Introduction to Algorithms

Order Statistics

• Randomized divide and conquer
• Analysis of expected time
• Worst-case linear-time order statistics
• Analysis

Prof. Erik Demaine
Order statistics

Select the ith smallest of n elements (the element with \textit{rank} i).

- $i = 1$: \textit{minimum};
- $i = n$: \textit{maximum};

Worst-case running time $= \Theta(n)$
Order statistics

Select the \(i \)th smallest of \(n \) elements (the element with rank \(i \)).

- \(i = 1 \): minimum;
- \(i = n \): maximum;
- \(i = \lfloor (n+1)/2 \rfloor \) or \(\lceil (n+1)/2 \rceil \): median.

Naive algorithm: Sort and index \(i \)th element.
Worst-case running time = \(\Theta(n \log n) + \Theta(1) \)
= \(\Theta(n \log n) \),
using merge sort or heapsort (*not* quicksort).
Randomized divide-and-conquer algorithm

\textbf{Rand-Select}(A, p, q, i) \triangleright i\text{th smallest of } A[p \ldots q]

\begin{align*}
\text{if } p &= q \text{ then return } A[p] \\
r &\leftarrow \text{Rand-Partition}(A, p, q) \\
k &\leftarrow r - p + 1 \quad \triangleright k = \text{rank}(A[r]) \\
\text{if } i &= k \text{ then return } A[r] \\
\text{if } i < k & \\
\text{then return } \text{Rand-Select}(A, p, r - 1, i) \\
\text{else return } \text{Rand-Select}(A, r + 1, q, i - k)
\end{align*}

\textbf{Initial call: } \text{Rand-Select}(A, 1, n, i)
Example

Select the \(i = 7 \)th smallest:

\[
\begin{array}{cccccccc}
6 & 10 & 13 & 5 & 8 & 3 & 2 & 11 \\
\end{array}
\]

\textit{pivot}

Partition:

\[
\begin{array}{cccccccc}
2 & 5 & 3 & 6 & 8 & 13 & 10 & 11 \\
\end{array}
\]

Select the \(7 - 4 = 3 \)rd smallest recursively.
Intuition for analysis

(All our analyses today assume that all elements are distinct.)

Lucky:

\[T(n) = T(9n/10) + \Theta(n) = \Theta(n) \]

Unlucky:

\[T(n) = T(n - 1) + \Theta(n) = \Theta(n^2) \]

\textit{Worse than sorting!}

\[n^{\log_{10}9} = n^0 = 1 \]

\textbf{CASE 3}

\textbf{arithmetic series}
Analysis of expected time

The analysis follows that of randomized quicksort, but it’s a little different.

Let $T(n) =$ the random variable for the running time of \textsc{Rand-Select} on an input of size n, assuming random numbers are independent.

For $k = 0, 1, \ldots, n-1$, define the \textit{indicator random variable}

$$X_k = \begin{cases} 1 & \text{if } \textsc{Partition} \text{ generates a } k : n-k-1 \text{ split,} \\ 0 & \text{otherwise.} \end{cases}$$
Analysis (continued)

To obtain an upper bound, assume that the ith element always falls in the larger side of the partition:

$$T(n) = \begin{cases}
T(\max\{0, n-1\}) + \Theta(n) & \text{if } 0 : n-1 \text{ split,} \\
T(\max\{1, n-2\}) + \Theta(n) & \text{if } 1 : n-2 \text{ split,} \\
\vdots \\
T(\max\{n-1, 0\}) + \Theta(n) & \text{if } n-1 : 0 \text{ split,}
\end{cases}$$

$$= \sum_{k=0}^{n-1} X_k \left(T(\max\{k, n-k-1\}) + \Theta(n) \right).$$
Calculating expectation

\[E[T(n)] = E\left[\sum_{k=0}^{n-1} X_k (T(\max\{k, n-k-1\}) + \Theta(n)) \right] \]

Take expectations of both sides.
Calculating expectation

\[E[T(n)] = E \left[\sum_{k=0}^{n-1} X_k \left(T(\max\{k, n-k-1\}) + \Theta(n) \right) \right] \]

\[= \sum_{k=0}^{n-1} E[X_k \left(T(\max\{k, n-k-1\}) + \Theta(n) \right)] \]

Linearity of expectation.
Calculating expectation

\[E[T(n)] = E \left[\sum_{k=0}^{n-1} X_k \left(T(\max\{k, n-k-1\}) + \Theta(n) \right) \right] \]

\[= \sum_{k=0}^{n-1} E[X_k \left(T(\max\{k, n-k-1\}) + \Theta(n) \right)] \]

\[= \sum_{k=0}^{n-1} E[X_k] \cdot E[T(\max\{k, n-k-1\}) + \Theta(n)] \]

Independence of \(X_k \) from other random choices.
Calculating expectation

\[
E[T(n)] = E \left[\sum_{k=0}^{n-1} X_k (T(\max\{k, n-k-1\}) + \Theta(n)) \right]
\]

\[
= \sum_{k=0}^{n-1} E[X_k (T(\max\{k, n-k-1\}) + \Theta(n))] \\
= \sum_{k=0}^{n-1} E[X_k] \cdot E[T(\max\{k, n-k-1\}) + \Theta(n)] \\
= \frac{1}{n} \sum_{k=0}^{n-1} E[T(\max\{k, n-k-1\})] + \frac{1}{n} \sum_{k=0}^{n-1} \Theta(n)
\]

Linearity of expectation; \(E[X_k] = 1/n \).
Calculating expectation

\[
E[T(n)] = E \left[\sum_{k=0}^{n-1} X_k (T(\max\{k, n-k-1\}) + \Theta(n)) \right] \\
= \sum_{k=0}^{n-1} E[X_k (T(\max\{k, n-k-1\}) + \Theta(n))] \\
= \sum_{k=0}^{n-1} E[X_k] \cdot E[T(\max\{k, n-k-1\}) + \Theta(n)] \\
= \frac{1}{n} \sum_{k=0}^{n-1} E[T(\max\{k, n-k-1\})] + \frac{1}{n} \sum_{k=0}^{n-1} \Theta(n) \\
\leq \frac{2}{n} \sum_{k=[n/2]}^{n-1} E[T(k)] + \Theta(n) \\
\text{Upper terms appear twice.}
\]
Hairy recurrence

(But not quite as hairy as the quicksort one.)

$$E[T(n)] = 2 \sum_{n \geq \lceil n/2 \rceil} E[T(k)] + \Theta(n)$$

Prove: $E[T(n)] \leq cn$ for constant $c > 0$.

- The constant c can be chosen large enough so that $E[T(n)] \leq cn$ for the base cases.

Use fact:

$$\sum_{k=\lceil n/2 \rceil}^{n-1} k \leq \frac{3}{8} n^2$$ (exercise).
Substitution method

\[E[T(n)] \leq \frac{2}{n} \sum_{k=\lfloor n/2 \rfloor}^{n-1} ck + \Theta(n) \]

Substitute inductive hypothesis.
Substitution method

\[E[T(n)] \leq \frac{2}{n} \sum_{k=\lfloor n/2 \rfloor}^{n-1} ck + \Theta(n) \]

\[\leq \frac{2c}{n} \left(\frac{3}{8} n^2 \right) + \Theta(n) \]

Use fact.
Substitution method

\[E[T(n)] \leq \frac{2}{n} \sum_{k=\lfloor n/2 \rfloor}^{n-1} c k + \Theta(n) \]

\[\leq \frac{2c}{n} \left(\frac{3}{8} n^2 \right) + \Theta(n) \]

\[= cn - \left(\frac{cn}{4} - \Theta(n) \right) \]

Express as *desired – residual*.

Substitution method

\[
E[T(n)] \leq 2 \sum_{k=\lfloor n/2 \rfloor}^{n-1} c k + \Theta(n) \\
\leq \frac{2c}{n} \left(\frac{3}{8} n^2 \right) + \Theta(n) \\
= cn \left(\frac{cn}{4} - \Theta(n) \right) \\
\leq cn,
\]

if \(c \) is chosen large enough so that \(cn/4 \) dominates the \(\Theta(n) \).
Summary of randomized order-statistic selection

- Works fast: linear expected time.
- Excellent algorithm in practice.
- But, the worst case is very bad: $\Theta(n^2)$.

Q. Is there an algorithm that runs in linear time in the worst case?

A. Yes, due to Blum, Floyd, Pratt, Rivest, and Tarjan [1973].

IDEA: Generate a good pivot recursively.
Worst-case linear-time order statistics

SELECT(*i*, *n*)

1. Divide the *n* elements into groups of 5. Find the median of each 5-element group by rote.
2. Recursively **SELECT** the median *x* of the \(\lceil n/5 \rceil \) group medians to be the pivot.
3. Partition around the pivot *x*. Let *k* = rank(*x*).
4. **if** *i* = *k** then return *x**
 elseif *i* < *k**
 then recursively **SELECT** the *i*th smallest element in the lower part
 else recursively **SELECT** the (*i*−*k*)th smallest element in the upper part

Same as **RAND-SELECT**
Choosing the pivot
Choosing the pivot

1. Divide the n elements into groups of 5.
Choosing the pivot

1. Divide the n elements into groups of 5. Find the median of each 5-element group by rote.
Choosing the pivot

1. Divide the n elements into groups of 5. Find the median of each 5-element group by rote.
2. Recursively SELECT the median x of the $\lfloor n/5 \rfloor$ group medians to be the pivot.
Analysis

At least half the group medians are $\leq x$, which is at least $\left\lfloor \frac{n}{5} \right\rfloor / 2 = \left\lceil \frac{n}{10} \right\rceil$ group medians.
Analysis (Assume all elements are distinct.)

At least half the group medians are \(\leq x \), which is at least \(\lfloor n/5 \rfloor / 2 \) = \(\lfloor n/10 \rfloor \) group medians.
- Therefore, at least \(3 \lfloor n/10 \rfloor \) elements are \(\leq x \).
Analysis (Assume all elements are distinct.)

At least half the group medians are \(\leq x \), which is at least \(\lfloor n/5 \rfloor /2 \) = \(\lfloor n/10 \rfloor \) group medians.

- Therefore, at least 3\(\lfloor n/10 \rfloor \) elements are \(\leq x \).
- Similarly, at least 3\(\lfloor n/10 \rfloor \) elements are \(\geq x \).
Minor simplification

- For $n \geq 50$, we have $3 \lfloor n/10 \rfloor \geq n/4$.
- Therefore, for $n \geq 50$ the recursive call to SELECT in Step 4 is executed recursively on $\leq 3n/4$ elements.
- Thus, the recurrence for running time can assume that Step 4 takes time $T(3n/4)$ in the worst case.
- For $n < 50$, we know that the worst-case time is $T(n) = \Theta(1)$.
Developing the recurrence

<table>
<thead>
<tr>
<th>(T(n))</th>
<th>(\text{SELECT}(i, n))</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\Theta(n))</td>
<td>1. Divide the (n) elements into groups of 5. Find the median of each 5-element group by rote.</td>
</tr>
<tr>
<td>(T(n/5))</td>
<td>2. Recursively (\text{SELECT}) the median (x) of the (\lfloor n/5 \rfloor) group medians to be the pivot.</td>
</tr>
<tr>
<td>(\Theta(n))</td>
<td>3. Partition around the pivot (x). Let (k = \text{rank}(x)).</td>
</tr>
</tbody>
</table>
| \(T(3n/4) \) | 4. if \(i = k \) then return \(x \)
elseif \(i < k \) then recursively \(\text{SELECT} \) the \(i \)th smallest element in the lower part
else recursively \(\text{SELECT} \) the \((i-k) \)th smallest element in the upper part |
Solving the recurrence

\[T(n) = T\left(\frac{1}{5}n\right) + T\left(\frac{3}{4}n\right) + \Theta(n) \]

Substitution:

\[T(n) \leq \frac{1}{5}cn + \frac{3}{4}cn + \Theta(n) \]

\[= \frac{19}{20}cn + \Theta(n) \]

\[= cn - \left(\frac{1}{20}cn - \Theta(n)\right) \]

\[\leq cn \quad , \]

if \(c \) is chosen large enough to handle both the \(\Theta(n) \) and the initial conditions.
Conclusions

- Since the work at each level of recursion is a constant fraction (19/20) smaller, the work per level is a geometric series dominated by the linear work at the root.
- In practice, this algorithm runs slowly, because the constant in front of n is large.
- The randomized algorithm is far more practical.

Exercise: *Why not divide into groups of 3?*