Lecture 19
Shortest Paths III
- All-pairs shortest paths
- Matrix-multiplication algorithm
- Floyd-Warshall algorithm
- Johnson’s algorithm

Prof. Charles E. Leiserson
Shortest paths

Single-source shortest paths

• Nonnegative edge weights
 • Dijkstra’s algorithm: $O(E + V \log V)$

• General
 • Bellman-Ford algorithm: $O(VE)$

• DAG
 • One pass of Bellman-Ford: $O(V + E)$
Shortest paths

Single-source shortest paths
- Nonnegative edge weights
 - Dijkstra’s algorithm: $O(E + V \log V)$
- General
 - Bellman-Ford: $O(VE)$
- DAG
 - One pass of Bellman-Ford: $O(V + E)$

All-pairs shortest paths
- Nonnegative edge weights
 - Dijkstra’s algorithm $|V|$ times: $O(VE + V^2 \log V)$
- General
 - Three algorithms today.
All-pairs shortest paths

Input: Digraph $G = (V, E)$, where $V = \{1, 2, ..., n\}$, with edge-weight function $w : E \rightarrow \mathbb{R}$.

Output: $n \times n$ matrix of shortest-path lengths $\delta(i, j)$ for all $i, j \in V$.
All-pairs shortest paths

Input: Digraph $G = (V, E)$, where $V = \{1, 2, \ldots, n\}$, with edge-weight function $w : E \rightarrow \mathbb{R}$.

Output: $n \times n$ matrix of shortest-path lengths $\delta(i, j)$ for all $i, j \in V$.

Idea:
- Run Bellman-Ford once from each vertex.
- Time $= O(V^2E)$.
- Dense graph (n^2 edges) $\Rightarrow \Theta(n^4)$ time in the worst case.

Good first try!
Dynamic programming

Consider the $n \times n$ adjacency matrix $A = (a_{ij})$ of the digraph, and define

$$d_{ij}^{(m)} = \text{weight of a shortest path from } i \text{ to } j \text{ that uses at most } m \text{ edges.}$$

Claim: We have

$$d_{ij}^{(0)} = \begin{cases} 0 & \text{if } i = j, \\ \infty & \text{if } i \neq j; \end{cases}$$

and for $m = 1, 2, \ldots, n - 1$,

$$d_{ij}^{(m)} = \min_k \{ d_{ik}^{(m-1)} + a_{kj} \}.$$
Proof of claim

\[d_{ij}^{(m)} = \min_k \left\{ d_{ik}^{(m-1)} + a_{kj} \right\} \]
Proof of claim

\[d_{ij}^{(m)} = \min_k \{ d_{ik}^{(m-1)} + a_{kj} \} \]

Relaxation!

for \(k \leftarrow 1 \) to \(n \)

do if \(d_{ij} > d_{ik} + a_{kj} \)

then \(d_{ij} \leftarrow d_{ik} + a_{kj} \)
Proof of claim

\[d_{ij}^{(m)} = \min_k \{ d_{ik}^{(m-1)} + a_{kj} \} \]

Relaxation!
for \(k \leftarrow 1 \) to \(n \)
do if \(d_{ij} > d_{ik} + a_{kj} \)
then \(d_{ij} \leftarrow d_{ik} + a_{kj} \)

Note: No negative-weight cycles implies
\[\delta(i, j) = d_{ij}^{(n-1)} = d_{ij}^{(n)} = d_{ij}^{(n+1)} = \ldots \]
Matrix multiplication

Compute $C = A \cdot B$, where C, A, and B are $n \times n$ matrices:

$$c_{ij} = \sum_{k=1}^{n} a_{ik} b_{kj}.$$

Time $= \Theta(n^3)$ using the standard algorithm.
Matrix multiplication

Compute $C = A \cdot B$, where C, A, and B are $n \times n$ matrices:

$$c_{ij} = \sum_{k=1}^{n} a_{ik} b_{kj}.$$

Time $= \Theta(n^3)$ using the standard algorithm.

What if we map “+” \rightarrow “min” and “⋅” \rightarrow “+”?
Matrix multiplication

Compute $C = A \cdot B$, where C, A, and B are $n \times n$ matrices:

$$c_{ij} = \sum_{k=1}^{n} a_{ik} b_{kj}.$$

Time $= \Theta(n^3)$ using the standard algorithm.

What if we map $+$ \rightarrow "min" and \cdot \rightarrow "+"?

$$c_{ij} = \min_k \{a_{ik} + b_{kj}\}.$$

Thus, $D^{(m)} = D^{(m-1)} \ "\times" \ A$.

Identity matrix $= I = \begin{pmatrix} 0 & \infty & \infty & \infty \\ \infty & 0 & \infty & \infty \\ \infty & \infty & 0 & \infty \\ \infty & \infty & \infty & 0 \end{pmatrix} = D^0 = (d_{ij}^{(0)})$.
Matrix multiplication (continued)

The \((\min, +)\) multiplication is **associative**, and with the real numbers, it forms an algebraic structure called a **closed semiring**. Consequently, we can compute

\[
\begin{align*}
D^{(1)} &= D^{(0)} \cdot A = A^1 \\
D^{(2)} &= D^{(1)} \cdot A = A^2 \\
&\vdots \\
D^{(n-1)} &= D^{(n-2)} \cdot A = A^{n-1},
\end{align*}
\]

yielding \(D^{(n-1)} = (\delta(i,j))\).

Time = \(\Theta(n \cdot n^3) = \Theta(n^4)\). No better than \(n \times \text{B-F}\).
Improved matrix multiplication algorithm

Repeated squaring: $A^{2k} = A^k \times A^k$.
Compute $A^2, A^4, \ldots, A^{2\lceil \log(n-1) \rceil}$.

$O(\log n)$ squarings

Note: $A^{n-1} = A^n = A^{n+1} = \ldots$.

Time = $\Theta(n^3 \log n)$.

To detect negative-weight cycles, check the diagonal for negative values in $O(n)$ additional time.
Floyd-Warshall algorithm

Also dynamic programming, but faster!

Define \(c_{ij}^{(k)} \) = weight of a shortest path from \(i \) to \(j \) with intermediate vertices belonging to the set \(\{1, 2, \ldots, k\} \).

Thus, \(\delta(i, j) = c_{ij}^{(n)} \). Also, \(c_{ij}^{(0)} = a_{ij} \).
Floyd-Warshall recurrence

\[c_{ij}^{(k)} = \min_k \{ c_{ij}^{(k-1)}, c_{ik}^{(k-1)} + c_{kj}^{(k-1)} \} \]

intermediate vertices in \{1, 2, \ldots, k\}
Pseudocode for Floyd-Warshall

```plaintext
for k ← 1 to n
  do for i ← 1 to n
    do for j ← 1 to n
      do if c_{ij} > c_{ik} + c_{kj}
          then c_{ij} ← c_{ik} + c_{kj}
          \{ relaxation \}
```

Notes:
- Okay to omit superscripts, since extra relaxations can’t hurt.
- Runs in $\Theta(n^3)$ time.
- Simple to code.
- Efficient in practice.
Transitive closure of a directed graph

Compute \(t_{ij} = \begin{cases} 1 & \text{if there exists a path from } i \text{ to } j, \\ 0 & \text{otherwise.} \end{cases} \)

Idea: Use Floyd-Warshall, but with \((\vee, \wedge)\) instead of \((\min, +)\):

\[
t_{ij}^{(k)} = t_{ij}^{(k-1)} \vee (t_{ik}^{(k-1)} \wedge t_{kj}^{(k-1)}).
\]

Time = \(\Theta(n^3)\).
Graph reweighting

Theorem. Given a function $h : V \rightarrow \mathbb{R}$, reweight each edge $(u, v) \in E$ by $w_h(u, v) = w(u, v) + h(u) - h(v)$. Then, for any two vertices, all paths between them are reweighted by the same amount.
Graph reweighting

Theorem. Given a function \(h : V \to \mathbb{R} \), reweight each edge \((u, v) \in E\) by \(w_h(u, v) = w(u, v) + h(u) - h(v)\). Then, for any two vertices, all paths between them are reweighted by the same amount.

Proof. Let \(p = v_1 \to v_2 \to \cdots \to v_k \) be a path in \(G \). We have

\[
\begin{align*}
 w_h(p) &= \sum_{i=1}^{k-1} w_h(v_i, v_{i+1}) \\
 &= \sum_{i=1}^{k-1} \left(w(v_i, v_{i+1}) + h(v_i) - h(v_{i+1}) \right) \\
 &= \sum_{i=1}^{k-1} w(v_i, v_{i+1}) + h(v_1) - h(v_k) \\
 &= w(p) + h(v_1) - h(v_k).
\end{align*}
\]

Same amount!
Shortest paths in reweighted graphs

Corollary. \(\delta_h(u, v) = \delta(u, v) + h(u) - h(v) \). \qed
Shortest paths in reweighted graphs

Corollary. \(\delta_h(u, v) = \delta(u, v) + h(u) - h(v) \). □

Idea: Find a function \(h : V \rightarrow \mathbb{R} \) such that \(w_h(u, v) \geq 0 \) for all \((u, v) \in E \). Then, run Dijkstra’s algorithm from each vertex on the reweighted graph.

Note: \(w_h(u, v) \geq 0 \) iff \(h(v) - h(u) \leq w(u, v) \).
Johnson’s algorithm

0. Add new vertex s, with 0 weight edges to all vertices in V, making shortest path from s to each vertex at most 0.

1. Run Bellman-Ford, finding shortest path distance $h(v)$ from s to each vertex. If a negative weight cycle exists, exit. Otherwise $w_h(v) = w(u, v) + h(u) - h(v)$ is non-negative since $h(v) - h(u) \leq w(u, v)$.

 • Time $= O(VE)$.

2. Run Dijkstra’s algorithm using w_h from each vertex $u \in V$ to compute $\delta_h(u, v)$ for all $v \in V$.

 • Time $= O(VE + V^2 \log V)$.

3. For each $(u, v) \in V \times V$, compute

 \[
 \delta(u, v) = \delta_h(u, v) - h(u) + h(v) \cdot
 \]

 • Time $= O(V^2)$.

Total time $= O(VE + V^2 \log V)$.
Johnson’s algorithm

Example

The first three stages of Johnson's algorithm are depicted in the illustration below.

1. Original graph with negative edges
2. Shortest path tree found by Bellman-Ford
3. Reweighted graph with no negative edges