Proof (completed)

Q. How many h's cause x and y to collide?

A. There are m choices for each of a_1, a_2, \ldots, a_r, but once these are chosen, exactly one choice for a_0 causes x and y to collide, namely

$$
\begin{align*}
&\sum_{i=1}^{r} a_i (x_i - y_i) \\
&= a_0 (x_0 - y_0) \\
&\equiv 0 \pmod{m}.
\end{align*}
$$

Thus, the number of h's that cause x and y to collide is

$$
m^r \cdot 1 = |H|/m.
$$

October 5, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L7.15
Paths in graphs

Consider a digraph $G = (V, E)$ with edge-weight function $w : E \rightarrow \mathbb{R}$. The *weight* of path $p = v_1 \rightarrow v_2 \rightarrow \cdots \rightarrow v_k$ is defined to be

$$w(p) = \sum_{i=1}^{k-1} w(v_i, v_{i+1}).$$
Proof (completed)

Q. How many h's cause x and y to collide?
A. There are m choices for each of a_1, a_2, \ldots, a_r, but once these are chosen, exactly one choice for a_0 causes x and y to collide, namely $\left(\begin{array}{c} r \\ 1 \end{array} \right)$.

Thus, the number of h's that cause x and y to collide is $m^r \cdot 1 = m^r = |H|/m$.

October 5, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson

Paths in graphs

Consider a digraph $G = (V, E)$ with edge-weight function $w : E \rightarrow \mathbb{R}$. The **weight** of path $p = v_1 \rightarrow v_2 \rightarrow \cdots \rightarrow v_k$ is defined to be

$$w(p) = \sum_{i=1}^{k-1} w(v_i, v_{i+1}).$$

Example:

\[w(p) = -2 \]
Shortest paths

A \textit{shortest path} from \(u \) to \(v \) is a path of minimum weight from \(u \) to \(v \). The \textit{shortest-path weight} from \(u \) to \(v \) is defined as

\[
\delta(u, v) = \min \{ w(p) : p \text{ is a path from } u \text{ to } v \}.
\]

\textbf{Note:} \(\delta(u, v) = \infty \) if no path from \(u \) to \(v \) exists.
Optimal substructure

Theorem. A subpath of a shortest path is a shortest path.
Optimal substructure

Theorem. A subpath of a shortest path is a shortest path.

Proof. Cut and paste:
Optimal substructure

Theorem. A subpath of a shortest path is a shortest path.

Proof. Cut and paste:
Triangle inequality

Theorem. For all $u, v, x \in V$, we have
\[\delta(u, v) \leq \delta(u, x) + \delta(x, v). \]
Triangle inequality

Theorem. For all $u, v, x \in V$, we have
\[\delta(u, v) \leq \delta(u, x) + \delta(x, v). \]

Proof.
Well-definedness of shortest paths

If a graph G contains a negative-weight cycle, then some shortest paths may not exist.
Well-definedness of shortest paths

If a graph G contains a negative-weight cycle, then some shortest paths may not exist.

Example:
Single-source shortest paths

Problem. From a given source vertex \(s \in V \), find the shortest-path weights \(\delta(s, v) \) for all \(v \in V \).

If all edge weights \(w(u, v) \) are nonnegative, all shortest-path weights must exist.

Idea: Greedy.

1. Maintain a set \(S \) of vertices whose shortest-path distances from \(s \) are known.
2. At each step add to \(S \) the vertex \(v \in V - S \) whose distance estimate from \(s \) is minimal.
3. Update the distance estimates of vertices adjacent to \(v \).
Dijkstra’s algorithm

\[
d[s] \leftarrow 0
\]

for each \(v \in V - \{s\} \)
\[
\text{do } d[v] \leftarrow \infty
\]

\(S \leftarrow \emptyset \)

\(Q \leftarrow V \) \hspace{1cm} \triangleright \text{ } Q \text{ is a priority queue maintaining } V - S
Dijkstra’s algorithm

\[d[s] \leftarrow 0 \]
\[\text{for each } v \in V - \{s\} \]
\[\quad \text{do } d[v] \leftarrow \infty \]
\[S \leftarrow \emptyset \]
\[Q \leftarrow V \quad \triangleright Q \text{ is a priority queue maintaining } V - S \]
\[\text{while } Q \neq \emptyset \]
\[\quad \text{do } u \leftarrow \text{Extract-Min}(Q) \]
\[S \leftarrow S \cup \{u\} \]
\[\text{for each } v \in Adj[u] \]
\[\quad \text{do if } d[v] > d[u] + w(u, v) \]
\[\quad \text{then } d[v] \leftarrow d[u] + w(u, v) \]
Dijkstra’s algorithm

\[
\begin{align*}
d[s] & \leftarrow 0 \\
\text{for each } v \in V - \{s\} & \text{ do } d[v] \leftarrow \infty \\
S & \leftarrow \emptyset \\
Q & \leftarrow V \quad \triangleright Q \text{ is a priority queue maintaining } V - S \\
\text{while } Q \neq \emptyset & \text{ do } u \leftarrow \text{EXTRACT-MIN}(Q) \\
& \quad S \leftarrow S \cup \{u\} \\
& \quad \text{for each } v \in \text{Adj}[u] \\
& \quad \text{do if } d[v] > d[u] + w(u, v) \\
& \quad \quad \text{then } d[v] \leftarrow d[u] + w(u, v) \\
\end{align*}
\]

relaxation step

Implicit DECREASE-KEY
Q. How many h's cause x and y to collide?

A. There are m choices for each of a_1, a_2, \ldots, a_r, but once these are chosen, exactly one choice for a_0 causes x and y to collide, namely

$$\begin{vmatrix}
\hat{a}_1 - \hat{a}_2 \\
\hat{a}_2 - \hat{a}_3 \\
\vdots \\
\hat{a}_r - \hat{a}_0
\end{vmatrix} = -a_i (x_i - y_i) \mod m.$$

Thus, the number of h's that cause x and y to collide is $m r = |H|/m$.

October 5, 2005
Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson

Example of Dijkstra’s algorithm

Graph with nonnegative edge weights:
Proof (completed)

Q. How many h's cause x and y to collide?
A. There are choices for each of a_1, a_2, …, a_r, but once these are chosen, exactly one choice for a_0 causes x and y to collide, namely

Thus, the number of h's that cause x and y to collide is

October 5, 2005
Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson

Example of Dijkstra’s algorithm

Initialize:

<table>
<thead>
<tr>
<th>Q:</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
<td>∞</td>
<td>∞</td>
<td>∞</td>
<td>∞</td>
</tr>
</tbody>
</table>

S: {}
Proof (completed)

Q. How many h's cause x and y to collide?
A. There are m choices for each of a_1, a_2, …, a_r, but once these are chosen, exactly one choice for a_0 causes x and y to collide, namely

\[
\begin{pmatrix}
\sum _{i=1}^{r} a_i (x_i - y_i) \\
- a_0
\end{pmatrix}
\mod m.
\]

Thus, the number of h's that cause x and y to collide is m = |H| / m.

October 5, 2005
Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson

Example of Dijkstra’s algorithm

“A” ← EXTRACT-MIN(Q):

Q: A B C D E
0 ∞ ∞ ∞ ∞ ∞

S: \{ A \}
Example of Dijkstra's algorithm

Q: How many \(h \)'s cause \(x \) and \(y \) to collide?

A: There are \(m \) choices for each of \(a_1, a_2, \ldots, a_r \), but once these are chosen, exactly one choice for \(a_0 \) causes \(x \) and \(y \) to collide, namely:

\[
\begin{align*}
\begin{bmatrix}
 r \\
 \sum_{i=1}^{r} \\
 \end{bmatrix} \\
\cdot \\
\begin{bmatrix}
 a_i \\
 (x_i - y_i) \\
\end{bmatrix}
\end{align*}
\]

\(\mod m \).

Thus, the number of \(h \)'s that cause \(x \) and \(y \) to collide is \(m^r \cdot 1 = m^r = |H|/m \).

October 5, 2005

Copyright © 2001-05 by Erik D. Demaine and Charles E. Leiserson

Relax all edges leaving \(A \):

Q:

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
<td>∞</td>
<td>∞</td>
<td>∞</td>
<td>∞</td>
</tr>
<tr>
<td>10</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

S: \{ A \}
Example of Dijkstra’s algorithm

“C” ← **EXTRACT-MIN(Q):**

$$Q: \begin{array}{cccccc}
A & B & C & D & E \\
0 & \infty & \infty & \infty & \infty \\
10 & 3 & \infty & \infty & \infty \\
\end{array}$$

S: \{ A, C \}
Example of Dijkstra’s algorithm

Relax all edges leaving C:

Q: A B C D E
 0 ∞ ∞ ∞ ∞
 10 3 ∞ ∞
 7 11 5

S: \{ A, C \}
Example of Dijkstra’s algorithm

“E” ← EXTRACT-MIN(Q):

Q:	A	B	C	D	E
 | 0 | ∞ | ∞ | ∞ | ∞ |
0 | 10 | 3 | ∞ | ∞ | ∞ |
10 | 7 | 11| 5 |

S: { A, C, E }
Example of Dijkstra’s algorithm

Relax all edges leaving E:

Q: $\begin{array}{cccccc}
A & B & C & D & E \\
\hline
0 & \infty & \infty & \infty & \infty \\
10 & 3 & \infty & \infty & \\
7 & 11 & 5 & \\
7 & 11 & \\
\end{array}$

S: \{ A, \ C, \ E \}$
Example of Dijkstra’s algorithm

“B” ← \text{EXTRACT-MIN}(Q):

\begin{align*}
Q: & \quad A & B & C & D & E \\
& 0 & \infty & \infty & \infty & \infty \\
& 10 & 3 & \infty & \infty & \\
& 7 & 11 & 5 & \\
& 7 & 11 & \\
\end{align*}

\begin{align*}
S: \{ A, C, E, B \}
\end{align*}
Example of Dijkstra’s algorithm

Relax all edges leaving B:

\[
\begin{array}{cccccc}
Q: & A & B & C & D & E \\
0 & 0 & \infty & \infty & \infty & \infty \\
10 & 10 & 3 & \infty & \infty & \infty \\
7 & 7 & 11 & 11 & 5 & \\
7 & 7 & & & & \\
\end{array}
\]

\[S: \{A, C, E, B\}\]
Example of Dijkstra’s algorithm

“How many h’s cause x and y to collide?”

A. There are choices for each of ..., but once these are chosen, exactly one choice for causes x and y to collide, namely

\[
\begin{pmatrix}
\sum_i a_i \cdot (x_i - y_i) \mod m
\end{pmatrix}
\]

Thus, the number of h’s that cause x and y to collide is \(m^r \cdot 1 = m^r \cdot 1 = |H|/m. \)

October 5, 2005
Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson

“D” ← EXTRACT-MIN(Q):

\[
Q: \begin{array}{cccccc}
A & B & C & D & E \\
0 & \infty & \infty & \infty & \infty \\
10 & 3 & \infty & \infty & \infty \\
7 & 11 & 5 & 11 & 9 \\
\end{array}
\]

\[
S: \{ A, C, E, B, D \}
\]
Correctness — Part I

Lemma. Initializing $d[s] \leftarrow 0$ and $d[v] \leftarrow \infty$ for all $v \in V - \{s\}$ establishes $d[v] \geq \delta(s, v)$ for all $v \in V$, and this invariant is maintained over any sequence of relaxation steps.
Correctness — Part I

Lemma. Initializing $d[s] \leftarrow 0$ and $d[v] \leftarrow \infty$ for all $v \in V - \{s\}$ establishes $d[v] \geq \delta(s, v)$ for all $v \in V$, and this invariant is maintained over any sequence of relaxation steps.

Proof. Suppose not. Let v be the first vertex for which $d[v] < \delta(s, v)$, and let u be the vertex that caused $d[v]$ to change: $d[v] = d[u] + w(u, v)$. Then,

\[
\begin{align*}
 d[v] &< \delta(s, v) & \text{supposition} \\
 \leq \delta(s, u) + \delta(u, v) & \text{triangle inequality} \\
 \leq \delta(s, u) + w(u, v) & \text{sh. path} \leq \text{specific path} \\
 \leq d[u] + w(u, v) & v \text{ is first violation}
\end{align*}
\]

Contradiction.
Correctness — Part II

Lemma. Let u be v’s predecessor on a shortest path from s to v. Then, if $d[u] = \delta(s, u)$ and edge (u, v) is relaxed, we have $d[v] = \delta(s, v)$ after the relaxation.
Correctness — Part II

Lemma. Let u be v’s predecessor on a shortest path from s to v. Then, if $d[u] = \delta(s, u)$ and edge (u, v) is relaxed, we have $d[v] = \delta(s, v)$ after the relaxation.

Proof. Observe that $\delta(s, v) = \delta(s, u) + w(u, v)$. Suppose that $d[v] > \delta(s, v)$ before the relaxation. (Otherwise, we’re done.) Then, the test $d[v] > d[u] + w(u, v)$ succeeds, because $d[v] > \delta(s, v) = \delta(s, u) + w(u, v) = d[u] + w(u, v)$, and the algorithm sets $d[v] = d[u] + w(u, v) = \delta(s, v)$.

October 5, 2005
Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson
Theorem. Dijkstra’s algorithm terminates with
\(d[v] = \delta(s, v) \) for all \(v \in V \).
Correctness — Part III

Theorem. Dijkstra’s algorithm terminates with \(d[v] = \delta(s, v) \) for all \(v \in V \).

Proof. It suffices to show that \(d[v] = \delta(s, v) \) for every \(v \in V \) when \(v \) is added to \(S \). Suppose \(u \) is the first vertex added to \(S \) for which \(d[u] > \delta(s, u) \). Let \(y \) be the first vertex in \(V - S \) along a shortest path from \(s \) to \(u \), and let \(x \) be its predecessor:

\[
S, \text{ just before adding } u.
\]
Correctness — Part III (continued)

Since \(u \) is the first vertex violating the claimed invariant, we have \(d[x] = \delta(s, x) \). When \(x \) was added to \(S \), the edge \((x, y) \) was relaxed, which implies that \(d[y] = \delta(s, y) \leq \delta(s, u) < d[u] \). But, \(d[u] \leq d[y] \) by our choice of \(u \) as \(\min \) element in \(Q \) in Dijkstra’s algorithm. Contradiction.
Analysis of Dijkstra

while \(Q \neq \emptyset \)
 do \(u \leftarrow \text{Extract-Min}(Q) \)
 \(S \leftarrow S \cup \{u\} \)
 for each \(v \in \text{Adj}[u] \)
 do if \(d[v] > d[u] + w(u, v) \)
 then \(d[v] \leftarrow d[u] + w(u, v) \)
Analysis of Dijkstra's Algorithm

while $Q \neq \emptyset$
 do $u \leftarrow \text{Extract-Min}(Q)$
 $S \leftarrow S \cup \{u\}$
 for each $v \in \text{Adj}[u]$
 do if $d[v] > d[u] + w(u, v)$
 then $d[v] \leftarrow d[u] + w(u, v)$

$|V|$ times
Analysis of Dijkstra

\[Q \neq \emptyset \]

\[u \leftarrow \text{Extract-Min}(Q) \]

\[S \leftarrow S \cup \{u\} \]

for each \(v \in \text{Adj}[u] \)

\[\text{do if } d[v] > d[u] + w(u, v) \]

\[\text{then } d[v] \leftarrow d[u] + w(u, v) \]
Analysis of Dijkstra's Algorithm

\begin{align*}
&\text{while } Q \neq \emptyset \\
&\quad \text{do } u \leftarrow \text{EXTRACT-MIN}(Q) \\
&\quad S \leftarrow S \cup \{u\} \\
&\quad \text{for each } v \in \text{Adj}[u] \\
&\quad \quad \text{do if } d[v] > d[u] + w(u, v) \\
&\quad \quad \quad \text{then } d[v] \leftarrow d[u] + w(u, v)
\end{align*}

Handshaking Lemma $\Rightarrow \Theta(E)$ implicit DECREASE-KEY’s.
Analysis of Dijkstra

while $Q \neq \emptyset$
do $u \leftarrow \text{Extract-Min}(Q)$
$S \leftarrow S \cup \{u\}$
for each $v \in \text{Adj}[u]$
do if $d[v] > d[u] + w(u, v)$
then $d[v] \leftarrow d[u] + w(u, v)$

Handshaking Lemma $\Rightarrow \Theta(E)$ implicit Decrease-Key’s.

Time $= \Theta(V \cdot T_{\text{Extract-Min}} + E \cdot T_{\text{Decrease-Key}})$

Note: Same formula as in the analysis of Prim’s minimum spanning tree algorithm.
Analysis of Dijkstra (continued)

\[
\text{Time} = \Theta(V) \cdot T_{\text{EXTRACT-MIN}} + \Theta(E) \cdot T_{\text{DECREASE-KEY}}
\]

<table>
<thead>
<tr>
<th>Q</th>
<th>(T_{\text{EXTRACT-MIN}})</th>
<th>(T_{\text{DECREASE-KEY}})</th>
<th>Total</th>
</tr>
</thead>
</table>

October 5, 2005

Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson
Analysis of Dijkstra (continued)

\[
\text{Time} = \Theta(V) \cdot T_{\text{EXTRACT-MIN}} + \Theta(E) \cdot T_{\text{DECREASE-KEY}}
\]

<table>
<thead>
<tr>
<th>Q</th>
<th>(T_{\text{EXTRACT-MIN}})</th>
<th>(T_{\text{DECREASE-KEY}})</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>array</td>
<td>(O(V))</td>
<td>(O(1))</td>
<td>(O(V^2))</td>
</tr>
</tbody>
</table>
Analysis of Dijkstra (continued)

\[
\text{Time} = \Theta(V) \cdot T_{\text{EXTRACT-MIN}} + \Theta(E) \cdot T_{\text{DECREASE-KEY}}
\]

<table>
<thead>
<tr>
<th></th>
<th>(Q)</th>
<th>(T_{\text{EXTRACT-MIN}})</th>
<th>(T_{\text{DECREASE-KEY}})</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>array</td>
<td>(O(V))</td>
<td>(O(1))</td>
<td>(O(V^2))</td>
<td></td>
</tr>
<tr>
<td>binary heap</td>
<td>(O(\log V))</td>
<td>(O(\log V))</td>
<td>(O(E \log V))</td>
<td></td>
</tr>
</tbody>
</table>
Analysis of Dijkstra's Algorithm (continued)

The time complexity of Dijkstra's algorithm can be expressed as:

$$\text{Time} = \Theta(V) \cdot T_{\text{EXTRACT-MIN}} + \Theta(E) \cdot T_{\text{DECREASE-KEY}}$$

<table>
<thead>
<tr>
<th>Question (Q)</th>
<th>$T_{\text{EXTRACT-MIN}}$</th>
<th>$T_{\text{DECREASE-KEY}}$</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>array</td>
<td>$O(V)$</td>
<td>$O(1)$</td>
<td>$O(V^2)$</td>
</tr>
<tr>
<td>binary heap</td>
<td>$O(\lg V)$</td>
<td>$O(\lg V)$</td>
<td>$O(E \lg V)$</td>
</tr>
<tr>
<td>Fibonacci heap</td>
<td>$O(\lg V)$</td>
<td>$O(1)$</td>
<td>$O(E + V \lg V)$</td>
</tr>
</tbody>
</table>

- E is the number of edges in the graph.
- V is the number of vertices in the graph.
Unweighted graphs

Suppose that $w(u, v) = 1$ for all $(u, v) \in E$. Can Dijkstra’s algorithm be improved?
Unweighted graphs

Suppose that $w(u, v) = 1$ for all $(u, v) \in E$. Can Dijkstra’s algorithm be improved?

- Use a simple FIFO queue instead of a priority queue.
Unweighted graphs

Suppose that $w(u, v) = 1$ for all $(u, v) \in E$. Can Dijkstra’s algorithm be improved?
- Use a simple FIFO queue instead of a priority queue.

Breadth-first search

```plaintext
while $Q \neq \emptyset$
do $u \leftarrow \text{DEQUEUE}(Q)$
for each $v \in \text{Adj}[u]$
do if $d[v] = \infty$
then $d[v] \leftarrow d[u] + 1$
$\text{ENQUEUE}(Q, v)$
```
Unweighted graphs

Suppose that $w(u, v) = 1$ for all $(u, v) \in E$. Can Dijkstra’s algorithm be improved?
• Use a simple FIFO queue instead of a priority queue.

Breadth-first search

```plaintext
while $Q \neq \emptyset$
do $u \leftarrow \text{DEQUEUE}(Q)$
for each $v \in \text{Adj}[u]$
do if $d[v] = \infty$
then $d[v] \leftarrow d[u] + 1$
\text{ENQUEUE}(Q, v)
```

Analysis: Time $= O(V + E)$.

October 5, 2005

Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson

L7.15
Q. How many h's cause x and y to collide?

A. There are m choices for each of a_1, a_2, …, a_r, but once these are chosen, exactly one choice for a_0 causes x and y to collide, namely:

\[
\begin{pmatrix}
\vdots \\
\end{pmatrix}
\]

Thus, the number of h's that cause x and y to collide is $m^r = |H|/m$.

October 5, 2005
Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson
Q. How many h's cause x and y to collide?

A. There are m choices for each of a_1, a_2, \ldots, a_r, but once these are chosen, exactly one choice for a_0 causes x and y to collide, namely

$$
\begin{align*}
\sum_{i=1}^{r} a_i (x_i - y_i) &\mod m.
\end{align*}
$$

Thus, the number of h's that cause x and y to collide is $m^r = |H|/m$. October 5, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L7.15
Example of breadth-first search

Q: a b d

October 5, 2005
Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson
Example of breadth-first search

Q: a b d c e
Proof (completed)

Q. How many h's cause x and y to collide?

A. There are m choices for each of a_1, a_2, \ldots, a_r, but once these are chosen, exactly one choice for a_0 causes x and y to collide, namely

$$
\begin{bmatrix}
\vdots \\
-1 \\
\vdots
\end{bmatrix}
= -a_i (x_i - y_i) \mod m.
$$

Thus, the number of h's that cause x and y to collide is $m^r \cdot 1 = m^r = |H|/m$.

October 5, 2005

Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson

L7.15
Example of breadth-first search

Q: a b d c e

0
a

1
b

c

1
d

2
e

2
g

2
h

i

f

October 5, 2005
Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson
Proof (completed)

Q. How many h's cause x and y to collide?
A. There are \(m \) choices for each of \(a_1, a_2, \ldots, a_r \), but once these are chosen, exactly one choice for \(a_0 \) causes x and y to collide, namely

\[
\begin{pmatrix}
\sum_{i=1}^{r} \cdot \left(x_i - y_i \right)
\end{pmatrix}
\]

Thus, the number of h's that cause x and y to collide is

\[
m^r \cdot 1 = m^r = \frac{|H|}{m}.
\]

October 5, 2005
Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson

Example of breadth-first search

Q: a b d c e g i
Example of breadth-first search

Q: a b d c e g i f
Q. How many h's cause x and y to collide?

A. There are m choices for each of a_1, a_2, \ldots, a_r, but once these are chosen, exactly one choice for a_0 causes x and y to collide, namely $\sum_i (x_0 - y_0 - 1) \cdot a_i \mod m$.

Thus, the number of h's that cause x and y to collide is $m^r = |H| / m$.
Proof (completed)

Q. How many h's cause x and y to collide?

A. There are m choices for each of a_1, a_2, \ldots, a_r, but once these are chosen, exactly one choice for a_0 causes x and y to collide, namely

$$
\begin{align*}
\left(x_0 - y_0 \right) & \equiv a_i (x_i - y_i) \pmod{m}.
\end{align*}
$$

Thus, the number of h's that cause x and y to collide is $m r \cdot 1 = m r = |H|/m$.

October 5, 2005
Copyright © 2001-2005 by Erik D. Demaine and Charles E. Leiserson
Q. How many h's cause x and y to collide?

A. There are m choices for each of a_1, a_2, \ldots, a_r, but once these are chosen, exactly one choice for a_0 causes x and y to collide, namely

\[
\begin{bmatrix}
1 \\
4 \\
3 \\
2 \\
1 \\
0
\end{bmatrix}
\begin{bmatrix}
x_0 \\
y_0 \\
x_i \\
y_i \\
x_j \\
x_k
\end{bmatrix}
\equiv
\begin{bmatrix}
a_0 \\
a_i \\
\vdots \\
\vdots \\
\vdots \\
\vdots
\end{bmatrix}
\]

Thus, the number of h's that cause x and y to collide is $m^r \cdot 1 = m^r = |H|/m$.

October 5, 2005
Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson

Example of breadth-first search

\[Q: \quad a \ b \ d \ c \ e \ g \ i \ f \ h\]
Q. How many \(h \)’s cause \(x \) and \(y \) to collide?

A. There are \(m \) choices for each of \(a_1, a_2, \ldots, a_r \), but once these are chosen, exactly one choice for \(a_0 \) causes \(x \) and \(y \) to collide, namely

\[
\begin{bmatrix}
 r \\
 \sum_{i=1}^{n} \end{bmatrix}
\]

Thus, the number of \(h \)’s that cause \(x \) and \(y \) to collide is \(m^r = |H|/m \).

October 5, 2005
Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson

Example of breadth-first search

\[Q: \ a \ b \ d \ c \ e \ g \ i \ f \ h \]
Correctness of BFS

while $Q \neq \emptyset$
 do $u \leftarrow \text{DEQUEUE}(Q)$
 for each $v \in \text{Adj}[u]$
 do if $d[v] = \infty$
 then $d[v] \leftarrow d[u] + 1$
 $\text{ENQUEUE}(Q, v)$

Key idea:

The FIFO Q in breadth-first search mimics the priority queue Q in Dijkstra.

- **Invariant:** v comes after u in Q implies that $d[v] = d[u]$ or $d[v] = d[u] + 1$.