Proof (completed)

Q. How many has cause x and y to collide?

A. There are m choices for each of a_1, a_2, \ldots, a_r, but once these are chosen, exactly one choice for a_0 causes x and y to collide, namely

$$
\sum_{i=1}^{r} (x_0 - y_0 - 1) \mod m.
$$

Thus, the number of has that cause x and y to collide is $m \cdot 1 = m = |H|/m$.

October 5, 2005
Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson

Shortest Paths III

- All-pairs shortest paths
- Matrix-multiplication algorithm
- Floyd-Warshall algorithm
- Johnson’s algorithm

Prof. Charles E. Leiserson
Shortest paths

Single-source shortest paths
• Nonnegative edge weights
 ◦ Dijkstra’s algorithm: $O(E + V \lg V)$
• General
 ◦ Bellman-Ford algorithm: $O(VE)$
• DAG
 ◦ One pass of Bellman-Ford: $O(V + E)$
Shortest paths

Single-source shortest paths
• Nonnegative edge weights
 • Dijkstra’s algorithm: $O(E + V \lg V)$
• General
 • Bellman-Ford: $O(VE)$
• DAG
 • One pass of Bellman-Ford: $O(V + E)$

All-pairs shortest paths
• Nonnegative edge weights
 • Dijkstra’s algorithm $|V|$ times: $O(VE + V^2 \lg V)$
• General
 • Three algorithms today.
All-pairs shortest paths

Input: Digraph $G = (V, E)$, where $V = \{1, 2, \ldots, n\}$, with edge-weight function $w : E \rightarrow \mathbb{R}$.

Output: $n \times n$ matrix of shortest-path lengths $\delta(i, j)$ for all $i, j \in V$.
All-pairs shortest paths

Input: Digraph $G = (V, E)$, where $V = \{1, 2, ..., n\}$, with edge-weight function $w : E \rightarrow \mathbb{R}$.

Output: $n \times n$ matrix of shortest-path lengths $\delta(i, j)$ for all $i, j \in V$.

Idea:
- Run Bellman-Ford once from each vertex.
- Time $= O(V^2E)$.
- Dense graph (n^2 edges) $\Rightarrow \Theta(n^4)$ time in the worst case.

Good first try!
Dynamic programming

Consider the $n \times n$ adjacency matrix $A = (a_{ij})$ of the digraph, and define

$$d_{ij}^{(m)} = \text{weight of a shortest path from } i \text{ to } j \text{ that uses at most } m \text{ edges.}$$

Claim: We have

$$d_{ij}^{(0)} = \begin{cases} 0 & \text{if } i = j, \\ \infty & \text{if } i \neq j; \end{cases}$$

and for $m = 1, 2, \ldots, n - 1$,

$$d_{ij}^{(m)} = \min_k \{ d_{ik}^{(m-1)} + a_{kj}, d_{ij}^{(m-1)} \}$$
Proof of claim

Q. How many h's cause x and y to collide?
A. There are m choices for each of a_1, a_2, \ldots, a_r, but once these are chosen, exactly one choice for a_0 causes x and y to collide, namely

$$\sum_{i=1}^{r} a_i (x^i y^i) \mod m.$$

Thus, the number of h's that cause x and y to collide is $m^r \cdot 1 = m^r = |H|/m$.

October 5, 2005

Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson

L7.15
Proof of claim

Relaxation!

for $k \leftarrow 1$ to n
do if $d_{ij} > d_{ik} + a_{kj}$
then $d_{ij} \leftarrow d_{ik} + a_{kj}$
Proof of claim

Relaxation!

for k ← 1 to n
 do if \(d_{ij} > d_{ik} + a_{kj} \)
 then \(d_{ij} \leftarrow d_{ik} + a_{kj} \)

Note: No negative-weight cycles implies

\[\delta(i, j) = d_{ij}^{(n-1)} = d_{ij}^{(n)} = d_{ij}^{(n+1)} = \ldots \]
Matrix multiplication

Compute \(C = A \cdot B \), where \(C, A, \) and \(B \) are \(n \times n \) matrices:

\[
c_{ij} = \sum_{k=1}^{n} a_{ik} b_{kj}.
\]

Time = \(\Theta(n^3) \) using the standard algorithm.
Matrix multiplication

Compute $C = A \cdot B$, where C, A, and B are $n \times n$ matrices:

$$c_{ij} = \sum_{k=1}^{n} a_{ik} b_{kj}.$$

Time = $\Theta(n^3)$ using the standard algorithm.

What if we map “+” \rightarrow “min” and “·” \rightarrow “+”?
Matrix multiplication

Compute $C = A \cdot B$, where C, A, and B are $n \times n$ matrices:

$$c_{ij} = \sum_{k=1}^{n} a_{ik} b_{kj}.$$

Time $= \Theta(n^3)$ using the standard algorithm.

What if we map $+$ \rightarrow “min” and \cdot \rightarrow “+”?

$$c_{ij} = \min_k \{a_{ik} + b_{kj}\}.$$

Thus, $D^{(m)} = D^{(m-1)} \times A$.

Identity matrix $= I = \begin{pmatrix} 0 & \infty & \infty & \infty \\ \infty & 0 & \infty & \infty \\ \infty & \infty & 0 & \infty \\ \infty & \infty & \infty & 0 \end{pmatrix} = D^0 = (d_{ij}^{(0)}).$
Matrix multiplication (continued)

The \((\min, +)\) multiplication is **associative**, and with the real numbers, it forms an algebraic structure called a **closed semiring**.

Consequently, we can compute

\[
D^{(1)} = D^{(0)} \cdot A = A^1 \\
D^{(2)} = D^{(1)} \cdot A = A^2 \\
\vdots \\
D^{(n-1)} = D^{(n-2)} \cdot A = A^{n-1},
\]

yielding \(D^{(n-1)} = (\delta(i, j))\).

Time = \(\Theta(n \cdot n^3) = \Theta(n^4)\). No better than \(n \times B\text{-}F\).
Improved matrix multiplication algorithm

Repeated squaring: \(A^{2k} = A^k \times A^k \).
Compute \(A^2, A^4, \ldots, A^{2^{\lceil \lg(n-1) \rceil}} \).

\(O(\lg n) \) squarings

Note: \(A^{n-1} = A^n = A^{n+1} = \ldots \).
Time = \(\Theta(n^3 \lg n) \).

To detect negative-weight cycles, check the diagonal for negative values in \(O(n) \) additional time.
Floyd-Warshall algorithm

Also dynamic programming, but faster!

Define $c_{ij}^{(k)} =$ weight of a shortest path from i to j with intermediate vertices belonging to the set \(\{1, 2, \ldots, k\} \).

Thus, $\delta(i, j) = c_{ij}^{(n)}$. Also, $c_{ij}^{(0)} = a_{ij}$.
Floyd-Warshall recurrence

\[c_{ij}^{(k)} = \min_k \{ c_{ij}^{(k-1)}, c_{ik}^{(k-1)} + c_{kj}^{(k-1)} \} \]

intermediate vertices in \(\{1, 2, \ldots, k\} \)
Pseudocode for Floyd-Warshall

\[
\text{for } k \leftarrow 1 \text{ to } n \\
\quad \text{do for } i \leftarrow 1 \text{ to } n \\
\quad \quad \text{do for } j \leftarrow 1 \text{ to } n \\
\quad \quad \quad \text{do if } c_{ij} > c_{ik} + c_{kj} \\
\quad \quad \quad \quad \text{then } c_{ij} \leftarrow c_{ik} + c_{kj} \\
\] \text{relaxation}

Notes:
• Okay to omit superscripts, since extra relaxations can’t hurt.
• Runs in $\Theta(n^3)$ time.
• Simple to code.
• Efficient in practice.
Transitive closure of a directed graph

Compute $t_{ij} = \begin{cases} 1 & \text{if there exists a path from } i \text{ to } j, \\ 0 & \text{otherwise.} \end{cases}$

** IDEA: ** Use Floyd-Warshall, but with (\lor, \land) instead of $(\min, +)$:

$$t_{ij}^{(k)} = t_{ij}^{(k-1)} \lor (t_{ik}^{(k-1)} \land t_{kj}^{(k-1)}).$$

Time $= \Theta(n^3)$.
Graph reweighting

Theorem. Given a function \(h : V \rightarrow \mathbb{R} \), *reweight* each edge \((u, v) \in E\) by \(w_h(u, v) = w(u, v) + h(u) - h(v)\). Then, for any two vertices, all paths between them are reweighted by the same amount.
Graph reweighting

Theorem. Given a function $h : V \rightarrow \mathbb{R}$, reweight each edge $(u, v) \in E$ by $w_h(u, v) = w(u, v) + h(u) - h(v)$. Then, for any two vertices, all paths between them are reweighted by the same amount.

Proof. Let $p = v_1 \rightarrow v_2 \rightarrow \cdots \rightarrow v_k$ be a path in G. We have

$$w_h(p) = \sum_{i=1}^{k-1} w_h(v_i, v_{i+1})$$

$$= \sum_{i=1}^{k-1} (w(v_i, v_{i+1}) + h(v_i) - h(v_{i+1}))$$

$$= \sum_{i=1}^{k-1} w(v_i, v_{i+1}) + h(v_1) - h(v_k)$$

$$= w(p) + h(v_1) - h(v_k).$$

Same amount!
Shortest paths in reweighted graphs

Corollary. \(\delta_h(u, v) = \delta(u, v) + h(u) - h(v) \). \[\square\]
Shortest paths in reweighted graphs

Corollary. $\delta_h(u, v) = \delta(u, v) + h(u) - h(v)$.

Idea: Find a function $h : V \rightarrow \mathbb{R}$ such that $w_h(u, v) \geq 0$ for all $(u, v) \in E$. Then, run Dijkstra’s algorithm from each vertex on the reweighted graph.

Note: $w_h(u, v) \geq 0$ iff $h(v) - h(u) \leq w(u, v)$.
Johnson’s algorithm

0. Add new vertex s, with 0 weight edges to all vertices in V, making shortest path from s to each vertex at most 0.

1. Run Bellman-Ford, finding shortest path distance $h(v)$ from s to each vertex. If a negative weight cycle exists, exit. Otherwise $w_{h}(u,v)=w(u,v)+h(u)-h(v)$ is non-negative since $h(v) - h(u) \leq w(u, v)$.
 • Time = $O(VE)$.

2. Run Dijkstra’s algorithm using w_{h} from each vertex $u \in V$ to compute $\delta_{h}(u, v)$ for all $v \in V$.
 • Time = $O(VE + V^2 \log V)$.

3. For each $(u, v) \in V \times V$, compute
 \[\delta(u, v) = \delta_{h}(u, v) - h(u) + h(v). \]
 • Time = $O(V^2)$.

Total time = $O(VE + V^2 \log V)$.
Johnson’s algorithm

Example

The first three stages of Johnson's algorithm are depicted in the illustration below.

- **Original graph with negative edges**
- **Shortest path tree found by Bellman-Ford**
- **Reweighted graph with no negative edges**