
0 & \infty & \infty & \infty & \infty \\
10 & 3 & \infty & \infty & \infty \\
\end{array}
\]

\[S: \{ A, C \} \]
Example of Dijkstra’s algorithm

Relax all edges leaving C:

\[Q: \begin{array}{cccccc}
A & B & C & D & E \\
0 & \infty & \infty & \infty & \infty \\
10 & 3 & \infty & \infty & \infty \\
7 & 11 & 5 & & & \\
\end{array} \]

\[S: \{ A, C \} \]
Example of Dijkstra’s algorithm

“E” ← EXTRACT-MIN(\(Q\)):

\[
Q: \begin{array}{ccccccc}
A & B & C & D & E \\
0 & \infty & \infty & \infty & \infty \\
10 & 3 & \infty & \infty & \infty \\
7 & 11 & 5 & & & \\
\end{array}
\]

\[
S: \{ A, C, E \}
\]
Example of Dijkstra’s algorithm

Relax all edges leaving E:

\[
Q: \begin{array}{cccccc}
A & B & C & D & E \\
0 & \infty & \infty & \infty & \infty \\
10 & 3 & \infty & \infty & 5 \\
7 & 11 & 11 & & \\
\end{array}
\]

\[
S: \{ A, C, E \}
\]
Example of Dijkstra’s algorithm

“B” ← \text{Extract-Min}(Q):

\begin{array}{cccccc}
Q: & A & B & C & D & E \\
0 & \infty & \infty & \infty & \infty & \infty \\
10 & 3 & \infty & \infty & \infty & \\
7 & 7 & 11 & 5 & \\
7 & 7 & 11 & \\
\end{array}

S: \{ A, C, E, B \}
Example of Dijkstra’s algorithm

Relax all edges leaving B:

Q: \begin{align*}
| & A & B & C & D & E \\
0 & \infty & \infty & \infty & \infty & \infty \\
10 & 3 & \infty & \infty & \infty & 7 \\
7 & 7 & 11 & 9 & 5 & 5 \\
\end{align*}

S: \{ A, C, E, B \}
Example of Dijkstra’s algorithm

“D” ← \textbf{Extract-Min}(Q):

$$Q:\begin{array}{cccccc}
A & B & C & D & E \\
0 & \infty & \infty & \infty & \infty \\
10 & 3 & \infty & \infty & 5 \\
7 & 11 & 11 & 7 & 9 \\
\end{array}$$

$$S: \{A, C, E, B, D\}$$
Correctness — Part I

Lemma. Initializing $d[s] \leftarrow 0$ and $d[v] \leftarrow \infty$ for all $v \in V - \{s\}$ establishes $d[v] \geq \delta(s, v)$ for all $v \in V$, and this invariant is maintained over any sequence of relaxation steps.
Correctness — Part I

Lemma. Initializing \(d[s] \leftarrow 0 \) and \(d[v] \leftarrow \infty \) for all \(v \in V - \{s\} \) establishes \(d[v] \geq \delta(s, v) \) for all \(v \in V \), and this invariant is maintained over any sequence of relaxation steps.

Proof. Suppose not. Let \(v \) be the first vertex for which \(d[v] < \delta(s, v) \), and let \(u \) be the vertex that caused \(d[v] \) to change: \(d[v] = d[u] + w(u, v) \). Then,

\[
\begin{align*}
 d[v] &< \delta(s, v) & \text{supposition} \\
 \leq \delta(s, u) + \delta(u, v) & \text{triangle inequality} \\
 \leq \delta(s, u) + w(u, v) & \text{sh. path} \leq \text{specific path} \\
 \leq d[u] + w(u, v) & \text{\(v \) is first violation}
\end{align*}
\]

Contradiction.
Correctness — Part II

Lemma. Let u be v’s predecessor on a shortest path from s to v. Then, if $d[u] = \delta(s, u)$ and edge (u, v) is relaxed, we have $d[v] = \delta(s, v)$ after the relaxation.
Lemma. Let u be v’s predecessor on a shortest path from s to v. Then, if $d[u] = \delta(s, u)$ and edge (u, v) is relaxed, we have $d[v] = \delta(s, v)$ after the relaxation.

Proof. Observe that $\delta(s, v) = \delta(s, u) + w(u, v)$. Suppose that $d[v] > \delta(s, v)$ before the relaxation. (Otherwise, we’re done.) Then, the test $d[v] > d[u] + w(u, v)$ succeeds, because $d[v] > \delta(s, v) = \delta(s, u) + w(u, v) = d[u] + w(u, v)$, and the algorithm sets $d[v] = d[u] + w(u, v) = \delta(s, v)$.
Correctness — Part III

Theorem. Dijkstra’s algorithm terminates with
\[d[v] = \delta(s, v) \text{ for all } v \in V. \]
Correctness — Part III

Theorem. Dijkstra’s algorithm terminates with $d[v] = \delta(s, v)$ for all $v \in V$.

Proof. It suffices to show that $d[v] = \delta(s, v)$ for every $v \in V$ when v is added to S. Suppose u is the first vertex added to S for which $d[u] > \delta(s, u)$. Let y be the first vertex in $V - S$ along a shortest path from s to u, and let x be its predecessor:

![Diagram showing the process of adding vertex u to S]
Since u is the first vertex violating the claimed invariant, we have $d[x] = \delta(s, x)$. When x was added to S, the edge (x, y) was relaxed, which implies that $d[y] = \delta(s, y) \leq \delta(s, u) < d[u]$. But, $d[u] \leq d[y]$ by our choice of u as the min element in Q in Dijkstra’s algorithm. Contradiction.
Analysis of Dijkstra

while $Q \neq \emptyset$
do $u \leftarrow \text{Extract-Min}(Q)$

$S \leftarrow S \cup \{u\}$

for each $v \in Adj[u]$
do if $d[v] > d[u] + w(u, v)$

then $d[v] \leftarrow d[u] + w(u, v)$
Analysis of Dijkstra

\[\text{while } Q \neq \emptyset \]
\[\text{do } u \leftarrow \text{Extract-Min}(Q)\]
\[S \leftarrow S \cup \{u\}\]
\[\text{for each } v \in \text{Adj}[u] \]
\[\text{do if } d[v] > d[u] + w(u, v)\]
\[\text{then } d[v] \leftarrow d[u] + w(u, v)\]

\(|V|\) times
Analysis of Dijkstra

while $Q \neq \emptyset$
 do $u \leftarrow \text{Extract-Min}(Q)$
 $S \leftarrow S \cup \{u\}$
 for each $v \in \text{Adj}[u]$
 do if $d[v] > d[u] + w(u, v)$
 then $d[v] \leftarrow d[u] + w(u, v)$
Analysis of Dijkstra

|V| times

while \(Q \neq \emptyset \)
\[
\begin{align*}
\text{do } u & \leftarrow \text{Extract-Min}(Q) \\
S & \leftarrow S \cup \{u\}
\end{align*}
\]

for each \(v \in \text{Adj}[u] \)
\[
\begin{align*}
\text{do if } d[v] & > d[u] + w(u, v) \\
\text{then } d[v] & \leftarrow d[u] + w(u, v)
\end{align*}
\]

Handshaking Lemma \(\Rightarrow \Theta(E) \) implicit \text{Decrease-Key}'s.
Analysis of Dijkstra

\[\text{while } Q \neq \emptyset \]
\[\text{do } u \leftarrow \text{Extract-Min}(Q)\]
\[S \leftarrow S \cup \{u\}\]
\[\text{for each } v \in Adj[u] \]
\[\text{do if } d[v] > d[u] + w(u, v) \]
\[\text{then } d[v] \leftarrow d[u] + w(u, v)\]

Handshaking Lemma \(\Rightarrow \Theta(E)\) implicit Decrease-Key’s.

Time = \(\Theta(V \cdot T_{\text{Extract-Min}} + E \cdot T_{\text{Decrease-Key}})\)

Note: Same formula as in the analysis of Prim’s minimum spanning tree algorithm.
Analysis of Dijkstra (continued)

\[
\text{Time} = \Theta(V) \cdot T_{\text{EXTRACT-MIN}} + \Theta(E) \cdot T_{\text{DECREASE-KEY}}
\]

\[
Q \quad T_{\text{EXTRACT-MIN}} \quad T_{\text{DECREASE-KEY}} \quad \text{Total}
\]
Analysis of Dijkstra (continued)

\[\text{Time} = \Theta(V) \cdot T_{\text{Extract-Min}} + \Theta(E) \cdot T_{\text{Decrease-Key}} \]

<table>
<thead>
<tr>
<th>(Q)</th>
<th>(T_{\text{Extract-Min}})</th>
<th>(T_{\text{Decrease-Key}})</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>array</td>
<td>(O(V))</td>
<td>(O(1))</td>
<td>(O(V^2))</td>
</tr>
</tbody>
</table>
Analysis of Dijkstra (continued)

Time = $\Theta(V) \cdot T_{\text{Extract-Min}} + \Theta(E) \cdot T_{\text{Decrease-Key}}$

<table>
<thead>
<tr>
<th></th>
<th>Q</th>
<th>$T_{\text{Extract-Min}}$</th>
<th>$T_{\text{Decrease-Key}}$</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>array</td>
<td>$O(V)$</td>
<td>$O(1)$</td>
<td></td>
<td>$O(V^2)$</td>
</tr>
<tr>
<td>binary heap</td>
<td>$O(\lg V)$</td>
<td>$O(\lg V)$</td>
<td></td>
<td>$O(E \lg V)$</td>
</tr>
</tbody>
</table>
Analysis of Dijkstra
(continued)

\[
\text{Time} = \Theta(V) \cdot T_{\text{Extract-Min}} + \Theta(E) \cdot T_{\text{Decrease-Key}}
\]

<table>
<thead>
<tr>
<th>Q</th>
<th>(T_{\text{Extract-Min}})</th>
<th>(T_{\text{Decrease-Key}})</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>array</td>
<td>(O(V))</td>
<td>(O(1))</td>
<td>(O(V^2))</td>
</tr>
<tr>
<td>binary heap</td>
<td>(O(\lg V))</td>
<td>(O(\lg V))</td>
<td>(O(E \lg V))</td>
</tr>
<tr>
<td>Fibonacci heap</td>
<td>(O(\lg V))</td>
<td>(O(1))</td>
<td>(O(E + V \lg V)) worst case</td>
</tr>
</tbody>
</table>
Unweighted graphs

Suppose that \(w(u, v) = 1 \) for all \((u, v) \in E\). Can Dijkstra’s algorithm be improved?
Unweighted graphs

Suppose that $w(u, v) = 1$ for all $(u, v) \in E$. Can Dijkstra’s algorithm be improved?

• Use a simple FIFO queue instead of a priority queue.
Unweighted graphs

Suppose that \(w(u, v) = 1 \) for all \((u, v) \in E \). Can Dijkstra’s algorithm be improved?

- Use a simple FIFO queue instead of a priority queue.

Breadth-first search

```
while Q ≠ ∅
do u ← DEQUEUE(Q)
   for each v ∈ Adj[u]
      do if \( d[v] = ∞ \)
         then \( d[v] ← d[u] + 1 \)
         ENQUEUE(Q, v)
```
Unweighted graphs

Suppose that \(w(u, v) = 1 \) for all \((u, v) \in E\). Can Dijkstra’s algorithm be improved?
- Use a simple FIFO queue instead of a priority queue.

Breadth-first search

while \(Q \neq \emptyset \)
 do \(u \leftarrow \text{DEQUEUE}(Q) \)
 for each \(v \in \text{Adj}[u] \)
 do if \(d[v] = \infty \)
 then \(d[v] \leftarrow d[u] + 1 \)
 \(\text{ENQUEUE}(Q, v) \)

Analysis: Time = \(O(V + E) \).
Example of breadth-first search

Q:
Example of breadth-first search

Q: a
Example of breadth-first search

Q: a b d
Example of breadth-first search

\[Q: \ a \ b \ d \ c \ e \]
Example of breadth-first search

Q: a b d c e
Example of breadth-first search

Q: a b d c e
Example of breadth-first search

\[Q: \ a \ b \ d \ c \ e \ g \ i \]
Example of breadth-first search

Q: a b d c e g i f
Example of breadth-first search

![Diagram of a graph with nodes labeled a, b, c, d, e, f, g, h, and i, with edges and distances marked. The query Q is given as a, b, d, c, e, g, i, f, h.](image)
Example of breadth-first search

Q: a b d c e g i f h
Example of breadth-first search

Q: a b d c e g i f h
Example of breadth-first search

\[
\begin{align*}
\text{Q: } a &\ b &\ d &\ c &\ e &\ g &\ i &\ f &\ h \\
0 &\ &\ &\ &\ &\ &\ &\ &\ \\
1 &\ &\ &\ &\ &\ &\ &\ &\ \\
1 &\ &\ &\ &\ &\ &\ &\ &\ \\
2 &\ &\ &\ &\ &\ &\ &\ &\ \\
2 &\ &\ &\ &\ &\ &\ &\ &\ \\
3 &\ &\ &\ &\ &\ &\ &\ &\ \\
4 &\ &\ &\ &\ &\ &\ &\ &\ \\
4 &\ &\ &\ &\ &\ &\ &\ &\
\end{align*}
\]
Correctness of BFS

while $Q \neq \emptyset$
 do $u \leftarrow \text{DEQUEUE}(Q)$
 for each $v \in \text{Adj}[u]$
 do if $d[v] = \infty$
 then $d[v] \leftarrow d[u] + 1$
 $\text{ENQUEUE}(Q, v)$

Key idea:
The FIFO Q in breadth-first search mimics the priority queue Q in Dijkstra.